Skip to main content

Adaptation Strategies of Plants Against Common Inorganic Pollutants and Metals

  • Chapter
  • First Online:
Plant Adaptation Strategies in Changing Environment

Abstract

One of the most distress environmental issues of the recent decades is the burden of pollution in soil and water. Till date, the quality of water and soil has been degraded as a result of excess inputs of toxic metals and several other inorganic pollutants through many anthropogenic activities like agricultural runoff, sewage, and industrial waste disposals. There are so many problems associated with inorganic contamination in soil which directly or indirectly affects plant health. When the consequences of inorganic contaminants are lethal, plants may die out, while the sublethal effects are more precarious, as the surviving plants and animals can accumulate some of the pollutants in their body parts giving rise to biomagnification. In order to cope with the toxicity caused by inorganic pollutants like metal and metalloids, plant has developed a number of adaptation strategies. Adaptive strategies developed by plants against the inorganic contaminants comprise antioxidant defense system, metal complexation at cell wall plasma membrane, sequestration within vacuoles, induction of stress proteins, chelation and sequestration through specific ligands, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abolghassem E, Ding Y, Mokhberdoran F, Xie Y (2015) Heavy metal stress and some mechanisms of plant defense response. Sci World J. https://doi.org/10.1155/2015/756120

  • Agbogidi OM (2009) Effects of soil contaminated with spent lubricating oil on the germination of Gmelina arborea (Roxb.) seeds. Afr J Nat Sci 12:11–14

    Google Scholar 

  • Agbogidi OM, Enujeke EC (2012) Effects of spent motor oil on soil physico- chemical properties and growth of Arachis hypogaea L. Glob J Biosci Biotechnol 1(1):71–74

    Google Scholar 

  • Ali S, Farooq MA, Yasmeen T, Hussain S, Arif MS, Abbas F, Zhang G (2013a) The influence of silicon on barley growth, photosynthesis and ultrastructure under chromium stress. Ecotoxicol Environ Saf 89:66–72

    Article  CAS  PubMed  Google Scholar 

  • Ali H, Khan E, Sajad MA (2013b) Phytoremediation of heavy metals – concepts and applications. Chemosphere 91(7):869–881

    Article  CAS  PubMed  Google Scholar 

  • Avasn YM, Rao SR (2000) Effect of sugar mill effluent on organic reserves of fish. Pollut Res 19:391–393

    Google Scholar 

  • Barman SC, Sahu RK, Bhargava SK, Chaterjee C (2000) Distribution of heavy metals in wheat, mustard, and weed grown in field irrigated with industrial effluents. Bull Environ Contam Toxicol 64:489–496

    Article  CAS  PubMed  Google Scholar 

  • Beesley L, Inneh OS, Norton GJ, Moreno-Jimenez E, Pardo T (2014) Assessing the influence of compost and biochar amendments on the mobility and toxicity of metals and arsenic in a naturally contaminated mine soil. Environ Pollut 186:195–202

    Article  CAS  PubMed  Google Scholar 

  • Chandra S, Joshi HC, Pathak H, Jain MC, Kalra N (2002) Effect of potassium salts and distillery effluent on carbon mineralization in soil. Bioresour Technol 83:255–257

    Article  CAS  PubMed  Google Scholar 

  • Chang AC, Granato TC, Page AL (1992) A methodology for establishing phytotoxicity criteria for chromium, copper, nickel and zinc in agricultural land application of municipal sewage sludges. J Environ Qual 21:521–536

    Article  CAS  Google Scholar 

  • Chen S, Olbrich A, Langenfeld-Heyser R, Fritz E, Polle A (2009) Quantitative X-ray microanalysis of hydrogen peroxide within plant cells. Microsc Res Tech 72(1):49–60

    Article  PubMed  Google Scholar 

  • Chen CW, Chen CF, Dong CD (2012) Distribution and accumulation of mercury in sediments of Kaohsiung River Mouth, Taiwan. APCBEE Procedia 1:153–158

    Article  CAS  Google Scholar 

  • Cherian MG, Howell SB, Imura N, Klaassen CD, Koropatnick J, Lazo JS, Waalkes MP (1994) Role of metallothionein in carcinogenesis. Toxicol Appl Pharmacol 126:15

    Article  Google Scholar 

  • Choi Y, Harada E, Wada M, Tsuboi H, Morita Y, Kusano SHT (2001) Detoxification of cadmium in tobacco plants: formation and active excretion of crystals containing cadmium and calcium through trichomes. Planta 213:45–50

    Article  CAS  PubMed  Google Scholar 

  • Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88(11):1707–1719

    Article  CAS  PubMed  Google Scholar 

  • Clysters H, Van-Assche F (1985) Inhibition of photosynthesis by metals. Photosynth Res 7:31–40

    Article  Google Scholar 

  • Cobbett CS (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123(3):825–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DalCorso G, Farinati S, Maistri S, Furini A (2008) How plants cope with cadmium: staking all on metabolism and gene expression. J Integr Plant Biol 50(10):1268–1280

    Article  CAS  PubMed  Google Scholar 

  • Dalvi AA, Bhalerao SA (2013) Response of plants towards heavy metal toxicity: an overview of avoidance, tolerance and uptake mechanism. Ann Plant Sci 2(9):362–368

    Google Scholar 

  • Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS scavengers during environmental stress in plants. Front Environ Sci 2(53):1–13

    CAS  Google Scholar 

  • Domenech J, Mir G, Huguet G, Capdevila M, Molinas M, Atrian S (2005) Plant metallothionein domains: functional insight into physiological metal binding and protein folding. Biochimie 88:583–589

    Article  PubMed  Google Scholar 

  • Elstner EF (1982) Oxygen activation and oxygen toxicity. Annu Rev Plant Physiol 33:73–96

    Article  CAS  Google Scholar 

  • Evans LJ (1995) Chemical aspects of heavy metal solubility with reference to sewage sludge amended soils. Int J Environ Anal Chem 59:291–302

    Article  CAS  Google Scholar 

  • Freeman JL, Salt DE (2007) The metal tolerance profile of Thlaspi goesingense is mimicked in Arabdopsis thaliana heterologously expressing serine acetyl-transferase. BMC Plant Biol 7(63):1–10

    Google Scholar 

  • Gekeler W, Grill E, Winnacker EL, Zenk MH (1988) Algae sequester heavy metals via synthesis of phytochelatin complexes. Arch Microbiol 150:197–202

    Article  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Grill E, Winnacker E-L, Zenk MH (1987) Phytochelatins, a class of heavy-metal-binding peptides from plants are functionally analogous to metallothioneins. Proc Natl Acad Sci U S A 84:439–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo J, Dai X, Xu W, Ma M (2008) Overexpressing GSH1 and AsPCS1 simultaneously increase the tolerance and accumulation of cadmium and arsenic in Arabidopsis thaliana. Chemosphere 72:1020–1026

    Article  CAS  PubMed  Google Scholar 

  • Hall JL (2002) Cellular mechanism for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine, 3rd edn. Oxford University Press, Oxford

    Google Scholar 

  • Hossain MA, Fujita M (2009) Purification of glyoxalase I from onion bulbs and molecular cloning of its cDNA. Biosci Biotechnol Biochem 73(9):2007–2013

    Article  CAS  PubMed  Google Scholar 

  • Hossain MA, Hossain MZ, Fujita M (2009) Stress-induced changes of methylglyoxal level and glyoxalase I activity in pumpkin seedlings and cDNA cloning of glyoxalase I gene. Aust J Crop Sci 3(2):53–64

    CAS  Google Scholar 

  • Hossain MA, Piyatida P, Teixeira da Silva JA, Fujita M (2012) Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot. https://doi.org/10.1155/2012/872875

  • Inoni OE, Omotor DG, Adun FN (2006) The effect of oil spillage on crop yield and farm income in Delta state, Nigeria. J Cent Eur Agric 7(1):41–49

    Google Scholar 

  • Kagi JH, Schaffer A (1988) Biochemistry of metallothionein. Biochemistry 27:8509–8515

    Article  CAS  PubMed  Google Scholar 

  • Kidd PS, Dominguez-Rodriguez MJ, Diez J, Monterroso C (2007) Bioavailability and plant accumulation of heavy metals and phosphorus in agricultural soils amended by long-term application of sewage sludge. Chemosphere 66:1458–1467

    Article  CAS  PubMed  Google Scholar 

  • Kisku GC, Barman SC, Singh DC, Bhargawa SC (2000) Contamination of soil and plants with potentially toxic elements irrigated with mixed industrial effluent and its impact on the environment. Water Air Soil Pollut 120:121–137

    Article  CAS  Google Scholar 

  • Krämer U, Clemens S (2005) Molecular biology of metal homeostasis and detoxification. In: Martinoia E (ed) Topics in current genetics M. Tamäs. Springer, New York, pp 216–271

    Google Scholar 

  • Kumar S, Gopal K (2001) Impact of distillery effluent on physiological consequences in the fresh water teleost, Channa punctatus. Bull Environ Contam Toxicol 66:617–622

    CAS  PubMed  Google Scholar 

  • Kumar N, Bauddha K, Kumar S, Dwivedi N, Singh DC, Barman SC (2013) Accumulation of metals in weed species grown on the soil contaminated with industrial waste and their phytoremediation potential. Ecol Eng 61:491–495

    Article  Google Scholar 

  • Kumar D, Singh DP, Barman SC, Kumar N (2016) Heavy metal and their regulation in plant system: an overview. Plant responses to xenobiotics. Springer, New York, pp 19–38

    Book  Google Scholar 

  • Kupper H, Lombi E, Zhao FJ, McGrath SP (2000) Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta 212:75–84

    Article  CAS  PubMed  Google Scholar 

  • Kupper H, Mijovilovich A, Meyer-Klaucke W, Kroneck PHM (2004) Tissue- and age-dependent differences in the complexation of cadmium and zinc in the cadmium/zinc hyperaccumulator Thlaspi caerulescens (Ganges ecotype) revealed by X-ray absorption spectroscopy. Plant Physiol 134:748–757

    Article  PubMed  PubMed Central  Google Scholar 

  • Lewis S, Donkin ME, Depledge MH (2001) Hsp70 expression in Enteromorpha intestinalis (Chlorophyta) exposed to environmental stressors. Aquat Toxicol 51:277–291

    Article  CAS  PubMed  Google Scholar 

  • Li X, Yang Y, Jia L, Chen H, Wei X (2013) Zinc-induced oxidative damage, antioxidant enzyme response and proline metabolism in roots and leaves of wheat plants. Ecotoxicol Environ Saf 89:150–157

    Article  CAS  PubMed  Google Scholar 

  • Logan TJ, Linday BJ, Goins LE, Ryan JA (1997) Field assessment of sludge metal bioavailability to crops: sludge rate response. J Environ Qual 26:534–550

    Article  CAS  Google Scholar 

  • Lyons TJ, Gasch A, Gaither LA, Botstein D, Brown PO, Eide D (2000) Genome-wide characterization of the Zap1p zinc- responsive regulon in yeast. Proc Natl Acad Sci U S A 97:7957–7962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma JF, Ueno D, Zhao FJ, McGrath SP (2005) Subcellular localisation of Cd and Zn in the leaves of a Cd-hyperaccumulating ecotype of Thlaspi caerulescens. Planta 220:731–736

    Article  CAS  PubMed  Google Scholar 

  • MacDiarmid CW, Gaithe LA, Eide D (2000) Zinc transporters that regulate vacuolar zinc storage in Saccharomyces cerevisiae. EMBO J 19:2845–2855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Margoshes M, Vallee BL (1957) A cadmium protein from equine kidney cortex. J Am Chem Soc 79(17):4813–4814

    Article  CAS  Google Scholar 

  • McIntyre T (2003) Phytoremediation of heavy metals from soils. In: Springer T (ed) Advances in biochemical engineering/biotechnology, vol 78. Springer, Heidelberg, pp 97–123

    Google Scholar 

  • Mench M, Schwitzguébel JP, Schröder P, Bert V, Gawronski S, Gupta S (2009) Assessment of successful experiments and limitations of phytotechnologies: contaminant uptake, detoxification and sequestration, and consequences for food safety. Environ Sci Pollut Res 16:876–900

    Article  CAS  Google Scholar 

  • Mench M, Lepp N, Bert V, Schwitzguébel JP, Gawronski SW, Schröder P, Vangronsveld J (2010) Successes and limitations of phytotechnologies at field scale: outcomes, assessment and outlook from COST Action 859. J Soils Sediments 10:1039–1070

    Article  CAS  Google Scholar 

  • Milner MJ, Kochian LV (2008) Investigating heavy-metal hyperaccumulation using Thlaspi caerulescens as a model system. Ann Bot 102:3–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra S, Srivastava S, Tripathi RD, Kumar R, Seth CS, Gupta DK (2006) Lead detoxification by coontail (Ceratophyllum demersum L.) involves induction of phytochelatins and antioxidant system in response to its accumulation. Chemosphere 65:1027–1039

    Article  CAS  PubMed  Google Scholar 

  • Mithöfer A, Schulze B, Boland W (2004) Biotic and heavy metal stress response in plants: evidence for common signals. FEBS Lett 566:1–5

    Article  PubMed  Google Scholar 

  • Moura DJ, Peres VF, Jacques RA, Saffi J (2012) Heavy metal toxicity oxidative stress parameters and DNA repair. In: Gupta DK, Sandalio LM (eds) Metal toxicity in plants: perception, signaling and remediation. Springer, Berlin/Heidelberg, pp 187–205

    Chapter  Google Scholar 

  • Munzuroglu O, Geckil H (2002) Effects of metals on seed germination, root elongation, and coleoptiles and hypocotyls growth in Triticum aestivum and Cucumis sativus. Arch. Environ Contam Toxicol 43:203–213

    Article  CAS  Google Scholar 

  • Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216

    Article  CAS  Google Scholar 

  • Nagata T, Morita H, Akizawa T, Pan-Hou H (2010) Development of a transgenic tobacco plant for phytoremediation of methyl mercury pollution. Appl Microbiol Biotechnol 87(2):781–786

    Article  CAS  PubMed  Google Scholar 

  • Ortiz DW (1995) Transport of metal-binding peptides by HMT1, a fission yeast ABC-type vacuolar membrane protein. J Biol Chem 270:4721–4728

    Article  CAS  PubMed  Google Scholar 

  • Piechalak A, Tomaszewska B, Baralkiewicz D, Malecka A (2002) Accumulation and detoxification of lead ions in legumes. Phytochemistry 60:153–162

    Article  CAS  PubMed  Google Scholar 

  • Pilon M, Cohu CM, Ravet K, Abdel-Ghany SE, Gaymard F (2009) Essential transition metal homeostasis in plants. Curr Opin Plant Biol 12:347–357

    Article  CAS  PubMed  Google Scholar 

  • Plaza S, Tearall KL, Zhao FJ, Buchner P, McGrath SP, Hawkesford MJ (2007) Expression and functional analysis of metal transporter genes in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens. J Exp Bot 58:1717–1728

    Article  CAS  PubMed  Google Scholar 

  • Prasad MNV (1999) Metallothioneins and metal binding complexes in plants; heavy metal stress in plants. Springer, Berlin/Heidelberg, pp 51–72

    Book  Google Scholar 

  • Rajanan G, Oblisami G (1979) Effects of paper factory wastewaters on soil and crop plants. Indian J Environ Health 21:120–130

    Google Scholar 

  • Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180(2):169–181

    Article  CAS  PubMed  Google Scholar 

  • Reeves RD, Baker AJM (2000) Metal-accumulating plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 193–229

    Google Scholar 

  • Rigola D, Fiers M, Vurro E, Aarts MGM (2006) The heavy metal hyperaccumulator Thlaspi caerulescens expresses many species specific genes, as identified by comparative expressed sequence tag analysis. New Phytol 170:753–766

    Article  CAS  PubMed  Google Scholar 

  • Robinson NJ, Winge DR (2010) Copper metallochaperones. Annu Rev Biochem 79:537–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson NJ, Tommey AM, Kuske C, Jackson PJ (1993) Plant metallothioneins. Biochem J 295:1–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roosens NHCJ, Willems G, Saumitou-Laprade P (2008) Using Arabidopsis to explore zinc tolerance and hyperaccumulation. Trends Plant Sci 13:208–215

    Article  CAS  PubMed  Google Scholar 

  • Sahu RK, Katiyar S, Yadav AK, Kumar N, Srivastava J (2008) Toxicity assessment of industrial effluent by bioassays. Clean 5–6:517–520

    Google Scholar 

  • Salt DE, Rauser WE (1995) MgATP-dependent transport of phytochelatins across the tonoplast of oat roots. Plant Physiol 107:1293–1301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schat H, Llugany M, Vooijs R, Hartley-Whitaker J, Bleeker PM (2002) The role of phytochelatins in constitutive and adaptive heavy metal tolerance in hyperaccumulator and non-hyperaccumulator metallophytes. J Exp Bot 53:2381–2392

    Article  CAS  PubMed  Google Scholar 

  • Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    PubMed  Google Scholar 

  • Sharma SS, Dietz KJ (2009) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14(1):43–50

    Article  CAS  PubMed  Google Scholar 

  • Sharma KP, Sharma K, Bhardwaj SM, Chaturvedi RK, Sharma S (1999) Environmental impact assessment of textile printing industries in Sanganer, Jaipur: a case study. J Ind Bot Soc 78:71–85

    Google Scholar 

  • Singh S, Prasad SM (2014) Growth photosynthesis and oxidative responses of Solanum melongena L. seedlings to cadmium stress: mechanism of toxicity amelioration by kinetin. Sci Hortic 176:1–10

    Article  CAS  Google Scholar 

  • Singh R, Singh DP, Kumar N, Bhargava SK, Barman SC (2010a) Accumulation and translocation of heavy metals in soil and plants from fly ash contamination. Environ Biol 3:421–430

    Google Scholar 

  • Singh A, Sharma RK, