Skip to main content

Biochemical and Molecular Responses in Higher Plants Under Salt Stress

  • Chapter
  • First Online:
Plant Adaptation Strategies in Changing Environment

Abstract

There are vast stretches of wasteland all over the world due to high concentration of salt in the soil. Salinity creates problem due to its effects on crop species which are predominantly salt sensitive. Although saline soils can be remediated through various means, these approaches are not very practical in vast areas and also unsustainable in the long run. Traditional means of ameliorating saline soil through excess irrigation water to leach salts below root zone have to be complemented with the genetic approaches like screening of germplasm and marker-assisted breeding for high salt tolerance. Therefore, genetic and physiological approaches should merge into the unifying more comprehensive approach to breeding for salt tolerance. Extending our knowledge on physiological mechanism of salt tolerance is of utmost importance in developing plants better adapted to saline soils. However, information on mechanism of salt tolerance is lacking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi FM, Komatsu S (2004) A proteomic approach to analyze salt-responsive proteins in rice sheath. Proteomics 4:2072–2081

    Article  CAS  PubMed  Google Scholar 

  • Abrol IP, Yadav JSP, Massoud FI (1988) Salt-affected soils and their management. FAO Soils

    Google Scholar 

  • Acquaah G (2007) Principles of plant genetics and breeding. Blackwell, Oxford, p 385

    Google Scholar 

  • Aghaei K, Komatsu S (2013) Crop and medicinal plants proteomics in response to salt stress. Front Plant Sci 4:8. http://dx.doi.org/10.3389/fpls.2013.00008

    Article  PubMed  PubMed Central  Google Scholar 

  • Aghaei K, Ehsanpour AA, Komatsu S (2008a) Proteome analysis of potato under salt stress. J Proteome Res 7:4858–4868

    Article  CAS  PubMed  Google Scholar 

  • Aghaei K, Ehsanpour AA, Shah AH, Komatsu S (2008b) Proteome analysis of soybean hypocotyls and root under salt stress. Amino Acids 36:91–98

    Article  PubMed  CAS  Google Scholar 

  • Aghaei K, Ehsanpour AA, Komatsu S (2009) Potato responds to salt stress by increased activity of antioxidant enzymes. J Integr Plant Biol 51:1095–1103

    Article  CAS  PubMed  Google Scholar 

  • Ahmad P (2010) Growth and antioxidant responses in mustard (Brassica juncea L.) plants subjected to combined effect of gibberellic acid and salinity. Arch Agron Soil Sci 56:575–588

    Article  CAS  Google Scholar 

  • Ahmad P, Prasad MNV (2012a) Abiotic stress response in plants: metabolism, productivity and sustainability. Springer, New York

    Book  Google Scholar 

  • Ahmad P, Prasad MNV (2012b) Environmental adaptations and stress tolerance in plants in the era of climate change. Springer Science + Business Media, New York

    Book  Google Scholar 

  • Ahmad P, Hakeem KR, Kumar A, Ashraf M, Akram NA (2012) Salt-induced changes in photosynthetic activity and oxidative defense system of three cultivars of mustard (Brassica juncea. L). Afr J Biotechnol 11:2694–2703

    CAS  Google Scholar 

  • Albenne C, Canut H, Jamet E (2013) Plant cell wall proteomics: the leadership of Arabidopsis thaliana. Front Plant Sci 4:111

    Article  PubMed  PubMed Central  Google Scholar 

  • Albert R (1975) Salt regulation in halophytes. Oceologia 21:57–71

    Article  Google Scholar 

  • Amini F, Ehsanpour AA, Hoang QT, Shin JS (2007) Protein pattern changes in tomato under in vitro salt stress. Russ J Plant Physiol 54:464–471

    Article  CAS  Google Scholar 

  • Ashraf M (2004) Some important physiological selection criteria for salt tolerance in plants. Flora 199:361–376

    Article  Google Scholar 

  • Ashraf M, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166:3–16

    Article  CAS  Google Scholar 

  • Askari H, Edqvist J, Hajheidari M, Kafi M, Salekdeh GH (2006) Effects of salinity levels on proteome of Suaeda aegyptiaca leaves. Proteomics 6:2542–2554

    Article  CAS  PubMed  Google Scholar 

  • Azevedo Neto AD, Prisco JT, Eneas-Filho J, Abreu CEB, Filho EG (2006) Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environ Exp Bot 56:87–94

    Article  CAS  Google Scholar 

  • Bartels D et al (1993) Dessication related gene products analysed in a resurrection plant and in barley embryos. In: Close TJ, Bray EA (eds) Plant responses to cellular dehydration during environmental stress: current trends in plant physiology. An American Society of Plant Physiologist Series, Rockville, pp 119–127

    Google Scholar 

  • Bayuelo Jimenez JS, Debouk DG, Lynch JP (2002) Salinity tolerance in phaseolus species during early vegetative growth. Crop Sci 42:2184–2192

    Article  Google Scholar 

  • Beltagi MS, Ismail MA, Mohamed FH (2006) Induced salt tolerance in common bean (Phaseolus vulgaris L.) by gamma irradiation. Pak J Biol Sci 6:1143–1148

    Google Scholar 

  • Bethke PC, Drew MC (1992) Stomatal and nonstomatal components to inhibition of photosynthesis in leaves of Capsicum annum during progressive exposure to NaCl salinity. Plant Physiol 99:219–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhatnagar – Mathur P, Vadez V, Sharma KK (2008) Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects. Plant Cell Rep 27:411–424

    Article  PubMed  CAS  Google Scholar 

  • Blackwood GC, Miflin BJ (1976) The effects of salts on NADH malate dehydrogenase activity in maize and barley. Plant Sci Lett 7:435–446

    Article  CAS  Google Scholar 

  • Bliss RD, Platt-Aloia KA, Thomson WW (1984) Effects of salt on cell membranes of germinating seeds. Calif Agric:24–25

    Google Scholar 

  • Bohnert HJ, Nebson DW, Jensen RG (1995) Adaptation to environmental stress. Plant Cell 7:1099–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonales-Alatorre E, Shabala S, Chen ZH, Pottosin I (2013) Reduced tonoplast fast-activating and slow-activating channel activity is essential for conferring salinity tolerance in a facultative halophyte, Quinoa. Plant Physiol 162:940–952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonhert HJ, Jensen RG (1996) Strategies for engineering water-stress tolerance in plants. Trends Biotechnol 14:89–97

    Article  Google Scholar 

  • Bose J, Rodrigo-Moreno A, Shabala S (2014) ROS homeostasis in halophytes in the context of salinity stress tolerance. J Exp Bot 65:1241–1257

    Article  CAS  PubMed  Google Scholar 

  • Boyer JS (2009) Cell wall biosynthesis and the molecular mechanism of plant enlargement. Funct Plant Biol 36:383–394

    Google Scholar 

  • Brady CJ, Gibson TS, Barlow EWR, Speirs J, Wyn Jones RG (1984) Salt-tolerance in plants. I. Ions, compatible organic solutes and the stability of plant ribosomes. Plant Cell Environ 7:571–578

