Skip to main content

PAHs and NPAHs in Airborne Particulate Matter: Initial Formation and Atmospheric Transformations

  • Chapter
  • First Online:
Polycyclic Aromatic Hydrocarbons

Abstract

In this chapter, the formation of early benzene and naphthalene rings is first discussed in the context of soot formation. While the hydrogen abstraction-acetylene addition (HACA) pathway is the most commonly accepted pathway, studies have shown that it is insufficient to account for the rapid formation of larger PAHs and soot, and so other mechanisms for PAH formation are discussed. Once the initial PAHs are formed, they can undergo further transformation, for example, forming nitrated (NPAHs) or oxygenated analogues. The formation of NPAHs can occur through three routes: formation through combustion processes (primary production), through the transformation of PAHs in the atmosphere (secondary processes) or through gas-particle heterogeneous transformations. Through these processes various isomers of nitrated PAH analogues, such as nitropyrene and nitrofluoranthene, can be formed. The specific isomers that are formed are characteristic of certain types of formation processes and therefore are useful in determining the source origins of NPAHs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albinet A, Leoz-Garziandia E, Budzinski H, Villenave E (2007) Polycyclic aromatic hydrocarbons (PAHs), nitrated PAHs and oxygenated PAHs in ambient air of the Marseilles area (South of France): concentrations and sources. Sci Total Environ 384:280–292

    Article  CAS  PubMed  Google Scholar 

  • Andersson JT, Achten C (2015) Time to say goodbye to the 16 EPA PAHs? Toward an up-to-date use of PACs for environmental purposes. Polycycl Aromat Compd 35:330–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Appel J, Bockhorn H, Frenklach M (2000) Kinetic modeling of soot formation with detailed chemistry and physics: laminar premixed flames of C2 hydrocarbons. Combust Flame 121:122–136

    Article  CAS  Google Scholar 

  • Arce R, Morel M (2013) Phototransformations of dinitropyrene isomers on models of the atmospheric particulate matter. Atmos Environ 75:171–178

    Article  CAS  Google Scholar 

  • Arey J (1998) Atmospheric reactions of PAHs including formation of nitroarenes. In: Neilson AH (ed) From: the handbook of environmental chemistry, vol 3. Springer, Berlin, pp 347–385

    Google Scholar 

  • Arey J, Zielinska B, Atkinson R, Winer AM, Ramdahl T, Pitts JN Jr (1986) The formation of nitro-PAH from the gas-phase reactions of fluoranthene and pyrene with the OH radical in the presence of NOx. Atmos Environ 20:2339–2345

    Article  CAS  Google Scholar 

  • Atkinson R, Arey J (1994) Atmospheric chemistry of gas-phase polycyclic aromatic hydrocarbons: formation of atmospheric mutagens. Environ Health Perspect 102:117–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bamford HA, Baker JE (2003) Nitro-polycyclic aromatic hydrocarbon concentrations and sources in urban and suburban atmospheres of the Mid-Atlantic region. Atmos Environ 37:2077–2091

    Article  CAS  Google Scholar 

  • Bamford HA, Bezabeh DZ, Schantz MM, Wise SA, Baker JE (2003) Determination and comparison of nitrated-polycyclic aromatic hydrocarbons measured in air and diesel particulate reference materials. Chemosphere 50:575–587

    Article  CAS  PubMed  Google Scholar 

  • Bandowe BAM, Meusel H, Huang RJ, Ho K, Cao J, Hoffmann T, Wilcke W (2014) PM2.5-bound oxygenated PAHs, nitro-PAHs and parent-PAHs from the atmosphere of a Chinese megacity: seasonal variation, sources and cancer risk assessment. Sci Total Environ 473-474:77–87

    Article  CAS  PubMed  Google Scholar 

  • Barrado AI, García S, Barrado E, Pérez RM (2012) PM2.5-bound PAHs and hydroxyl-PAHs in atmospheric aerosol samples: correlations with season and with physical and chemical factors. Atmos Environ 49:224–232

    Article  CAS  Google Scholar 

  • Beije B, Möller L (1988) 2-nitrofluorene and related compounds: prevalence and biological effects. Mutat Res-Rev Genet 196:177–209

