Skip to main content

Introduction

  • Chapter
  • First Online:

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Generally, nanomaterials refer to materials with at least one dimension in the nano-scale range (1–100 nm), or the corresponding aggregates. Nanomaterials have displayed excellent performance in optics, electrics, magnetics and catalysis, and appeared to be a research focus. Designing and constructing functional nanomaterials at molecular level have long been a hot topic, however are facing tremendous challenges. With the advances in engineering and deepened understanding of micro/nano world by some new characterization techniques, it gradually become a reality to construct nanomaterials based on molecular design. Metal–organic frameworks (MOFs), also known as porous coordination polymers (PCPs), microporous coordination polymers (MCPs), or porous coordination networks (PCNs), are a typical example (Rowsell and Yaghi in Microporous Mesoporous Mater 73(1–2):3–14, 2004, [1]). They are a new type of nanoporous materials which have ultra-low density, high surface area and regular pore structure. Compared with the traditional porous materials like active carbons or zeolites, MOFs demonstrate more flexibility in tuning the structure and surface chemistry, making them excellent candidates 222 for the application in gas sorption/separation, catalysis, and sensor (Furukawa et al. in Science 341(6149):1230444, 2013, [2]).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Rowsell JLC, Yaghi OM (2004) Metal–organic frameworks: a new class of porous materials. Microporous Mesoporous Mater 73(1–2):3–14

    Article  Google Scholar 

  2. Furukawa H, Cordova KE, O’Keeffe M et al (2013) The chemistry and applications of metal–organic frameworks. Science 341(6149):1230444

    Article  Google Scholar 

  3. James SL (2003) Metal–organic frameworks. Chem Soc Rev 32(5):276–288

    Article  Google Scholar 

  4. Li H, Eddaoudi M, O’Keeffe M et al (1999) Design and synthesis of an exceptionally stable and highly porous metal–organic framework. Nature 402(6759):276–279

    Article  Google Scholar 

  5. Chui SS, Lo SM, Charmant JP et al (1999) A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science 283(5405):1148–1150

    Article  Google Scholar 

  6. Howarth A J, Liu Y, Li P et al (2016) Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nat Rev Mater 15018

    Google Scholar 

  7. Férey G, Mellot-Draznieks C, Serre C et al (2005) A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 309(5743):2040–2042

    Article  Google Scholar 

  8. Rosi NL, Kim J, Eddaoudi M et al (2005) Rod packings and metal–organic frameworks constructed from rod-shaped secondary building units. J Am Chem Soc 127(5):1504–1518

    Article  Google Scholar 

  9. Dietzel PDC, Morita Y, Blom R et al (2005) An in situ high-temperature single-crystal investigation of a dehydrated metal–organic framework compound and field-induced magnetization of one-dimensional metal-oxygen chains. Angew Chem Int Ed 44(39):6354–6358

    Article  Google Scholar 

  10. Dietzel PDC, Panella B, Hirscher M et al (2006) Hydrogen adsorption in a nickel based coordination polymer with open metal sites in the cylindrical cavities of the desolvated framework. Chem Commun 9:959–961

    Article  Google Scholar 

  11. Caskey SR, Wong-Foy AG, Matzger AJ (2008) Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores. J Am Chem Soc 130(33):10870–10871

    Article  Google Scholar 

  12. Zhou W, Wu H, Yildirim T (2008) Enhanced H2 adsorption in isostructural metal–organic frameworks with open metal sites: strong dependence of the binding strength on metal ions. J Am Chem Soc 130(46):15268–15269

    Article  Google Scholar 

  13. Bhattacharjee S, Choi J-S, Yang S-T et al (2010) Solvothermal synthesis of Fe-MOF-74 and its catalytic properties in phenol hydroxylation. J Nanosci Nanotechnol 10(1):135–141

    Article  Google Scholar 

  14. Park KS, Ni Z, Cote AP et al (2006) Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci USA 103(27):10186–10191

    Article  Google Scholar 

  15. Denysenko D, Grzywa M, Tonigold M et al (2011) Elucidating gating effects for hydrogen sorption in mfu-4-type triazolate-based metal–organic frameworks featuring different pore sizes. Chem Eur J 17(6):1837–1848