    CAS  Google Scholar 

  • Bray EA (2002) Classification of genes differentially expressed during water-deficit stress in Arabidopsis thaliana: an analysis using micro-array and differential expression data. Ann Bot 89:803–811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bresler E, McNeal BL, Carter DL (1982) Saline and sodic soils. Principles-dynamics-modeling, Advanced Series in Agricultural Sciences, vol 10. Springer, Berlin

    Book  Google Scholar 

  • Britto DT, Kronzucker HJ (2006) Futile cycling at the plasma membrane: a hallmark of low-affinity nutrient transport. Trends Plant Sci 11:529–534

    Article  CAS  PubMed  Google Scholar 

  • Brownell PF (1965) Sodium as an essential micronutrient element for a higher plant (Atriplex vesicaria). Plant Physiol 40:460–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brownell PF, Crossland (1972) The requirement for sodium as a micronutrient by species having C4 dicarboxylic photosynthetic pathway. Plant Physiol 49:794–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brugnoli E, Björkman O (1992) Growth of cotton under continuous salinity stress: influence on allocation pattern, stomatal and non-stomatal components of photosynthesis and dissipation of excess light energy. Planta 187:335–347

    Article  CAS  PubMed  Google Scholar 

  • Bulletin 39 (n.d.) Food and Agriculture Organization of the United Nations, Rome, Italy

    Google Scholar 

  • Caruso G, Cavaliere C, Guarino C, Gubbiotti R, Foglia P, Lagana A (2008) Identification of changes in Triticum durum L. leaf proteome in response to salt stress by two-dimensional electrophoresis and MALDI-TOF mass spectrometry. Anal Bioanal Chem 391:381–390

    Article  CAS  PubMed  Google Scholar 

  • Cassab GI (1998) Plant cell wall proteins. Annu Rev Plant Biol 49:281–309

    Article  CAS  Google Scholar 

  • Cheeseman JM (2013) The integration of activity in saline environments: problems and perspectives. Funct Plant Biol 40:759–774

    CAS  Google Scholar 

  • Chen T, Murata N (2002) Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr Opin Plant Biol 5:250–257

    Article  CAS  PubMed  Google Scholar 

  • Chen RD, Tabaerzadeh Z (1991) Alteration of gene expression in tomato plants (Lycopersicon esculentum) by drought and salt stress. Genome 35:385–391

    Article  Google Scholar 

  • Chen WQ et al (2002) Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell 14:559–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen C, Tao C, Peng H, Ding Y (2007) Genetic analysis of salt stress responses in asparagus bean (Vigna unguiculata L. ssp. Sesquipedalis verdc.) J Hered 98(7):655–665

    Article  CAS  PubMed  Google Scholar 

  • Chinnusamy V, Zhu J, Zhu JK (2006) Salt stress signaling and mechanism of plant salt tolerance. Genet Eng 27:141–177

    Article  CAS  Google Scholar 

  • Cho WK, Chen XY, Chu H et al (2009) Proteomic analysis of the secretome of rice calli. Physiol Plant 135(4):331–341

    Article  CAS  PubMed  Google Scholar 

  • Chutipaijit S, Cha-um S, Sompornpailin K (2011) High contents of proline and anthocyanin increase protective response to salinity in Oryza sativa L. spp. indica. Aust J Crop Sci 5:1191–1198

    CAS  Google Scholar 

  • Colmer TD, Fan Teresa W-M, Läuchli A, Higashi RM (1996) Interactive effects of salinity, nitrogen and sulphur on the organic solutes in leaf blades. J Exp Bot 47(3):369–375

    Google Scholar 

  • Crosbie TM, Pearce RB (1982) Effects of recurrent phenotypic selection for high and low photosynthesis on agronomic traits in two maize populations. Crop Sci 22:809–813

    Article  Google Scholar 

  • Cui MH et al (2013) An Arabidopsis R2R3-MYB transcription factor, AtMYB20, negatively regulates type 2C serine/threonine protein phosphatases to enhance salt tolerance. FEBS Lett 587:1773–1778

    Article  CAS  PubMed  Google Scholar 

  • Dani V, Simon WJ, Duranti M, Croy RRD (2005) Changes in the tobacco leaf apoplast proteome in response to salt stress. Proteomics 5:737–745

    Article  CAS  PubMed  Google Scholar 

  • Deinlein U, Stephan AB, Horie T, Luo W, Xu G, Schroeder JI (2014) Plant salt-tolerance mechanisms. Trends Plant Sci 19(6):371–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dinneny JR et al (2008) Cell identity mediates the response of Arabidopsis roots to abiotic stress. Science 320:942–945

    Article  CAS  PubMed  Google Scholar 

  • Dixon M, Webb E (1964) Enzymes. Longmans, London

    Google Scholar 

  • Dooki AD, Mayer-Posner FJ, Askari H, Zaiee A, Salekdeh GH (2006) Proteomic responses of rice young panicles to salinity. Proteomics 6:6498–6507

    Article  CAS  PubMed  Google Scholar 

  • Duan L et al (2013) Endodermal ABA signaling promotes lateral root quiescence during salt stress in Arabidopsis seedlings. Plant Cell 25:324–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubey RS (2005) Photosynthesis in plants under stressful conditions. In: Pessarakli M (ed) Handbook of photosynthesis, 2nd edn. CRC Press, Boca Raton, pp 479–497

    Google Scholar 

  • DuPont FM (1992) Salt-induced changes in ion transport: regulation of primary pumps and secondary transporters. In: DT Cooke, DT Clarkson (eds) Transport and receptor proteins of plant membranes. Plenum Press, New York, pp 91–100

    Google Scholar 

  • Ellis M, Egelund J, Schultz CJ, Bacic A (2010) Arabinogalactan-proteins: key regulators at the cell surface? Plant Physiol 153(2):403–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • English JP, Colmer TD (2013) Tolerance of extreme salinity in two stem-succulent halophytes (Tecticornia species). Funct Plant Biol 40:897–912

    CAS  Google Scholar 

  • Ericscon MC, Alfinito SH (1984) Proteins produced during salt stress in tobacco cell culture. Plant Physiol 74:506–509

    Article  Google Scholar 

  • Ewing WSB (1981) The effects of salinity on the morphological and anatomical characteristics of Atriplex triangularis willd. Master’s thesis. Department of Botany, Ohio University, Athens, OH. Excess Light Energy Planta 187: 335–347

    Google Scholar 

  • Fagerberg WR (1984) Cytological changes in palisade cells of developing sunflower leaves. Protoplasma 119:21–30

    Article  Google Scholar 

  • FAO (2005) Global network on integrated soil management for sustainable use of salt affected FAO land and plant nutrition management service. Rome

    Google Scholar 

  • FAO (2008) Land and plant nutrition management service. https://www.fao.org/ag/agl/agll/spush

  • FAO (2009) High level expert forum – how to feed the world in 2050. Economic and social development department. Food and Agricultural Organization of the United Nations, Rome