    Article  CAS  Google Scholar 

  • Benish TG, Lafeur AL, Taghizadeh K, Howard JB (1996) C2H2 and PAH as soot growth reactants in premixed C2H4-air flames. Twenty-Sixth Symposium (International) on Combustion/The Combustion Institute, pp 2319–2326

    Google Scholar 

  • Bezebeh DZ, Bamford HA, Shantz MM, Wise SA (2003) Determination of nitrated polycyclic aromatic hydrocarbons in diesel particulate-related standard reference materials by using gas chromatography/mass spectrometry with negative ion chemical ionization. Anal Bioanal Chem 375:381–388

    Article  CAS  Google Scholar 

  • Böhm H, Jander H, Tanke D (1998) PAH growth and soot formation in the pyrolysis of acetylene and benzene at high temperatures and pressures: modeling and experiment. Twenty-Seventh Symposium (International) on Combustion/The Combustion Institute, pp 1605–1612

    Google Scholar 

  • Bozek F, Huzlik J, Pawelczyk A, Hoza I, Naplavova M, Jedlicka J (2016) Polycyclic aromatic hydrocarbon adsorption on selected solid particulate matter fractions. Atmos Environ 126:128–135

    Article  CAS  Google Scholar 

  • Carrara M, Wolf JC, Niessner R (2010) Nitro-PAH formation studied by interacting artificially PAH-coated soot aerosol with NO2 in the temperature range of 295–523 K. Atmos Environ 44:3878–3885

    Google Scholar 

  • Cavallotti C, Polino D (2013) On the kinetics of the C5H5 + C5H5 reaction. Proc Comb Inst 34:557–564

    Article  CAS  Google Scholar 

  • Ciccioli P, Cecinato A, Brancaleoni E, Frattoni M, Zacchei P (1996) Formation and transport of 2-nitrofluoranthene and 2-nitropyrene of photochemical origin in the troposphere. J Geophys Res 101:19567–19581

    Article  CAS  Google Scholar 

  • Cochran RE, Jeong H, Haddidi S, Derseh RF, Gowan A, Beránek J, Kubátová A (2016) Identification of products formed during the heterogeneous nitration and ozonation of polycyclic aromatic hydrocarbons. Atmos Environ 128:92–103

    Article  CAS  Google Scholar 

  • Comandini A, Malewicki T, Brezinsky K (2012) Chemistry of polycyclic aromatic hydrocarbons formation from phenyl radical pyrolysis and reaction of phenyl and acetylene. J Phys Chem A 116:2409–2434

    Article  CAS  PubMed  Google Scholar 

  • Constantinitis P, Schmitt HC, Fischer I, Yan B, Rijsm AM (2015) Formation of polycyclic aromatic hydrocarbons from bimolecular reactions of phenyl radicals at high temperatures. Phys Chem Chem Phys 17:29064–29071

    Article  CAS  Google Scholar 

  • D’Anna A, Violi A (1998) A kinetic model for the formation of aromatic hydrocarbons in premixed laminar flames. Symposium (International) on Combustion. 27:425–433

    Article  Google Scholar 

  • De Guidi G, Librando V, Minniti Z, Bolzacchini E, Perrini G, Bracchitta G (2012) The PAH and nitro-PAH concentration profiles in size-segregated urban particulate matter and soil in traffic-related sites in Catania, Italy. Polycycl Arom Comp 32:439–456

    Article  CAS  Google Scholar 

  • Di Filippo P, Riccardi C, Pomata D, Buiarelli F (2010) Concentrations of PAHs, and nitro- and methyl- derivatives associated with a size-segregated urban aerosol. Atmos Environ 44:2742–2749

    Article  CAS  Google Scholar 

  • Dimashki M, Harrad S, Harrison RM (2000) Measurements of nitro-PAH in the atmospheres of two cities. Atmos Environ 34:2459–2469

    Article  CAS  Google Scholar 

  • Draper WM (1986) Quantitation of nitro- and dinitropolycyclic aromatic hydrocarbons in diesel exhaust particulate matter. Chemosphere. 15:437–447

    Article  CAS  Google Scholar 

  • Esteve W, Budzinski H, Villenave E (2004) Relative rate constants for the heterogeneous reactions of OH, NO2 and NO radicals with polycyclic aromatic hydrocarbons adsorbed on carbonaceous particles. Part 1: PAHs adsorbed on 1-2 μm calibrated graphite particles. Atmos Environ 38:6063–6072