    Article  Google Scholar 

  16. Lin X, Telepeni I, Blake AJ et al (2009) High capacity hydrogen adsorption in Cu(II) tetracarboxylate framework materials: the role of pore size, ligand functionalization, and exposed metal sites. J Am Chem Soc 131(6):2159–2171

    Article  Google Scholar 

  17. Yuan D, Zhao D, Sun D et al (2010) An isoreticular series of metal–organic frameworks with dendritic hexacarboxylate ligands and exceptionally high gas-uptake capacity. Angew Chem Int Ed 49(31):5357–5361

    Article  Google Scholar 

  18. Zheng B, Bai J, Duan J et al (2011) Enhanced CO2 binding affinity of a high-uptake rht-type metal–organic framework decorated with acylamide groups. J Am Chem Soc 133(4):748–751

    Article  Google Scholar 

  19. Park HJ, Lim D-W, Yang WS et al (2011) A highly porous metal–organic framework: structural transformations of a guest-free MOF depending on activation method and temperature. Chem Eur J 17(26):7251–7260

    Article  Google Scholar 

  20. Ojha RP, Lemieux PA, Dixon PK et al (2004) Statistical mechanics of a gas-fluidized particle. Nature 427(6974):521–523

    Article  Google Scholar 

  21. Yan Y, Lin X, Yang S et al (2009) Exceptionally high H2 storage by a metal–organic polyhedral framework. Chem Commun 9:1025–1027

    Article  Google Scholar 

  22. Wang Z, Tanabe KK, Cohen SM (2010) Tuning hydrogen sorption properties of metal–organic frameworks by postsynthetic covalent modification. Chem Eur J 16(1):212–217

    Article  Google Scholar 

  23. Sumida K, Hill MR, Horike S et al (2009) Synthesis and hydrogen storage properties of Be12(OH)12(1,3,5-benzenetribenzoate)4. J Am Chem Soc 131(42):15120–15121

    Article  Google Scholar 

  24. Koh K, Wong-Foy AG, Matzger AJ (2008) A crystalline mesoporous coordination copolymer with high microporosity. Angew Chem Int Ed 47(4):677–680

    Article  Google Scholar 

  25. An J, Farha OK, Hupp JT et al (2012) Metal-adeninate vertices for the construction of an exceptionally porous metal–organic framework. Nat Commun 3:604

    Article  Google Scholar 

  26. Furukawa H, Ko N, Go YB et al (2010) Ultrahigh porosity in metal–organic frameworks. Science 329(5990):424–428

    Article  Google Scholar 

  27. Yan Y, Telepeni I, Yang S et al (2010) Metal–organic polyhedral frameworks: high H2 adsorption capacities and neutron powder diffraction studies. J Am Chem Soc 132(12):4092–4094

    Article  Google Scholar 

  28. Klein N, Senkovska I, Baburin IA et al (2011) Route to a family of robust, non-interpenetrated metal–organic frameworks with pto-like topology. Chem Eur J 17(46):13007–13016

    Article  Google Scholar 

  29. Koh K, Wong-Foy AG, Matzger AJ (2009) A porous coordination copolymer with over 5000 m2/g BET Surface Area. J Am Chem Soc 131(12):4184–4185

    Article  Google Scholar 

  30. Farha OK, Özgür Yazaydın A, Eryazici I et al (2010) De novo synthesis of a metal–organic framework material featuring ultrahigh surface area and gas storage capacities. Nat Chem 2(11):944–948

    Article  Google Scholar 

  31. Farha OK, Eryazici I, Jeong NC et al (2012) Metal–organic framework materials with ultrahigh surface areas: is the sky the limit? J Am Chem Soc 134(36):15016–15021

    Article  Google Scholar 

  32. Eddaoudi M, Kim J, Rosi N et al (2002) Systematic design of pore size and functionality in isoreticular mofs and their application in methane storage. Science 295(5554):469–472