    Google Scholar 

  • Farooq M, Hussain M, Wakeel M, Siddique KHM (2015) Salt stress in maize : effects, resistance mechanism and management: a review. Agron Sustain Dev 35(2):461–481. Springer-verlag/EDP Sciences/INRA

    Article  CAS  Google Scholar 

  • Fisarakis I, Chartzoulakis K, Stavrakas D (2001) Response of Sultana vines (V. vinifera L.) on six rootstocks to NaCl salinity exposure and recovery. Agric Water Manag 51:13–27

    Article  Google Scholar 

  • Flowers TJ (1972a) The effect of sodium chloride on enzyme activities from four halophyte species of Chenopodiaceae. Phytochemistry 11:1881–1886

    Article  CAS  Google Scholar 

  • Flowers TJ (1972b) Salt tolerance in Suaeda maritima (L) Dum: effect of sodium-chloride on growth, respiration, and soluble enzymes in a comparative study with Pisum sativum L. J Exp Bot 23:310–321

    Article  CAS  Google Scholar 

  • Flowers TJ (1985) Physiology of halophytes. Plant Soil 89:41–56

    Article  CAS  Google Scholar 

  • Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55:307–319

    Article  CAS  PubMed  Google Scholar 

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963

    Article  CAS  PubMed  Google Scholar 

  • Flowers TJ, Dalmond D (1992) Protein-synthesis in halophytes – the influence of potassium, sodium and magnesium in vitro. Plant Soil 146:153–161

    Article  CAS  Google Scholar 

  • Flowers TJ, Yeo AR (1986) Ion relations of plants under drought and salinity. Aust J Plant Physiol 13:75–91

    Article  CAS  Google Scholar 

  • Flowers TJ, Hall JL, Ward ME (1976a) Salt tolerance in halophyte Suaeda maritima – further properties of the enzyme malate dehydrogenase. Phytochemistry 15:1231–1234

    Article  CAS  Google Scholar 

  • Flowers TJ, Ward ME, Hall JL (1976b) Salt tolerance in the halophyte Suaeda maritima: some properties of malate dehydrogenase. Philos Trans R Soc B Biol Sci 273:523–540

    Article  CAS  Google Scholar 

  • Flowers TJ, Troke PF, Yeo AR (1977) The mechanism of salt tolerance in halophytes. Annu Rev Plant Physiol 28:89–112

    Article  CAS  Google Scholar 

  • Flowers TJ, Galal HK, Bromham L (2010) Evolution of halophytes: multiple origins of salt tolerance in land plants. Funct Plant Biol 37:604–612

    Article  Google Scholar 

  • Flowers TJ, Munns R, Colmer TD (2015) Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes. Ann Bot 115(3):419–431

    Article  CAS  PubMed  Google Scholar 

  • Foolad MR (2004) Recent advances in genetics of salt tolerance in tomato. Plant Cell Tissue Organ Cult 76:101–119

    Article  CAS  Google Scholar 

  • Foolad MR et al (1999) Comparison of QTLs for seed germination under non-stress, cold stress and salt stress in tomato. Plant Breed 118:167–173

    Article  Google Scholar 

  • Galvan-Ampudia CS et al (2013) Halotropism is a response of plant roots to avoid a saline environment. Curr Biol 23:2044–2050

    Article  CAS  PubMed  Google Scholar 

  • Gama PBS, Inanaga S, Tanaka K, Nakazawa R (2007) Physiological response of common bean (Phaseolus vulgaris L.) seedlings to salinity stress. Afr J Biotechnol 6(2):79–88

    CAS  Google Scholar 

  • Gama PBS, Tanaka K, Eneji A, Eltayeb AE, Elsiddig K (2009) Salt induced stress effects on biomass, photosynthetic rate and reactive oxygen species scavenging enzyme accumulation in common bean. J Plant Nutr 32(5):837–854

    Article  CAS  Google Scholar 

  • Geng Y et al (2013) A spatio-temporal understanding of growth regulation during the salt stress response in Arabidopsis. Plant Cell 25:2132–2154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghoulam C, Foursy A, Fares K (2002) Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environ Exp Bot 47(1):39–50

    Google Scholar 

  • Gibson TS, Speirs J, Brady CJ (1984) Salt-tolerance in plants. II. In vivo translation of m-RNAs from salt-tolerant and salt-sensitive plants on wheat germ ribosomes. Responses to ions and compatible organic solutes. Plant Cell Environ 7:579–587

    CAS  Google Scholar 

  • Gil R, Boscaiu M, Lull C, Bautista I, Lidon A, Vicente O (2013) Are soluble carbohydrates ecologically relevant for salt tolerance in halophytes? Funct Plant Biol 40:805–818

    CAS  Google Scholar 

  • Golldack D, Lüking I, Yang O (2011) Plant tolerance to drought and salinity: stress regulating transcription factors and their functional significance in the cellular transcriptional network. Plant Cell Rep 30:1383–1391. https://doi.org/10.1007/s00299-011-1068-0

    Article  CAS  PubMed  Google Scholar 

  • Gorham J, Mcdonnell E, Budrewicz E, Wyn Jones RG (1985) Salt Tolerance in the Triticeae: growth and solute accumulation in leaves of Thinopyrum bessarabicum. J Exp Bot 36(7):1021–1031

    Google Scholar 

  • Gossett DR, Millhollon EP, Lucas MC (1994) Antioxidant response to NaCl stress in salt tolerant and salt-sensitive cultivars of cotton. Crop Sci 34:706–714

    Article  CAS  Google Scholar 

  • Greenway H, Munns R (1980) Mechanism of salt tolerance in nonhalophytes. Annu Rev Plant Physiol 31:149–190

    Article  CAS  Google Scholar 

  • Greenway H, Munns R (1983) Interactions between growth and uptake of Cl and Na+, and water relations of plants in saline environments. Plant Cell Environ 6:575–589

    Article  CAS  Google Scholar 

  • Greenway H, Osmond CB (1972) Salt responses of enzymes from species differing in salt tolerance. Plant Physiol 49:256–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gregorio GB et al (2002) Progress in breeding for salinity tolerance and associated abiotic stresses in rice. Field Crop Res 76:91–101

    Article  Google Scholar 

  • Grime JP (1979) Plant strategies and vegetation process. Wiley, New York

    Google Scholar 

  • Gulick PJ, Dvorak J (1987) Gene induction and repression by salt treatment in roots of the salinity sensitive Chinese Spring Wheat and the salinity-tolerant Chinese Spring x Elytrigia elongata amphiploid. Proc Natl Acad Sci U S A 84:99–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ha E, Ikhajiagba B, Bamidele JF, Ogic-odia E (2008) Salinity effects on young healthy seedling of kyllingia peruviana collected from escravos, Delta state. Glob J Environ Res 2(2):74–88

    Google Scholar 

  • Hagege D, Kevers C, Boucaud J, Gasper T (1988) Activities, peroxydasiques, production d’ ethylene, lignification et limitation de croissance chez Suaeda maritima cultive en I’absence de NaCl. Plant Physiol Biochem 26:609–614