    Article  CAS  Google Scholar 

  • Esteve W, Budzinski H, Villenave E (2006) Relative rate constants for the heterogeneous reactions of NO2 and OH radicals with polycyclic aromatic hydrocarbons adsorbed on carbonaceous particles. Part 2: PAHs adsorbed on diesel particulate exhaust SRM 1650a. Atmos Environ 40:201–211

    Article  CAS  Google Scholar 

  • Feilburg A, Poulsen MWB, Nielsen T, Skov H (2001) Occurrence and sources of particulate nitro-polycyclic aromatic hydrocarbons in ambient air in Denmark. Atmos Environ 35:353–366

    Article  Google Scholar 

  • Frenklach M (2002) Reaction mechanism of soot formation in flames. Phys Chem Chem Phys 4:2028–2037

    Article  CAS  Google Scholar 

  • Fu PP, Chou MW, Miller DW, White GL, Heflich RH, Beland FA (1985) The orientation of the nitro substituent predicts the direct-acting bacterial mutagenicity of nitrated polycyclic aromatic hydrocarbons. Mutat Res Lett 143:173–181

    Article  CAS  Google Scholar 

  • Fu PP, Xia Q, Sun X, Yu H (2012) Phototoxicity and environmental transformation of polycyclic aromatic hydrocarbons (PAHs)-Light-induced reactive oxygen species, lipid peroxidation, and DNA damage. J Environ Sci Heal C 30:1–41

    Article  CAS  Google Scholar 

  • Geyer A, Alicke B, Konrad S, Schmitz T, Stutz J, Platt U (2001) Chemistry and oxidation capacity of the nitrate radical in the continental boundary layer near Berlin. J Geophys Res 106:8013–8025

    Article  CAS  Google Scholar 

  • Gibson TL (1983) Sources of direct-acting nitroarene mutagens in airborne particulate matter. Mutat Res Lett 122:115–121

    Article  CAS  Google Scholar 

  • Gross S, Bertram AK (2008) Reactive uptake of NO3, N2O5, NO2, HNO3, and O3 on three types of polycyclic aromatic hydrocarbon surfaces. J Phys Chem A 112:3104–3113

    Article  CAS  PubMed  Google Scholar 

  • Hansen N, Schenk M, Moshammer K, Kohse-Hoinghaus K (2016) Investigating repetitive reaction pathways for the formation of polycyclic aromatic hydrocarbons in combustion processes. Combust Flame 180:250–261

    Article  CAS  Google Scholar 

  • Harris WR, Chess EK, Okamoto D, Remsen JF, Later DW (1984) Contribution of nitropyrene to the mutagenic activity of coal fly ash. Environ Mol Mutagen 6:131–144

    Article  CAS  Google Scholar 

  • Hayakawa K (2016) Environmental behaviors and toxicities of polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons. Chem Pharm Bull 64:83–94

    Article  CAS  PubMed  Google Scholar 

  • Hayakawa K, Kawaguchi T, Murahashi T, Miyazaki M (1995) Distribution of nitropyrenes and mutagenicity in airborne particulates collected with an Andersen sampler. Mutat Res Lett 348:57–61

    Article  CAS  Google Scholar 

  • Heeb NV, Schmid P, Kohler M, Gujer E, Zennegg M, Wenger D, Wichser A, Ulrich A, Gfeller U, Honegger P, Zeyer K, Emmenegger L, Petermann JL, Czerwinski J, Mosimann T, Kasper M, Mayer A (2008) Secondary effects of catalytic diesel particulate filters: conversion of PAHs versus formation of nitro-PAHs. Environ Sci Technol 42:3773–3779

    Article  CAS  PubMed  Google Scholar 

  • Huang B, Liu M, Bi X, Chaemfa C, Ren Z, Wang X, Sheng G, Fu J (2014) Phase distribution, sources and risk assessment of PAHs NPAHs and OPAHs in a rural site of the Pearl River Delta region, China. Atmos Pollut Res 5:210–218

    Article  CAS  Google Scholar 

  • Ishii S, Hisamatsu Y, Inazu K, Kobayashi T, Aika K (2000) Mutagenic nitrated benzo[a]pyrene derivatives in the reaction product of benzo[a]pyrene in NO2-air in the presence of O3 or under photoirradiation. Chemosphere. 41:1809–1819