    Article  Google Scholar 

  33. Rosi NL, Eckert J, Eddaoudi M et al (2003) Hydrogen storage in microporous metal–organic frameworks. Science 300(5622):1127–1129

    Article  Google Scholar 

  34. Rowsell JLC, Yaghi OM (2006) Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal–organic frameworks. J Am Chem Soc 128(4):1304–1315

    Article  Google Scholar 

  35. Deng H, Grunder S, Cordova KE et al (2012) Large-pore apertures in a series of metal–organic frameworks. Science 336(6084):1018–1023

    Article  Google Scholar 

  36. Brozek CK, Dinca M (2013) Ti3+-, V2+/3+-, Cr2+/3+-, Mn2+-, and Fe2+-substituted MOF-5 and redox reactivity in Cr- and Fe-MOF-5. J Am Chem Soc 135(34):12886–12891

    Article  Google Scholar 

  37. Lee Y, Kim S, Kang JK et al (2015) Photocatalytic CO2 reduction by a mixed metal (Zr/Ti), mixed ligand metal–organic framework under visible light irradiation. Chem Commun 51(26):5735–5738

    Article  Google Scholar 

  38. Liu X, Li Y, Ban Y et al (2013) Improvement of hydrothermal stability of zeolitic imidazolate frameworks. Chem Commun 49(80):9140–9142

    Article  Google Scholar 

  39. Ni Z, Masel RI (2006) Rapid production of metal–organic frameworks via microwave-assisted solvothermal synthesis. J Am Chem Soc 128(38):12394–12395

    Article  Google Scholar 

  40. Dey C, Kundu T, Biswal BP et al (2014) Crystalline metal–organic frameworks (MOFs): synthesis, structure and function. Acta Crystallogr Sect B Struct Sci Cryst Eng Mater 70(Pt 1):3–10

    Article  Google Scholar 

  41. Lee Y-R, Kim J, Ahn W-S (2013) Synthesis of metal–organic frameworks: a mini review. Korean J Chem Eng 30(9):1667–1680

    Article  Google Scholar 

  42. Yang D-A, Cho H-Y, Kim J et al (2012) CO2 capture and conversion using Mg-MOF-74 prepared by a sonochemical method. Energy Environ Sci 5(4):6465–6473

    Article  Google Scholar 

  43. Lin JB, Lin RB, Cheng XN et al (2011) Solvent/additive-free synthesis of porous/zeolitic metal azolate frameworks from metal oxide/hydroxide. Chem Commun 47(32):9185–9187

    Article  Google Scholar 

  44. Beldon PJ, Fabian L, Stein RS et al (2010) Rapid room-temperature synthesis of zeolitic imidazolate frameworks by using mechanochemistry. Angew Chem Int Ed 49(50):9640–9643

    Article  Google Scholar 

  45. Mueller U, Hesse M, Lobree L et al (2005) Method for electrochemical production of a crystalline porous metal organic skeleton material. WO2005/049892

    Google Scholar 

  46. Mueller U, Schubert M, Teich F et al (2006) Metal–organic frameworks—prospective industrial applications. J Mater Chem 16(7):626–636

    Article  Google Scholar 

  47. Kaye SS, Dailly A, Yaghi OM et al (2007) Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5). J Am Chem Soc 129(46):14176–14177

    Article  Google Scholar 

  48. Ma S, Sun D, Simmons JM et al (2008) Metal–organic framework from an anthracene derivative containing nanoscopic cages exhibiting high methane uptake. J Am Chem Soc 130(3):1012–1016

    Article  Google Scholar 

  49. Bloch ED, Queen WL, Krishna R et al (2012) Hydrocarbon separations in a metal–organic framework with open iron(II) coordination sites. Science 335(6076):1606–1610

    Article  Google Scholar 

  50. Kornienko N, Zhao Y, Kley CS et al (2015) Metal–organic frameworks for electrocatalytic reduction of carbon dioxide. J Am Chem Soc 137(44):14129–14135

    Article  Google Scholar 

  51. Liang K, Carbonell C, Styles MJ et al (2015) Biomimetic replication of microscopic metal–organic framework patterns using printed protein patterns. Adv Mater 27(45):7293–7298