    CAS  Google Scholar 

  • Hajheidari M, Abdollahian-Noghabi M, Askari H (2005) Proteome analysis of sugar beet leaves under drought stress. Proteomics 5:950–960

    Article  CAS  PubMed  Google Scholar 

  • Hajibagheri MA, Hall JL, Flowers TJ (1984) Stereological analysis of leaf cells of the halophyte Suaeda maritima (L.) Dum. J Exp Bot 35:1547–1557

    Article  Google Scholar 

  • Hasanuzzaman M, Nahar K, Fujita M (2013) Plant response to salt stress and role of exogenous protectants to mitigate salt-induced damages. In: Ahmad et al. (eds) Ecophysiology and responses of plants under salt stress. doi:https://doi.org/10.1007/978–1–4614-4747-4_2, © Springer Science+Business Media, LLC

    Google Scholar 

  • Hasegawa PM (2013) Sodium (Na+) homeostasis and salt tolerance of plants. Environ Exp Bot 92:19–31

    Article  CAS  Google Scholar 

  • Hasegewa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Mol Biol 51:463–499

    Article  Google Scholar 

  • Hassanein RA, Bassuony FM, Baraka DM, Khalil RR (2009) Physiological effects of Nicotinamide and Ascorbic acid on ZeaMays plants grown under salinity stress. I. Changes in growth, some relevant metabolic activities and oxidative defense systems. Res J Agric Biol Sci 5(1):72–81

    CAS  Google Scholar 

  • Hawkins HJ, Lewis OAM (1993) Combination effect of NaCl salinity, nitrogen form and calcium concentration on the growth and ionic content and gaseous properties of Triticum aestivum L. cv. Gamtoos. New Phytol 124:161–170

    Article  CAS  Google Scholar 

  • Hématy K, Cherk C, Somerville S (2009) Host-pathogen warfare at the plant cell wall. Curr Opin Plant Biol 12(4):406–413

    Article  PubMed  CAS  Google Scholar 

  • Hernandez JA, Olmas E, Copras FJ, Sevilla F, del Rio LA (1995) Salt induced oxidative stress in chloroplast of pea plants. Plant Sci 105:151–167

    Article  CAS  Google Scholar 

  • Holmström K‐O, Somersalo S, Mandal A, Palva TE, Welin B (2000) Improved tolerance to salinity and low temperature in transgenic tobacco producing glycine betaine. J Exp Bot 51(343):177–185

    Google Scholar 

  • Hillel D (2000) Salinity management for sustainable irrigation. The World Bank, Washington, DC

    Book  Google Scholar 

  • Hong SW, Jon JH, Kwak JM, Nam HG (1997) Identification of a receptor-like protein kinase gene rapidly induced by absciscic acid, dehydration, high salt and cold treatment in Arabidopsis thaliana. Plant Physiol 13:1203–1212

    Article  Google Scholar 

  • Houimli SIM, Denden M, Elhadj SB (2008) Induction of salt tolerance in pepper (B0 or Hbt 10mmtt1) by 24-epibrassinolide. Eurasia J Biol Sci 2:83–90

    Google Scholar 

  • Huang Z, Zhang Z, Zhang X, Zhang H, Huang D, Huang R (2004) Tomato TERF1 modulates ethylene response and enhances osmotic stress tolerance by activating expression of downstream genes. FEBS Lett 573:110–116

    Article  CAS  PubMed  Google Scholar 

  • Hurkman WJ (1992) Effect of salt stress on gene expression: a review. Plant Soil 146:145–151

    Article  CAS  Google Scholar 

  • Iyengar ERR, Reddy MP (1996) Photosynthesis in highly salt-tolerant plants. In: Pessaraki M (ed) Handbook of photosynthesis. Marcel Dekker, New York, pp 897–909

    Google Scholar 

  • James RA, Rivelli AR, Munns R, Caemmerer SV (2002) Factors affecting CO2 assimilation, leaf injury and growth in salt-stressed durum wheat. Funct Plant Biol 29:1393–1403

    Article  CAS  Google Scholar 

  • Jamet E, Albenne C, Boudart G, Irshad M, Canut H, Pont-Lezica R (2008) Recent advances in plant cell wall proteomics. Proteomics 8(4):893–908

    Article  CAS  PubMed  Google Scholar 

  • Jamil M, Lee CC, Rehman SU, Lee DB, Ashraf M, Rha ES (2005) Salinity (NaCl) tolerance of brassica species at germination and early seedling growth. Electron J Environ Agric Food Chem 4:970–976. ISSN: 1579–4377

    CAS  Google Scholar 

  • Jamil M, Rehman SU, Lee KJ, Kim JM, Rha HK (2007a) Salinity reduced growth ps2 photochemistry and chlorophyll content in radish. Sci Agric (Piracicaba, Braz) 64(2):111–118

    Article  CAS  Google Scholar 

  • Jamil M, Rehman S, Rha ES (2007b) Salinity effect on plant growth, ps11 photochemistry and chlorophyll content in sugar beet (Beta vulgaris L.) and cabbage (Brassica oleracea capitata L.) Pak J Bot 39(3):753–760

    Google Scholar 

  • Jiang Y, Deyholos MK (2009) Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses. Plant Mol Biol 69:91–105

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y et al (2009) Functional characterization of the Arabidopsis bHLH92 transcription factor in abiotic stress. Mol Gen Genomics 282:503–516

    Article  CAS  Google Scholar 

  • Jiang C et al (2013) An Arabidopsis soil-salinity-tolerance mutation confers ethylene-mediated enhancement of sodium/potassium homeostasis. Plant Cell 25:3535–3352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson MK, Johnson EJ, MacElroy RD, Speer HL, Bruff BS (1968) Effects of salts on the halophilic alga Dunaliella viridis. J Bacteriol 95:1461–1468

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kalir A, Flowers TJ (1982) The effect of salts on malate dehydrogenase from leaves of Zea mays. Phytochemistry 21:2189–2193

    Article  CAS  Google Scholar 

  • Kasuga M et al (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17:287–291

    Article  CAS  PubMed  Google Scholar 

  • Katerji N, van Hoorn JW, Hamdy A, Mastrorilli M, Mou Karzel E (1997) Osmotic adjustment of sugar beets in response to soil salinity and its influence on stomatal conductance, growth and yield. Agric Water Manag 34(1):57–69

    Article  Google Scholar 

  • Kaur G, Kumar S, Nayyar H, Upadhyaya HD (2008) Cold stress injury during the pod-filling phase in chickpea (Cicer arietinum L.) effects on quantitative and qualitative components of seeds. J Agron Crop Sci 194:457–464

    Google Scholar 

  • Kaymakanova M, Stoeva N (2008) Physiological reaction of bean plants (Phaseolus vulgares L.) to salinity stress. Gen Appl Plant Physiol 34(3–4):177–188

    CAS  Google Scholar 

  • Kaymakanova M, Stoeva N, Mincheva T (2008) Salinity and its effect on physiological response of bean (Phaseolus vulgares L.) Cent Eur Agric 9(4):749–756