    Article  CAS  PubMed  Google Scholar 

  • Jariyasopit N, McIntosh M, Zimmermann K, Arey J, Atkinson R, Cheong PHY, Carter RG, TW Y, Dashwood RH, Simonich SLM (2014) Novel nitro-PAH formation from heterogeneous reactions of PAHs with NO2, NO3/N2O5, and OH radicals: prediction, laboratory studies and mutagenicity. Environ Sci Technol 48:412–419

    Article  CAS  PubMed  Google Scholar 

  • Jonker MTO, Koelmans AA (2002) Sorption of polycyclic aromatic hydrocarbons and polychlorinated biphenyls to soot and soot-like materials in the aqueous environment: mechanistic considerations. Environ Sci Technol 36:3725–3734

    Article  CAS  PubMed  Google Scholar 

  • Jung H, Heflich RH, PP F, Shaikh AU, Hartman PE (1991) Nitro group orientation, reduction potential, and direct-acting mutagenicity of nitro-polycyclic aromatic hydrocarbons. Environ Mol Mutagen 17:169–180

    Article  CAS  PubMed  Google Scholar 

  • Kameda T, Azumi E, Fukushima A, Tang N, Matsuki A, Kamiya Y, Toriba A, Hayakawa K (2016) Mineral dust aerosols promote the formation of toxic nitropolycyclic aromatic compounds. Sci Rep 6(1)

    Google Scholar 

  • Kameda T, Inazu K, Hisamatsu Y, Takenaka N, Bandow H (2006) Isomer distribution of nitrotriphenylenes in airborne particles, diesel exhaust particles, and the products of gas-phase radical-initiated nitration of triphenylene. Atmos Environ 40:7742–7751

    Article  CAS  Google Scholar 

  • Kamens RM, Guo J, Guo Z, McDow SR (1990) Polynuclear aromatic hydrocarbon degradation by heterogeneous reactions with N2O5 on atmospheric particles. Atmos Environ 24A:1161–1173

    Article  CAS  Google Scholar 

  • Karavalakis G, Deves G, Fontraras G, Stournas S, Samaras Z, Bakeas E (2010) The impact of soy-based biodiesel on PAH, nitro-PAH and oxy-PAH emissions from a passenger car operated over regulated and nonregulated driving cycles. Fuel 89:3876–3883

    Article  CAS  Google Scholar 

  • Karavalakis G, Boutsika V, Stournas S, Bakeas E (2011) Biodiesel emissions profile in modern diesel vehicles. Part 2: Effect of biodiesel origin on carbonyl, PAH, nitro-PAH and oxy-PAH emissions. Sci Total Environ 409:738–747

    Article  CAS  PubMed  Google Scholar 

  • Karavalakis G, Poulopoulos S, Zervas E (2012) Impact of diesel fuels on the emissions of non-regulated pollutants. Fuel 102:85–91

    Article  CAS  Google Scholar 

  • Kawanaka Y, Matsumoto E, Wang N, Yun SJ, Sakamoto K (2008) Contribution of nitrated polycyclic aromatic hydrocarbons to the mutagenicity of ultrafine particles in the roadside atmosphere. Atmos Environ 42:7423–7428

    Article  CAS  Google Scholar 

  • Khan MAH, Cooke MC, Utembe SR, Archibald AT, Derwent RG, Xiao P, Percival CJ, Jenkin ME, Morris WC, Shallcross DE (2015) Global modeling of the nitrate radical (NO3) for present and pre-industrial scenarios. Atmos Res 164-165:347–357

    Article  CAS  Google Scholar 

  • Kinouchi T, Tsutsui H, Ohnishi Y (1986) Detection of 1-nitropyrene in yakitori (grilled chicken). Mutat Res Gen Toxicol 171:105–113

    Article  CAS  Google Scholar 

  • Kojima Y, Inazu K, Hisamatsu Y, Okochi H, Baba T, Nagoya T (2010) Comparison of PAHs, nitro-PAHs and oxy-PAHs associated with airborne particulate matter at roadside and urban background sites in downtown Tokyo, Japan. Polycycl Aromat Comp 30:321–333