    Article  Google Scholar 

  52. Liao C, Zuo Y, Zhang W et al (2012) Electrochemical performance of metal–organic framework synthesized by a solvothermal method for supercapacitors. Russ J Electrochem 49(10):983–986

    Article  Google Scholar 

  53. Nagao Y, Fujishima M, Ikeda R et al (2003) Highly proton-conductive copper coordination polymers. Synth Met 133–134:431–432

    Article  Google Scholar 

  54. Nagarkar SS, Unni SM, Sharma A et al (2014) Two-in-one: inherent anhydrous and water-assisted high proton conduction in a 3D metal–organic framework. Angew Chem Int Ed 53(10):2638–2642

    Article  Google Scholar 

  55. O̅kawa H, Shigematsu A, Sadakiyo M et al (2009) Oxalate-bridged bimetallic complexes {NH(prol)3}[MCr(ox)3] (M=MnII, FeII, CoII; NH(prol) +3 = tri(3-hydroxypropyl)ammonium) exhibiting coexistent ferromagnetism and proton conduction. J Am Chem Soc 131(37):13516–13522

    Google Scholar 

  56. Della Rocca J, Liu D, Lin W (2011) Nanoscale metal–organic frameworks for biomedical imaging and drug delivery. Acc Chem Res 44(10):957–968

    Article  Google Scholar 

  57. Liu B, Shioyama H, Akita T et al (2008) Metal–organic framework as a template for porous carbon synthesis. J Am Chem Soc 130(16):5390–5391

    Article  Google Scholar 

  58. Yang SJ, Kim T, Im JH et al (2012) MOF-derived hierarchically porous carbon with exceptional porosity and hydrogen storage capacity. Chem Mater 24(3):464–470

    Article  Google Scholar 

  59. Hu M, Reboul J, Furukawa S et al (2012) Direct carbonization of Al-based porous coordination polymer for synthesis of nanoporous carbon. J Am Chem Soc 134(6):2864–2867

    Article  Google Scholar 

  60. Aiyappa HB, Pachfule P, Banerjee R et al (2013) Porous carbons from nonporous MOFs: influence of ligand characteristics on intrinsic properties of end carbon. Cryst Growth Des 13(10):4195–4199

    Article  Google Scholar 

  61. Amali AJ, Hoshino H, Wu C et al (2014) From metal–organic framework to intrinsically fluorescent carbon nanodots. Chem Eur J 20(27):8279–8282

    Article  Google Scholar 

  62. Chen L, Bai J, Wang C et al (2008) One-step solid-state thermolysis of a metal–organic framework: a simple and facile route to large-scale of multiwalled carbon nanotubes. Chem Commun 13:1581–1583

    Article  Google Scholar 

  63. Zhang P, Sun F, Xiang Z et al (2014) ZIF-derived in situ nitrogen-doped porous carbons as efficient metal-free electrocatalysts for oxygen reduction reaction. Energy Environ Sci 7(1):442–450

    Article  Google Scholar 

  64. Xu X, Cao R, Jeong S et al (2012) Spindle-like mesoporous α-Fe2O3 anode material prepared from MOF template for high-rate lithium batteries. Nano Lett 12(9):4988–4991

    Article  Google Scholar 

  65. Shi H-Y, Deng B, Zhong S-L et al (2011) Synthesis of zinc oxide nanoparticles with strong, tunable and stable visible light emission by solid-state transformation of Zn(ii)-organic coordination polymers. J Mater Chem 21(33):12309–12315

    Article  Google Scholar 

  66. Cao X, Zheng B, Rui X et al (2014) Metal oxide-coated three-dimensional graphene prepared by the use of metal–organic frameworks as precursors. Angew Chem Int Ed 53(5):1404–1409

    Article  Google Scholar 

  67. Kundu T, Sahoo SC, Banerjee R (2012) Solid-state thermolysis of anion induced metal–organic frameworks to ZnO microparticles with predefined morphologies: facile synthesis and solar cell studies. Cryst Growth Des 12(5):2572–2578