    Google Scholar 

  • Kilian J et al (2007) The At Gen Express global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant J 50:347–363

    Article  CAS  PubMed  Google Scholar 

  • Kosová K, Prášil IT, Vítámvás P (2013) Protein contribution to plant salinity response and tolerance acquisition. Int J Mol Sci 14:6757–6789. https://doi.org/10.3390/ijms14046757

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Koyro H-W, Zörb C, Debez A, Huchzermeyer B (2013) The effect of hyper-osmotic salinity on protein pattern and enzyme activities of halophytes. Funct Plant Biol 40(9):787–804

    Google Scholar 

  • Kurek I, Dulberger R, Azem A, Tzvi BB, Sudhakar D, Christou P et al (2002) Deletion of the C-terminal 138 amino acids of the wheat FKBP73 abrogates calmodulin binding, dimerization and male fertility in transgenic rice. Plant Mol Biol 48:369–381

    Article  CAS  PubMed  Google Scholar 

  • Kurth E, Cramer GR, Lauchli A, Epstein E (1986) Effects of NaCl and CaCl2 on cell production in cotton roots. Plant Physiol 82:1102–1106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwon T, Abe T, Sasahara T (1995) Enhanced saline stress resistance in threonine and methionine overproducing mutant cell line from protoplast culture of rice (Oryza sativa L.) J Plant Physiol 145:551–556

    Article  CAS  Google Scholar 

  • Lamport DTA, Kieliszewski MJ, Chen Y, Cannon MC (2011) Role of the extension superfamily in primary cell wall architecture. Plant Physiol 156(1):11–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lauchli A, Schubert S (1989) The role of calcium in the regulation of membrane and cellular growth processes under salt stress. In: Cherry JH (ed) Environmental stress in plants, NATO ASI Series, vol 19. Springer, Berlin, pp 131–138

    Chapter  Google Scholar 

  • Leach RP, Wheeler KP, Flowers TJ, Yeo AR (1990a) Molecular markers for ion compartmentation in cells of higher plants. I. Isolation of vacuoles of high purity. J Exp Bot 41:1079–1087

    Article  Google Scholar 

  • Leach RP, Wheeler KP, Flowers TJ, Yeo AR (1990b) Molecular markers for ion compartmentation in cells of higher plants. II. Lipid composition of the tonoplast of the halophyte Suaeda maritima (L.) Dum. J Exp Bot 41:1089–1094

    Article  CAS  Google Scholar 

  • Lippuner V, Cyert MS, Gasser CS (1996) Two classes of plant cDNA clones differentially complement yeast calcineurin mutants and increase salt tolerance of wild-type yeast. J Biol Chem 271:12589–12866

    Article  Google Scholar 

  • Liu Y, Du H, He X, Huang B, Wang Z (2012) Identification of differentially expressed salt-responsive proteins in roots of two perennial grass species contrasting in salinity tolerance. J Plant Physiol 169:117–126

    Article  CAS  PubMed  Google Scholar 

  • Lodeyro AP, Carrillo N (2015) Salt stress in higher plants: mechanisms of toxicity and defensive responses. In: Tripathi BN, Miller M (eds) Stress responses in plants. Springer International Publishing, Cham, pp 1–33

    Google Scholar 

  • Maathuis FJM, Flowers TJ, Yeo AR (1992) Sodium chloride compartmentation in leaf vacuoles of the halophyte Suaeda maratima (L.) Dum. and its relation to tonoplast permeability. J Exp Bot 43:1219–1223

    Article  CAS  Google Scholar 

  • Manchanda G, Garg N (2008) Salinity and its effects on the functional biology of legumes. Acta Physiol Plant 30(5):595–618

    Google Scholar 

  • Manetas Y (1990) A reexamination of NaCl effects on phosphoenolpyruvate carboxylase at high (physiological) enzyme concentrations. Physiol Plant 78:225–229

    Article  CAS  Google Scholar 

  • Mano Y, Takeda K (1997) Mapping quantitative trait loci for salt tolerance at germination and the seedling stage in barley (Hordeum vulgare L.) Euphytica 94:263–272

    Article  Google Scholar 

  • Mansour MMF, Salama KHA, Al-Mutawa MM (2003) Transport proteins and salt tolerance in plants. Plant Sci 164:891–900

    Article  CAS  Google Scholar 

  • Mantri N, Patade V, Penna S, Ford R, Pang E (2012) Abiotic stress responses in plants: present and future. In: Ahmad P, Prasad MNV (eds) Abiotic stress response in plants : metabolism, productivity and sustainability. Springer, New York, pp 1–9

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic, London

    Google Scholar 

  • Mathur N, Singh J, Bohra S, Bohra A, Vyas A (2006) Biomass production, productivity and physiological changes in moth bean genotypes at different salinity levels. Am J Plant Physiol 1(2):210–213

    Article  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence – a practical guide. J Exp Bot 51:659–668

    Article  CAS  PubMed  Google Scholar 

  • Memon SA, Hou X, Wang LJ (2010) Morphological analysis of salt stress response of pak Choi. EJEAF Che 9(1):248–254

    CAS  Google Scholar 

  • Mizoguchi T, Hayashida N, Yamaguchi-shinazaki K, Kamada H, Shinozaki K (1995) Two genes that encode ribosomal protein S6 kinase homologs are induced by cold or salinity stress in Arabidopsis thaliana. FEBS Lett 358:199–204

    Article  CAS  PubMed  Google Scholar 

  • Mizoguchi T, Irie K, Hirayama T, Hayashida N, Yamaguchi-shinazaki K, Matsumoto K, Shinozaki K (1996) A gene encoding a mitogen-activated protein kinase and an S6 ribosomal protein kinase by touch, cold and water stress in Arabidopsis thaliana. Proc Natl Acad Sci U S A 93:765–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moons A, Bauw G, Prinsen E, Van Montagu M, Van Der Straeten D (1995) Molecular and physiological responses to abscisic acid and salts in roots of salt-sensitive and salt-tolerant indica rice varieties. Plant Physiol 107(1):177–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moons A, Gielen J, Vandekerckerckhove J, VanDer SD, Gneysen G, Van Montagu M (1997) An abscisic acid and salt stress responsive rice cDNA from a novel plant gene family. Planta 202:443–454

    Article  CAS  PubMed  Google Scholar 

  • Munns R (1993) Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses. Plant Cell Environ 16:15–24

    Article  CAS  Google Scholar 

  • Munns R (2002a) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  PubMed  Google Scholar 

  • Munns R (2002b) Salinity, growth and phytohormones. In: Läuchli A, Lüttge U (eds) Salinity: environment – plants – molecules. Kluwer, Amsterdam, pp 271–290

    Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Munns R, James RA, Xu B, Athman A, Conn SJ, Jordans C, Byrt CS, Hare RA, Tyerman SD, Tester M (2012) Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nat Biotechnol 30:360–364