    Article  CAS  Google Scholar 

  • Kong S, Ding X, Bai Z, Han B, Chen L, Shi J, Li Z (2010) A seasonal study of polycyclic aromatic hydrocarbons in PM2.5 and PM2.5-10 in five typical cities of Liaoning Province, China. J Hazard Mater 183:70–80

    Article  CAS  PubMed  Google Scholar 

  • Krauss M, Wilcke W, Martius C, Bandeira AG, Garcia MVB, Amelung W (2005) Atmospheric versus biological sources of polycyclic aromatic hydrocarbons (PAHs) in a tropical rain forest environment. Environ Pollut 135:143–153

    Article  CAS  PubMed  Google Scholar 

  • Kwamena NOA, Abbatt JPD (2008) Heterogeneous nitration reactions of polycyclic aromatic hydrocarbons and n-hexane soot by exposure to NO3/NO2/N2O5. Atmos Environ 42:8309–8314

    Article  CAS  Google Scholar 

  • Lin Y, Ma Y, Qiu X, Fang Y, Wang J, Zhu Y, Hu D (2015) Sources, transformation, and health implications of PAHs and their nitrated, hydroxylated, and oxygenated derivatives in PM2.5 in Beijing. J Geophys Res Atmos 120:7219–7228

    Article  CAS  Google Scholar 

  • Liu C, Zhang P, Yang B, Wang Y, Shu J (2012) Kinetic studies of heterogeneous reactions of polycyclic aromatic hydrocarbon aerosols with NO3 radicals. Environ Sci Technol 46:7575–7580

    Article  CAS  PubMed  Google Scholar 

  • Llamas A, Al-Lal AM, García-Martínez MJ, Ortega MF, Llamas JF, Lapuerta M, Canoira L (2017) Polycyclic Aromatic Hydrocarbons (PAHs) produced in the combustion of fatty acid alkyl esters from different feedstocks: quantification, statistical analysis and mechanisms of formation. Sci Tot Environ 586:446–456

    Article  CAS  Google Scholar 

  • Lonati G, Giugliano M (2006) Size distribution of atmospheric particulate matter at traffic exposed sites in the urban area of Milan (Italy). Atmos Environ 40:264–274

    Article  CAS  Google Scholar 

  • Mak J, Gross S, Bertram AK (2007) Uptake of NO3 on soot and pyrene surfaces. Geophys Res Lett 34:1–5

    Article  CAS  Google Scholar 

  • Marino F, Cecinato A, Siskos PA (2000) Nitro-PAH in ambient particulate matter in the atmosphere of Athens. Chemosphere 40:533–537

    Article  CAS  PubMed  Google Scholar 

  • Marinov NM, Castaldi MJ, Melius CF, Tsang W (1997) Aromatic and polycyclic aromatic hydrocarbon formation in a premixed propane flame. Combust Sci Technol 128:295–342

    Article  CAS  Google Scholar 

  • Marinov NM, Pitz WJ, Westbrook CK, Vincitore AM, Castaldi MJ, Senkan SM, Melius CF (1998) Aromatic and polycyclic aromatic hydrocarbon formation in a laminar premixed n-butane flame. Combust Flame 114:192–213

    Article  CAS  Google Scholar 

  • McEnally CS, Pfefferle LD, Atakan B, Kohse-Höinghaus K (2006) Studies of aromatic hydrocarbon formation mechanisms in flames: progress towards closing the fuel gap. Prog Energ Combust 32:247–294

    Article  CAS  Google Scholar 

  • McKinnon JT, Howard JB (1992) The roles of PAH and acetylene in soot nucleation and growth. Symposium (International) on Combustion 24:965–971

    Article  Google Scholar 

  • Miet K, Le Menach K, Flaud PM, Budzinski H, Villenave E (2009) Heterogeneous reactivity of pyrene and 1-nitropyrene with NO2: kinetics, product yields and mechanism. Atmos Environ 43:837–843

    Article  CAS  Google Scholar 

  • Murahashi T, Kizu R, Kakimoto H, Toriba A, Hayakawa K (1999) 2-Nitrofluoranthene, 1-,2- and 4-Nitropyrenes and 6-Nitrochrysene, in Diesel-Engine Exhaust and Airborne Particulates. J Heal Sci 45:244–250