    Article  Google Scholar 

  68. Zhao J, Li M, Sun J et al (2012) Metal-oxide nanoparticles with desired morphology inherited from coordination-polymer precursors. Chem Eur J 18(11):3163–3168

    Article  Google Scholar 

  69. Jung S, Cho W, Lee HJ et al (2009) Self-template-directed formation of coordination-polymer hexagonal tubes and rings, and their calcination to ZnO rings. Angew Chem Int Ed 48(8):1459–1462

    Article  Google Scholar 

  70. Wu R, Qian X, Yu F et al (2013) MOF-templated formation of porous CuO hollow octahedra for lithium-ion battery anode materials. J Mater Chem A 1(37):11126–11129

    Article  Google Scholar 

  71. Cho W, Lee YH, Lee HJ et al (2009) Systematic transformation of coordination polymer particles to hollow and non-hollow In2O3 with pre-defined morphology. Chem Commun 31:4756–4758

    Article  Google Scholar 

  72. Zhang L, Wu HB, Madhavi S et al (2012) Formation of Fe2O3 microboxes with hierarchical shell structures from metal–organic frameworks and their lithium storage properties. J Am Chem Soc 134(42):17388–17391

    Article  Google Scholar 

  73. Maiti S, Pramanik A, Mahanty S (2014) Extraordinarily high pseudocapacitance of metal organic framework derived nanostructured cerium oxide. Chem Commun 50(79):11717–11720

    Article  Google Scholar 

  74. Tahmasian A, Morsali A (2012) Ultrasonic synthesis of a 3D Ni(II) metal–organic framework at ambient temperature and pressure: new precursor for synthesis of nickel(II) oxide nano-particles. Inorg Chim Acta 387:327–331

    Article  Google Scholar 

  75. Parast MSY, Morsali A (2011) Synthesis and characterization of porous Al(III) metal–organic framework nanoparticles as a new precursor for preparation of Al2O3 nanoparticles. Inorg Chem Commun 14(5):645–648

    Article  Google Scholar 

  76. Zhang F, Bei F, Cao J et al (2008) The preparation of CdO nanowires from solid-state transformation of a layered metal–organic framework. J Solid State Chem 181(1):143–149

    Article  Google Scholar 

  77. Liu K, You H, Jia G et al (2009) Coordination-induced formation of one-dimensional nanostructures of Europium benzene-1,3,5-tricarboxylate and its solid-state thermal transformation. Cryst Growth Des 9(8):3519–3524

    Article  Google Scholar 

  78. Hu L, Zhang P, Sun Y et al (2013) ZnO/Co3O4 porous nanocomposites derived from mofs: room-temperature ferromagnetism and high catalytic oxidation of CO. ChemPhysChem 14(17):3953–3959

    Article  Google Scholar 

  79. Zhang L, Shi L, Huang L et al (2014) Rational design of high-performance DeNOx catalysts based on MnxCo3−xO4 nanocages derived from metal–organic frameworks. ACS Catal 4(6):1753–1763

    Article  Google Scholar 

  80. Yang SJ, Nam S, Kim T et al (2013) Preparation and exceptional lithium anodic performance of porous carbon-coated ZnO quantum dots derived from a metal–organic framework. J Am Chem Soc 135(20):7394–7397

    Article  Google Scholar 

  81. Das R, Pachfule P, Banerjee R et al (2012) Metal and metal oxide nanoparticle synthesis from metal organic frameworks (MOFs): finding the border of metal and metal oxides. Nanoscale 4(2):591–599

    Article  Google Scholar 

  82. Chaikittisilp W, Torad NL, Li C et al (2014) Synthesis of nanoporous carbon–cobalt-oxide hybrid electrocatalysts by thermal conversion of metal–organic frameworks. Chem Eur J 20(15):4217–4221

    Article  Google Scholar 

  83. Santos VP, Wezendonk TA, Jaen JJ et al (2015) Metal organic framework-mediated synthesis of highly active and stable Fischer-Tropsch catalysts. Nat Commun 6:6451