    Article  CAS  PubMed  Google Scholar 

  • Mustard J, Renault S (2006) Response of red-osier dogwood (Cornus sericea) seedling to NaCl during the onset of bud break. Can J Bot 84(5):844–851

    Article  Google Scholar 

  • Naot D, Ben-Hayyim G, Eshdat Y, Holland D (1995) Drought, heat and salt stress induce the expression of a citrus homologue of an atypical late-embryogenesis Lea5 gene. Plant Mol Biol 27(3):619–622

    Google Scholar 

  • Nawaz K, Hussain K, Majeed A, Khan F, Afghan S, Ali K (2010) Fatality of salt stress to plants: morphological, physiological and biochemical aspects. Afr J Biotechnol 9(34):5475–5480

    CAS  Google Scholar 

  • Nazir N, Ashraf M, Rasul E (2001) Genomic relationships in oilseed Brassica with respect to salt tolerance-photosynthetic capacity and ion relations. Pak J Bot 33:483–501

    Google Scholar 

  • Netondo GW, Onyango JC, Beck E (2004) Crop physiology and metabolism Sorghum and salinity II – gas exchange and chlorophyll fluorescence of sorghum under salt stress. Crop Sci 44(3):806–811

    Article  Google Scholar 

  • Neubert AB, Zorb C, Schubert S (2005) Expression of vacuolar Na+/H+ antiporters (ZmNHX) and Na+ exclusion in roots of maize (Zea mays L.) genotypes with improved salt resistance. In: Li CJ, Zhang FS, Dobermann A, Hinsinger P, Lambers H, Li XL et al (eds) Plant nutrition for food security, human health and environmental protection. Tsinghua University Press, Beijing, pp 544–545

    Google Scholar 

  • Neumann P (1997) Salinity resistance and plant growth revisited. Plant Cell Environ 20:1193–1198

    Article  CAS  Google Scholar 

  • Ngara R, Ndimba R, Jensen JB, Jensen ON, Ndimb B (2012) Identification and profiling of salinity stress-responsive proteins in Sorghum bicolor seedlings. J Proteome 75:4139–4150

    Article  CAS  Google Scholar 

  • Niaz BH, Athar M, Salim M, Rozema J (2005) Growth and ionic relations of fodder beet and sea beet under saline. CEERS 2(2):113–120

    Google Scholar 

  • Osmond CB, Greenway H (1972) Salt responses of carboxylation enzymes from species differing in salt tolerance. Plant Physiol 49(2):260–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ouyang B, Yang T, Li H, Zhang L, Zhang Y, Zhang J et al (2007) Identification of early salt stress response genes in tomato root by suppression subtractive hybridization and microarray analysis. J Exp Bot 58:507–520

    Article  CAS  PubMed  Google Scholar 

  • Parida AK, Das AB, Mohanty P (2004) Investigations on the antioxidative defense responses to NaCl stress in a mangrove, Bruguiera parviflora: differential regulations of isoforms of some antioxidative enzymes. Plant Growth Regul 42:213–226

    Article  CAS  Google Scholar 

  • Pettigrew WT, Meredith WR (1994) Leaf gas exchange parameters vary among cotton genotypes. Crop Sci 34:700–705

    Article  Google Scholar 

  • Pitman MG, Läuchli A (2002) Global impact of salinity and agricultural ecosystems. In: Läuchli A, Lüttge U (eds) Salinity: environment – plants – molecules. Kluwer, Dordrecht, pp 3–20

    Google Scholar 

  • Pollard A, Wyn Jones WG (1979) Enzyme activities in concentrated solutions of glycinebetaine and other solutes. Planta 144:291–298

    Article  CAS  PubMed  Google Scholar 

  • Pons LJ (1973) Outline of genesis, characteristics, classification and improvement of acid sulfate populations of Trifolium repens L. differing in salt tolerance. Plant Soil 146:131–136

    Google Scholar 

  • Poon S, Heath RL, Clarke AE (2012) A chimeric arabinogalactan protein promotes somatic embryogenesis in cotton cell culture. Plant Physiol 160(2):684–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qados AMS (2011) Effect of salt stress on plant growth and metabolism of bean plant Vicia faba (L.) J Saudi Soc Agric Sci 10:7–15

    Google Scholar 

  • Quesada V et al (2002) Genetic architecture of NaCl tolerance in Arabidopsis. Plant Physiol 130:951–963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qureshi MI, Qadir S, Zoll L (2007) Proteomics-based dissection of stress-responsive pathways in plants. J Plant Physiol 164:1239–1260

    Article  CAS  PubMed  Google Scholar 

  • Ramgopal S (1987) Differential mRNA transcription during salinity stress in barley. Proc Natl Acad Sci U S A 84:94–98

    Article  Google Scholar 

  • Raul L, Andres O, Armado L, Bernardo M, Enrique T (2003) Response to salinity of three grain legumes for potential cultivation in arid areas (plant nutrition). Soil Sci Plant Nutr 49(3):329–336

    Article  Google Scholar 

  • Raza SH, Athar HR, Ashraf M, Hameed A (2007) Glycinebetaine-induced modulation of antioxidant enzymes activities and ion accumulation in two wheat cultivars differing in salt tolerance. Environ Exp Bot. https://doi.org/10.1016/j.envexpbot.2006.12.009

  • Rea PA, Poole RJ (1993) Vacuolar H+-translocating pyrophosphatase. Annu Rev Plant Physiol Plant Mol Biol 44:157–180

    Article  CAS  Google Scholar 

  • Reddy VS, Reddy ASN (2004) Proteomics of calcium-signaling components in plants. Phytochemistry 65:1745–1776

    Article  CAS  PubMed  Google Scholar 

  • Rengasamy P (2006) World salinization with emphasis on Australia. J Exp Bot 57:1071–1023

    Article  Google Scholar 

  • Rengel Z (1992) The role of calcium in salt toxicity. Plant Cell Environ 15:625–632

    Article  CAS  Google Scholar 

  • Reuter DJ, Robinson JB (1986) Plant analysis: an interpretation manual. Inkata Press, Melbourne

    Google Scholar 

  • Richards RA (1996) Defining selection criteria to improve yield under drought. Plant Growth Regul 20:157–166

    Article  CAS  Google Scholar 

  • Robinson NL, Tanaka CK, Hurkman WJ (1990) Time dependent changes in polypeptide and translatable mRNA levels caused by NaCl in barley roots. Physiol Plant 78:128–134

    Article  CAS  Google Scholar 

  • Rodriguez P, Amico JD, Morales D, Blanco MJS, Alarcon JJ (1997) Effects of salinity on growth, shoot water relations and root hydraulic conductivity in tomato plants. J Agric Sci 128:439–444

    Article  Google Scholar 

  • Rodríguez M, Canales E, Borrás- Hidalgo O (2005) Molecular aspect of abiotic stress in plants. Biotecnol Apl 22:1–10

    Google Scholar 

  • Rogers ME, Noble CL (1992) Variation in growth and ion accumulation between two selected populations of Trifolium repens L. differing in salt tolerance. Plant Soil 146:131–136