    Article  CAS  Google Scholar 

  • Naik V, Voulgarakis A, Fiore AM, Horowitz LW, Lamaraque J-F, Lin M, Prather MJ, Young PJ, Bergmann D, Cameron-Smith PJ, Cionni I, Collins WJ, Dalsøren SB, Doherty R, Eyring V, Faluvegi F, Folberth GA, Josse B, Lee YH, MacKenzie IA, Nagashima T, van Noije TPC, Plummer DA, Righi M, Rumbold ST, Skeie R, Shindell DT, Stevenson DS, Strode S, Sudo K, Szopa S, Zeng G (2013) Preindustrial to present-day changes in tropospheric hydroxyl radical and methane lifetime from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmos Chem Phys 13:5277–5298

    Article  CAS  Google Scholar 

  • Nakagawa R, Kitamori S, Horikawa K, Nakashima K, Tokiwa H (1983) Identification of dinitropyrenes in diesel-exhaust particles. Their probably presence as the major mutagens. Mutat Res Gen Toxicol 124:201–211

    Article  CAS  Google Scholar 

  • Ohura T, Amagai T, Sugiyama T, Fusaya M, Matsushita H (2004) Characteristics of particle matter and associated polycyclic aromatic hydrocarbons in indoor and outdoor air in two cities in Shizuoka, Japan. Atmos Environ 38:2045–2054

    Article  CAS  Google Scholar 

  • Ono K, Matsukawa Y, Dewa K, Watanabe A, Takahashi K, Saito Y, Matsushita Y, Aoki H, Era K, Aoki T, Yamaguchi T (2015) Formation mechanisms of soot from high-molecular-weight polycyclic aromatic hydrocarbons. Combust Flame 162:2670–2678

    Article  CAS  Google Scholar 

  • Paputa-Peck MC, Marano RS, Schuetzle D, Riley TL, Hampton CV, Prater TJ, Skewes LM, Jensen TE (1983) Determination of nitrated polynuclear aromatic hydrocarbons in particulate extracts by using capillary column gas chromatography with nitrogen selective detection. Anal Chem 55:1946–1954

    Article  CAS  Google Scholar 

  • Pashkin YV, Bakhitova LM (1979) Mutagenic and carcinogenic properties of polycyclic aromatic hydrocarbons. Environ Health Perspect 30:185–189

    Article  Google Scholar 

  • Perraudin E, Budzinski H, Villenave E (2007) Kinetic study of the reactions of ozone with polycyclic aromatic hydrocarbons adsorbed on atmospheric model particles. J Atmos Chem 56:57–82

    Article  CAS  Google Scholar 

  • Phousongphouang PT, Arey J (2003) Sources of the atmospheric contaminants, 2-nitrobenzanthrone and 3-nitrobenzanthrone. Atmos Environ 37:3189–3199

    Article  CAS  Google Scholar 

  • Pitts JN Jr, Van Cauwenberghe KA, Grosjean D, Schmid JP, Fitz DR, Belser WL, Knudson GP, Hynds PM (1978) Atmospheric reactions of polycyclic aromatic hydrocarbons: facile formation of mutagenic nitro derivatives. Science 202:515–519

    Article  PubMed  Google Scholar 

  • Pitts JN Jr, Atkinson R, Sweetman JA, Zielinska B (1985) The gas-phase reaction of naphthalene with N2O5 to form nitronaphthalenes. Atmos Environ 19:701–705

    Article  CAS  Google Scholar 

  • Raj A, Al Rashidi MJ, Chung SH, Sarathy SM (2014) PAH growth initiated by propargyl addition: mechanism development and computational kinetics. J Phys Chem A 118:2865–2885

    Article  CAS  PubMed  Google Scholar 

  • Ravindra K, Sokhi R, Van Grieken R (2008) Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmos Environ 42:2895–2921

    Article  CAS  Google Scholar 

  • Reisen F, Arey J (2005) Atmospheric reactions influence seasonal PAH and nitro-PAH concentrations in the Los Angeles basin. Environ Sci Technol 39:64–73

    Article  CAS  PubMed  Google Scholar 

  • Richter H, Howard JB (2000) Formation of polycyclic aromatic hydrocarbons and their growth to soot – a review of chemical reaction pathways. Prog Energy Combust 26:565–608

    Article  CAS  Google Scholar 

  • Richter H, Howard JB (2002) Formation and consumption of single-ring aromatic hydrocarbons and their precursors in premixed acetylene, ethylene and benzene flames. Phys Chem Chem Phys 4:2038–2055