    Article  Google Scholar 

  84. Zhang P, Wang X, Wang W et al (2015) Synthesis and magnetism of epsilon-Fe3N submicrorods for magnetic resonance imaging. Dalton Trans 45(1):296–299

    Article  Google Scholar 

  85. Wang T, Zhou Q, Wang X et al (2015) MOF-derived surface modified Ni nanoparticles as an efficient catalyst for the hydrogen evolution reaction. J Mater Chem A 3(32):16435–16439

    Article  Google Scholar 

  86. Yin D, Huang G, Zhang F et al (2016) Coated/sandwiched rGO/CoSx composites derived from metal–organic frameworks/GO as advanced anode materials for lithium-ion batteries. Chem Eur J 22(4):1467–1474

    Article  Google Scholar 

  87. Hu H, Han L, Yu M et al (2016) Metal–organic-framework-engaged formation of Co nanoparticle-embedded carbon@Co9S8 double-shelled nanocages for efficient oxygen reduction. Energy Environ Sci 9(1):107–111

    Article  Google Scholar 

  88. Liu X, Ai L, Jiang J (2015) Interconnected porous hollow CuS microspheres derived from metal–organic frameworks for efficient adsorption and electrochemical biosensing. Powder Technol 283:539–548

    Article  Google Scholar 

  89. Jiang Z, Sun H, Qin Z et al (2012) Synthesis of novel ZnS nanocages utilizing ZIF-8 polyhedral template. Chem Commun 48(30):3620–3622

    Article  Google Scholar 

  90. Yu XY, Yu L, Wu HB et al (2015) Formation of nickel sulfide nanoframes from metal–organic frameworks with enhanced pseudocapacitive and electrocatalytic properties. Angew Chem Int Ed 54(18):5331–5335

    Article  Google Scholar 

  91. Wu R, Wang DP, Kumar V et al (2015) MOFs-derived copper sulfides embedded within porous carbon octahedra for electrochemical capacitor applications. Chem Commun 51(15):3109–3112

    Article  Google Scholar 

  92. Chen B, Li R, Ma G et al (2015) Cobalt sulfide/N, S codoped porous carbon core-shell nanocomposites as superior bifunctional electrocatalysts for oxygen reduction and evolution reactions. Nanoscale 7(48):20674–20684

    Article  Google Scholar 

  93. You B, Jiang N, Sheng M et al (2015) High-performance overall water splitting electrocatalysts derived from cobalt-based metal–organic frameworks. Chem Mater 27(22):7636–7642

    Article  Google Scholar 

  94. Tian T, Ai L, Jiang J (2015) Metal–organic framework-derived nickel phosphides as efficient electrocatalysts toward sustainable hydrogen generation from water splitting. RSC Adv 5(14):10290–10295

    Article  Google Scholar 

  95. Chaikittisilp W, Hu M, Wang H et al (2012) Nanoporous carbons through direct carbonization of a zeolitic imidazolate framework for supercapacitor electrodes. Chem Commun 48(58):7259–7261

    Article  Google Scholar 

  96. Wang Q, Xia W, Guo W et al (2013) Functional zeolitic-imidazolate-framework-templated porous carbon materials for CO2 capture and enhanced capacitors. Chem Asian J 8(8):1879–1885

    Google Scholar 

  97. Amali AJ, Sun J-K, Xu Q (2014) From assembled metal–organic framework nanoparticles to hierarchically porous carbon for electrochemical energy storage. Chem Commun 50(13):1519–1522

    Article  Google Scholar 

  98. Jeon J-W, Sharma R, Meduri P et al (2014) In situ one-step synthesis of hierarchical nitrogen-doped porous carbon for high-performance supercapacitors. ACS Appl Mater Interfaces 6(10):7214–7222

    Article  Google Scholar 

  99. Zhang P, Sun F, Shen Z et al (2014) ZIF-derived porous carbon: a promising supercapacitor electrode material. J Mater Chem A 2(32):12873–12880

    Article  Google Scholar 

  100. Torad NL, Salunkhe RR, Li Y et al (2014) Electric double-layer capacitors based on highly graphitized nanoporous carbons derived from ZIF-67. Chem Eur J 20(26):7895–7900

    Article  Google Scholar 

  101. Yan X, Li X, Yan Z et al (2014) Porous carbons prepared by direct carbonization of MOFs for supercapacitors. Appl Surf Sci 308:306–310

    Article  Google Scholar 

  102. Zhang F, Hao L, Zhang L et al (2011) Solid-state thermolysis preparation of Co3O4 nano/micro superstructures from metal–organic framework for supercapacitors. Int J Electrochem Sci 6:2943–2954

    Google Scholar 

  103. Zheng F, Yang Y, Chen Q (2014) High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal–organic framework. Nat Commun 5:5261

    Article  Google Scholar 

  104. Yang X, Yan N, Zhou W et al (2015) Sulfur embedded in one-dimensional French fries-like hierarchical porous carbon derived from a metal–organic framework for high performance lithium-sulfur batteries. J Mater Chem A 3(29):15314–15323

    Article  Google Scholar 

  105. Wang Z, Li X, Xu H et al (2014) Porous anatase TiO2 constructed from a metal–organic framework for advanced lithium-ion battery anodes. J Mater Chem A 2(31):12571–12575

    Article  Google Scholar 

  106. Hu L, Yan N, Chen Q et al (2012) Fabrication based on the Kirkendall effect of Co3O4 porous nanocages with extraordinarily high capacity for lithium storage. Chem Eur J 18(29):8971–8977

    Article  Google Scholar 

  107. Yuan C, Wu HB, Xie Y et al (2014) Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew Chem Int Ed 53(6):1488–1504

    Article  Google Scholar 

  108. Hu L, Zhang P, Zhong H et al (2012) Foamlike porous spinel MnxCo3−xO4 material derived from Mn3[Co(CN)6]2·nH2O nanocubes: a highly efficient anode material for lithium batteries. Chem Eur J 18(47):15049–15056

    Article  Google Scholar 

  109. Huang G, Zhang F, Zhang L et al (2014) Hierarchical NiFe2O4/Fe2O3 nanotubes derived from metal organic frameworks for superior lithium ion battery anodes. J Mater Chem A 2(21):8048

    Article  Google Scholar 

  110. Li M, Wang W, Yang M et al (2015) Large-scale fabrication of porous carbon-decorated iron oxide microcuboids from Fe-MOF as high-performance anode materials for lithium-ion batteries. RSC Advances 5(10):7356–7362

    Article  Google Scholar 

  111. Hou Y, Li J, Wen Z et al (2015) Co3O4 nanoparticles embedded in nitrogen-doped porous carbon dodecahedrons with enhanced electrochemical properties for lithium storage and water splitting. Nano Energy 12:1–8

    Article  Google Scholar 

  112. Zou F, Hu X, Li Z et al (2014) MOF-derived porous ZnO/ZnFe2O4/C octahedra with hollow interiors for high-rate lithium-ion batteries. Adv Mater 26(38):6622–6628

    Article  Google Scholar 

  113. Wu R, Wang DP, Rui X et al (2015) In-situ formation of hollow hybrids composed of cobalt sulfides embedded within porous carbon polyhedra/carbon nanotubes for high-performance lithium-ion batteries. Adv Mater 27(19):3038–3044

    Article  Google Scholar 

  114. Fu Y, Zhang Z, Yang X et al (2015) ZnS nanoparticles embedded in porous carbon matrices as anode materials for lithium ion batteries. RSC Adv 5(106):86941–86944

    Article  Google Scholar 

  115. Wang Z, Li X, Yang Y et al (2014) Highly dispersed β-NiS nanoparticles in porous carbon matrices by a template metal–organic framework method for lithium-ion cathode. J Mater Chem A 2(21):7912

    Article  Google Scholar 

  116. Vielstich W, Lamm A, Gasteiger H (2003) Handbook of fuel cells: fundamentals, technology, applications. Wiley, Chichester

    Google Scholar 

  117. Gewirth AA, Thorum MS (2010) Electroreduction of dioxygen for fuel-cell applications: materials and challenges. Inorg Chem 49(8):3557–3566