    Article  CAS  Google Scholar 

  • Romero-Aranda R, Soria T, Cuartero J (2001) Tomato plant-water uptake and plant-water relationships under saline growth conditions. Plant Sci 160(2):265–272

    Google Scholar 

  • Römheld V (2012) Diagnosis of deficiency and toxicity of nutrients. In: Marschner P (ed) Marschner’s mineral nutrition of higher plants, 3rd edn. Elsevier/Academic, San Diego, pp 299–312

    Chapter  Google Scholar 

  • Roy SJ, Negrão S, Tester M (2014) Salt resistant crop plants. Curr Opin Biotechnol 26:115–124. https://doi.org/10.1016/j.copbio.2013.12.004

    Article  CAS  PubMed  Google Scholar 

  • Rui L, Wei S, Mu-xiang C, Cheng-jun J, Min W, Bo-ping Y (2009) Leaf anatomical changes of Bruguiera gymnorrhiza seedlings under salt stress. J Trop Subtrop Bot 17(2):169–175

    Google Scholar 

  • Sachs MM, Ho TD (1986) Alteration of gene expression during environmental stress in plants. Annu Rev Plant Physiol 37:363–376

    Article  CAS  Google Scholar 

  • Saffan SE (2008) Effect of salinity and osmotic stresses on some economic plants. Res J Agric Biol Sci 4(2):159–166

    CAS  Google Scholar 

  • Sairam RK, Tyagi A (2004) Physiology and molecular biology of salinity stress tolerance in plants. Curr Sci 86(3):407–421

    CAS  Google Scholar 

  • Sakamoto A, Murata N (2000) Genetic engineering of glycine betaine synthesis in plants: current status and implications for enhancement of stress tolerance. J Exp Bot 51:81–88

    Article  CAS  PubMed  Google Scholar 

  • Salekdeh GH, Siopongco J, Wade LJ, Ghareyazie B, Bennett J (2002) Proteomic analysis of rice leaves during drought stress and recovery. Proteomics 2:1131–1145

    Article  CAS  PubMed  Google Scholar 

  • Saqib M, Zorb C, Schubert S (2006) Salt resistant and salt-sensitive wheat genotypes show similar biochemical reaction at protein level in the first phase of salt stress. J Plant Nutr Soil Sci 169:542–548

    Article  CAS  Google Scholar 

  • Seeman JR, Sharkey TD (1986) Salinity and nitrogen effects on photosynthesis, Ribulose-1, 5-Biphosphate carboxylase and metabolite pool sizes in Phaseolus vulgaris L. Plant Physiol 82:555–560

    Article  Google Scholar 

  • Seemann JR, Critchley C (1985) Effects of salt stress on the growth, ion content, stomatal behaviour and photosynthetic capacity of a salt sensitive species. Phaseolus vulagris L. Plant Physiol 82:555–560

    Article  Google Scholar 

  • Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J 31(3):279–292

    Google Scholar 

  • Shabala S (2013) Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops. Ann Bot 112:1209–1221

    Article  PubMed  PubMed Central  Google Scholar 

  • Shanker A, Venkateswarlu B (2011) Abiotic stress in plants – mechanism and adaptations. InTech, Rijeka, p ix

    Book  Google Scholar 

  • Shininger TL (1979) The control of vascular development. Annu Rev Plant Physiol 30:313–337

    Article  CAS  Google Scholar 

  • Showalter AM (1993) Structure and function of plant cell wall proteins. Plant Cell 5(1):9–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Showalter AM, Keppler B, Lichtenberg J, Gu D, Welch LR (2010) A bioinformatics approach to the identification, classification, and analysis of hydroxyproline-rich glycoproteins. Plant Physiol 153(2):485–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh NK, LaRosa PC, Nelson D, Iraki N, Carpita NC, Hasegawa PM, Bressan RA (1989) In: Cherry JH (ed) Reduced growth rate and changes in cell wall proteins of plant cells adapted to NaCl, Environmental Stress in Plants. NATO ASI Series, vol G19. Springer, Berlin, pp 173–194

    Google Scholar 

  • Sobhanian H, Razavizadeh R, Nanjo Y, Ehsanpour AA, Rastgar Jazii F, Motamed N et al (2010) Proteome analysis of soybean leaves, hypocotyls and roots under salt stress. Proteome Sci 8:1–15

    Article  CAS  Google Scholar 

  • Steudle E (2000) Water uptake by roots: effects of water deficit. J Exp Bot 51(350):1531–1542

    Google Scholar 

  • Sudhir P, Murthy SDS (2004) Effects of salt stress on basic processes of photosynthesis. Photosynthetica 42:481–486

    Article  CAS  Google Scholar 

  • Szabolcs I (1974) Salt affected soils in Europe. Martinus Nijhoff, The Hague. 63 p

    Book  Google Scholar 

  • Taffouo VD, Kouamou JK, Ngalangue LMT, Ndjeudji BAN, Akoa A (2009) Effects of salinity stress on growth, ions partitioning and yield of some cowpea (Vigna ungiuculata L., walp) cultivars. Int J Bot 5(2):135–143

    Article  CAS  Google Scholar 

  • Taffouo VD, Wamba OF, Yombi E, Nono GV, Akoe A (2010) Growth, yield, water status and ionic distribution response of three bambara groundnut (Vigna subterranean (L.) verdc.) land races grown under saline conditions. Int J Bot 6(1):53–58

    Article  CAS  Google Scholar 

  • Tal M (1984) Physiological genetics of salt resistance in higher plants, studies on the level of the whole plant and isolated organs, tissues and cells. In: Staples RC, Toenniessen (eds) Salinity tolerance in plants, strategies for crop improvement. Wiley, New York, p 443

    Google Scholar 

  • Tal M, Shannon MC (1983) Salt tolerance in the wild relatives of the cultivated tomato: responses of Lycopersicon esculentum, Lycopersicon cheesmani, Lycopersicon peruvianum, Solanum pennelli, and F1 hybrids to high salinity. Aust J Plant Physiol 10:109–117

    Article  Google Scholar 

  • Tavakkoli E, Rengasamy P, McDonald GK (2010) High concentrations of Na+ and Cl ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress. J Exp Bot 61:4449–4459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thakur P, Kumar S, Malik JA, Berger JD, Nayyar H (2010) Cold stress effects on reproductive development in grain crops. An overview. Environ Exp Bot 67:429–443

    Article  CAS  Google Scholar 

  • Tran LS et al (2004) Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell 16:2481–2498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Treichel JC, Hettfleisch H, Eilhardt S, Faist K, Kluge H (1988) A possible induction of CAM by NaCl-stress in heterotrophic cell suspension cultures of Mesembryanthemum crystallinum. J Plant Physiol 133:419–424

    Article  CAS  Google Scholar 

  • Turan MA, Kalkat V, Taban S (2007) Salinity-induced stomatal resistance, proline, chlorophyll and ion concentrations of bean. Int J Agric Res 2(5):483–488