    Article  CAS  Google Scholar 

  • Ringuet J, Albinet A, Leoz-Garziandia E, Budzinski H, Villenave E (2012) Reactivity of polycyclic aromatic compounds (PAHs, NPAHs and OPAHs) adsorbed on natural aerosol particles exposed to atmospheric oxidants. Atmos Environ 61:15–22

    Article  CAS  Google Scholar 

  • Salmeen IT, Pero AM, Zator R, Schuetzle D, Riley TL (1984) Ames assay chromatograms and the identification of mutagens in diesel particle extracts. Environ Sci Technol 18:375–382

    Article  CAS  PubMed  Google Scholar 

  • Sarti E, Pasti L, Scaroni I, Casali P, Cavazzini A, Rossi M (2017) Determination of n-alkanes, PAHS and nitro-PAHs in PM2.5 and PM1 sampled in the surroundings of a municipal waste incinerator. Atmos Environ 149:12–23

    Article  CAS  Google Scholar 

  • Sasaki J, Aschmann SM, Kwok ESC, Atkinson R, Arey J (1997) Products of the gas-phase OH and NO3 radical-initiated reactions of naphthalene. Environ Sci Technol 31:3173–3179

    Article  CAS  Google Scholar 

  • Schuetzle D (1983) Sampling of vehicle emissions for chemical analysis and biological testing. Environ Heal Perspect 47:65–80

    Article  CAS  Google Scholar 

  • Shen G, Tao S, Wei S, Zhang Y, Wang R, Wang B, Li W, Shen H, Huang Y, Chen Y, Chen HM, Yang Y, Wang W, Wang X, Liu W, Simonich SLM (2012) Emissions of parent, nitro, and oxygenated polycyclic aromatic hydrocarbons from residential wood combustion in rural China. Environ Sci Technol 46:8123–8130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shukla BM, Koshi M (2012) Importance of fundamental sp, sp2, sp3 hydrocarbon radicals in the growth of polycyclic aromatic hydrocarbons. Anal Chem 84:5007–5016

    Article  CAS  PubMed  Google Scholar 

  • Shukla B, Susa A, Miyoshi A, Koshi M (2008) Role of phenyl radicals in the growth of polycyclic aromatic hydrocarbons. J Phys Chem A 112:2362–2369

    Article  CAS  PubMed  Google Scholar 

  • Slavinskaya NA, Frank P (2009) A modelling study of aromatic soot precursors formation in laminar methane and ethane flames. Combust Flame 156:1705–1722

    Article  CAS  Google Scholar 

  • Tang N, Araki Y, Tamura K, Dong L, Zhang X, Liu Q, Ji R, Kameda T, Toriba A, Hayakawa K (2009) Distribution and Source of Atmospheric Polycyclic Aromatic Hydrocarbons and Nitropolycyclic Aromatic Hydrocarbons in Tieling City, Liaoning Province, a Typical Local City in Northeast China. Asian J Atmos Environ 3:52–58

    Article  Google Scholar 

  • Tokiwa HM, Nakagawa R, Horikawa K (1985) Mutagenic/carcinogenic agents in indoor pollutants; the dinitropyrenes generated by kerosene heaters and fuel gas and liquefied petroleum gas burner. Mutat Res 157:39–47

    Article  CAS  PubMed  Google Scholar 

  • Tregrossi A, Ciajolo A, Barbella R (1999) The combustion of benzene in rich premixed flames at atmospheric pressure. Combust Flame 117:553–561

    Article  CAS  Google Scholar 

  • Vione D, Barra S, De Gennaro G, De Rienzo M, Gilardoni S, Perrone MG, Pozzoli L (2004) Polycyclic aromatic hydrocarbons in the atmosphere: monitoring, sources, sinks and fate. II: sink and fate. Ann Chim-Rome 94:17–32

    Article  Google Scholar 

  • Wada M, Kido H, Kishikawa N, Tou T, Tanaka M, Tsubokura J, Shironita M, Matsui M, Kuroda N, Nakashima K (2001) Assessment of air pollution in Nagasaki city: determination of polycyclic aromatic hydrocarbons and their nitrated derivatives, and some metals. Environ Pollut 115:139–147

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Jariyasopit N, Schrlau J, Jia Y, Tao S, TW Y, Dashwood RH, Zhang W, Wang X, Simonich SLM (2011) Concentration and photochemistry of PAHs, NPAHs, and OPAHs and toxicity of PM2.5 during the Beijing Olympic games. Environ Sci Technol 45:6887–6895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Yang B, Shu J, Li N, Zhang P, Sun W (2015) Theoretical study on atmospheric reactions of fluoranthene and pyrene with N2O5/NO3/NO2. Chem Phys Lett 635:146–151

    Article  CAS  Google Scholar 

  • Wei S, Huang B, Liu M, Ren Z, Sheng G, Fu J (2012) Characterization of PM2.5-bound nitrated and oxygenated PAHs in two industrial sites of South China. Atmos Res 109-110:76–83

    Article  CAS  Google Scholar 

  • Yaffe D, Chen Y, Arey J, Grosovsky AJ (2001) Multimedia analysis of PAHs and nitro-PAH daughter products in the Los Angeles basin. Risk Anal 21:275–294

    Article  CAS  PubMed  Google Scholar 

  • Yoon SS, Anh DH, Chung SH (2008) Synergistic effect of mixing dimethyl ether with methane, ethane, propane, and ethylene fuels on polycyclic aromatic hydrocarbon and soot formation. Combust Flame 154:368–377

    Article  CAS  Google Scholar 

  • Zhang Y, Yang B, Gan J, Liu C, Shu X, Shu J (2011) Nitration of particle-associated PAHs and their derivatives (nitro-, oxy- and hydroxyl-PAHs) with NO3 radicals. Atmos Environ 45:2515–2521

    Article  CAS  Google Scholar 

  • Zhang Q, Gao R, Xu F, Zhou Q, Jiang G, Wang T, Chen J, Hu J, Jiang W, Wang W (2014a) Role of water molecule in the gas-phase formation process of nitrated polycyclic aromatic hydrocarbons in the atmosphere: a computational study. Environ Sci Technol 48:5051–5057

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Sun W, Li N, Wang Y, Shu JM, Yang B, Dong L (2014b) Effects of humidity and [NO3]/[N2O5] ratio on the heterogeneous reaction of fluoranthene and pyrene with N2O5/NO3/NO2. Environ Sci Technol 48:13130–13137

    Article  CAS  PubMed  Google Scholar 

  • Zhou H, Wu C, Onwudili JA, Meng A, Zhang Y, Williams PT (2014) Polycyclic aromatic hydrocarbon formation from the pyrolysis/gasification of lignin at different reaction conditions. Energ Fuel 28:6371–6379

    Article  CAS  Google Scholar 

  • Zhou S, Shiraiwa M, McWhinney RD, Pöschl U, Abbatt JPD (2013) Kinetic limitations in gas-particle reactions arising from slow diffusion in secondary organic aerosol. Faraday Discuss 165:391–406

    Article  CAS  PubMed  Google Scholar 

  • Zhou S, Forbes MW, Abbatt JPD (2015) Application of direct analysis in real time-mass spectrometry (DART-MS) to the study of gas-surface heterogeneous reactions: focus on ozone and PAHs. Anal Chem 87:4733–4740

    Google Scholar 

  • Zielinska B, Arey J, Atkinson R, Ramdahl T, Winer AM, Pitts JN Jr (1986) Reaction of dinitrogen pentoxide with fluoranthene. J Amer Chem Soc 108:4126–4132

    Article  CAS  Google Scholar 

  • Zielinska B, Samy S (2006) Analysis of nitrated polycyclic aromatic hydrocarbons. Anal Bioanal Chem 386(4):883–890

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann K, Jariyasopit N, Simonich SLM, Tao S, Atkinson R, Arey J (2013) Formation of nitro-PAHs from the heterogeneous reaction of ambient particle-bound PAHs with N2O5/NO3/NO2. Environ Sci Technol 47:8434–8442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward Gou Nagato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nagato, E.G. (2018). PAHs and NPAHs in Airborne Particulate Matter: Initial Formation and Atmospheric Transformations. In: Hayakawa, K. (eds) Polycyclic Aromatic Hydrocarbons. Springer, Singapore. https://doi.org/10.1007/978-981-10-6775-4_2

Download citation

Publish with us

Policies and ethics