    Article  Google Scholar 

  118. Gasteiger H A, Panels J E, Yan S G (2004) Dependence of PEM fuel cell performance on catalyst loading. J Power Sources 127(1–2):162–171

    Article  Google Scholar 

  119. Jasinski R (1964) A new fuel cell cathode catalyst. Nature 201(4925):1212–1213

    Article  Google Scholar 

  120. Maldonado S, Stevenson KJ (2004) Direct preparation of carbon nanofiber electrodes via pyrolysis of Iron(II) phthalocyanine: electrocatalytic aspects for oxygen reduction. J Phys Chem B 108(31):11375–11383

    Article  Google Scholar 

  121. Wu G, More KL, Johnston CM et al (2011) High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 332(6028):443–447

    Article  Google Scholar 

  122. Bezerra CWB, Zhang L, Liu H et al (2007) A review of heat-treatment effects on activity and stability of PEM fuel cell catalysts for oxygen reduction reaction. J Power Sources 173(2):891–908

    Article  Google Scholar 

  123. Ma S, Goenaga GA, Call AV et al (2011) Cobalt imidazolate framework as precursor for oxygen reduction reaction electrocatalysts. Chem Eur J 17(7):2063–2067

    Article  Google Scholar 

  124. Bai F, Huang H, Hou C et al (2016) Porous carbon-coated cobalt sulfide nanocomposites derived from metal organic frameworks (MOFs) as an advanced oxygen reduction electrocatalyst. New J Chem 40(2):1679–1684

    Article  Google Scholar 

  125. Kong A, Lin Q, Mao C et al (2014) Efficient oxygen reduction by nanocomposites of heterometallic carbide and nitrogen-enriched carbon derived from the cobalt-encapsulated indium-MOF. Chem Commun 50(98):15619–15622

    Article  Google Scholar 

  126. Xia W, Zhu J, Guo W et al (2014) Well-defined carbon polyhedrons prepared from nano metal–organic frameworks for oxygen reduction. J Mater Chem A 2(30):11606–11613

    Article  Google Scholar 

  127. Zhang L, Su Z, Jiang F et al (2014) Highly graphitized nitrogen-doped porous carbon nanopolyhedra derived from ZIF-8 nanocrystals as efficient electrocatalysts for oxygen reduction reactions. Nanoscale 6(12):6590–6602

    Article  Google Scholar 

  128. Zhao Y, Zhang J, Han B et al (2011) Metal–organic framework nanospheres with well-ordered mesopores synthesized in an ionic liquid/CO2/surfactant system. Angew Chem Int Ed 50(3):636–639

    Article  Google Scholar 

  129. Aijaz A, Fujiwara N, Xu Q (2014) From metal–organic framework to nitrogen-decorated nanoporous carbons: high CO2 uptake and efficient catalytic oxygen reduction. J Am Chem Soc 136(19):6790–6793

    Article  Google Scholar 

  130. Li J, Chen Y, Tang Y et al (2014) Metal–organic framework templated nitrogen and sulfur co-doped porous carbons as highly efficient metal-free electrocatalysts for oxygen reduction reactions. J Mater Chem A 2(18):6316–6319

    Article  Google Scholar 

  131. Li J-S, Li S-L, Tang Y-J et al (2014) Heteroatoms ternary-doped porous carbons derived from MOFs as metal-free electrocatalysts for oxygen reduction reaction. Sci Rep 4:5130

    Article  Google Scholar 

  132. Lefèvre M, Proietti E, Jaouen F et al (2009) Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 324(5923):71–74

    Article  Google Scholar 

  133. Proietti E, Jaouen F, Lefèvre M et al (2011) Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells. Nat Commun 2:416

    Article  Google Scholar 

  134. Ma T, Dai S, Jaroniec M et al (2014) J Am Chem Soc 136(39):13925–13931

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xia, W. (2018). Introduction. In: Fabrication of Metal–Organic Framework Derived Nanomaterials and Their Electrochemical Applications. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-6811-9_1

Download citation

Publish with us

Policies and ethics