    Article  CAS  Google Scholar 

  • Ul Haq T, Akhtar J, Steele KA, Munns R, Gorham J (2013) Reliability of ion accumulation and growth components for selecting salt tolerant lines in large populations of rice. Funct Plant Biol 41:379–390

    Article  CAS  Google Scholar 

  • Urao T, Yamaguchi-Shinozaki K, Urao S, Shinozaki K (1993) An Arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence. Plant Cell 5:1529–1539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vítámvás P, Prášil IT, Kosová K, Planchon S, Renaut J (2012) Analysis of proteome and frost tolerance in chromosome 5A and 5B reciprocal substitution lines between two winter wheats during long-term cold acclimation. Proteomics 12:68–85

    Article  PubMed  CAS  Google Scholar 

  • Von Willert DJ, Kirst GO, Treichel S, Von Willert E (1976) The effect of leaf age and salt stress on malate accumulation and phosphoenolpyruvate carboxylase activity in Mesembryanthemum crystallinum. Plant Sci Lett 7:341346

    Google Scholar 

  • Vorasoot N, Songsri P, Akkasaeng C, Jogloy S, Patanothai A (2003) Effect of water stress on yield and agronomic characters of peanut. Songklanakarin J Sci Technol 25:283–288

    Google Scholar 

  • Vysotskaya L, Hedley PE, Sharipova G, Veselov D, Kudoyarova G, Morris J, Jones HG (2010) Effect of salinity on water relations of wild barley plants differing in salt tolerance. AoB Plant. https://doi.org/10.1093/aobpla/plq006

  • Wakeel A, Asif AR, Pitann B, Schubert S (2011) Proteome analysis of sugar beet (Beta vulgaris L.) elucidates constitutive adaptation during the first phase of salt stress. J. Plant Physiol 168:519–526

    Article  CAS  Google Scholar 

  • Walker RR, Törökfalvy E, Scott NSS, Kriedemann PE (1981) An analysis of photosynthetic response to salt treatment in Vitis vinifera. Aust J Plant Physiol 8:359–374

    Article  Google Scholar 

  • Wang L, Showalter AM, Ungar IA (1997) Effect of salinity on growth, ion content and cell wall chemistry in Atriplex prostrata (Chenopodiaceae). Am J Bot 84(9):1247–1255

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Dan G, Liu T, Wang Z, Guo X, Hou W, Bai Y, Chen X, Wang G (2007) Overexpression of a putative maize calcineurin B-like protein in Arabidopsis confers salt tolerance. Plant Mol Biol 65(6):733–746

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Yang P, Gao Q, Liu X, Kuang T, Shen S, He Y (2008) Proteomic analysis of the response to high-salinity stress in Physcomitrella patens. Planta 228:167–177

    Article  CAS  PubMed  Google Scholar 

  • Ward JM, Hirschi KD, Sze H (2003) Plants pass the salt. Trends Plant Sci 8:200–201

    Article  CAS  PubMed  Google Scholar 

  • White PJ, Broadley MR (2001) Chloride in soils and its uptake and movement within the plant: a review. Ann Bot 88:967–988

    Article  CAS  Google Scholar 

  • Wyn Jones RG (1981) Salt tolerance. In: Johnson CB (ed) Physiological processes limiting plant productivity. Butterworths, London, pp 271–292

    Chapter  Google Scholar 

  • Wyn Jones R, Storey R, Leigh RA, Ahmad N, Pollard A (1977) A hypothesis on cytoplasmic osmoregulation. In: Marre E, Ciferri O (eds) Regulation of cell membrane activities in plants. Elsevier/North Holland, Amsterdam, pp 121–136

    Google Scholar 

  • Xu G, Magen H, Tarchitzky J, Kafkafi U (2000) Advances in chloride nutrition of plants. Adv Agron 68:97–150

    Article  CAS  Google Scholar 

  • Yadav RS, Yadav, Sehgal D, Vadez V (2011) Using genetic mapping and genomics approaches in understanding and improving drought tolerance in pearl millet. J Exp Bot 62(2):397–408

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi T, Blumwald E (2005) Developing salt-tolerant crop plants: challenges and opportunities. Trends Plant Sci 10(12):615–620

    Article  CAS  PubMed  Google Scholar 

  • Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN (1982) Living with water stress: evolution of osmolyte systems. Science 217:1214–1222

    Article  CAS  PubMed  Google Scholar 

  • Yang O et al (2009) The Arabidopsis basic leucine zipper transcription factor AtbZIP24 regulates complex transcriptional networks involved in abiotic stress resistance. Gene 436:45–55

    Article  CAS  PubMed  Google Scholar 

  • Yeo AR (1981) Salt tolerance in the halophyte Suaeda maritima (L.) Dum.: intracellular compartmentation of ions. J Exp Bot 32:487–497

    Article  CAS  Google Scholar 

  • Yeo AR (1983) Salinity resistance: physiologies and prices. Physiol Plant 58:214–222

    Article  CAS  Google Scholar 

  • Yeo AR (1998) Molecular biology of salt tolerance in the context of whole plant physiology. J Exp Bot 49:915–929

    CAS  Google Scholar 

  • Yeo AR, Flowers TJ (1980) Salt tolerance in the halophyte Suaeda maritima (L.) Dum.: evaluation of the effect of salinity upon growth. J Exp Bot 31:1171–1183

    Article  CAS  Google Scholar 

  • Yeo AR, Flowers TJ (1983) Varietal differences in the toxicity of sodium ions in rice leaves. Physiol Plant 59:189–195

    Article  CAS  Google Scholar 

  • Yilmaz H, Kina A (2008) The influence of NaCl salinity on some vegetative and chemical changes of strawberries (Fragaria x ananassa L.) Afr J Biotechnol 7(18):3299–3305

    CAS  Google Scholar 

  • Zagorchev L, Kamenova P, Odjakova M (2014) The role of plant cell wall proteins in response to salt stress. Sci World J Volume Article ID 764089, 9 pages. https://doi.org/10.1155/2014/764089

  • Zhao GQ, Ma BL, Ren CZ (2007) Growth, gas exchange, chlorophyll fluorescence and ion content of naked oat in response to salinity. Crop Sci 47(1):123–131

    Article  CAS  Google Scholar 

  • Zhu JK (2001) Overexpression of a delta-pyrroline-5-carboxylate synthetase gene and analysis of tolerance to water and salt stress in transgenic rice. Trends Plant Sci 6:66–72

    Article  CAS  PubMed  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Chen S, Alvarez S et al (2006) Cell wall proteome in the maize primary root elongation zone.I. Extraction and identification of water-soluble and lightly ionically bound proteins. Plant Physiol 140(1):311–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neerja Srivastava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Srivastava, N. (2017). Biochemical and Molecular Responses in Higher Plants Under Salt Stress. In: Shukla, V., Kumar, S., Kumar, N. (eds) Plant Adaptation Strategies in Changing Environment. Springer, Singapore. https://doi.org/10.1007/978-981-10-6744-0_5

Download citation

Publish with us

Policies and ethics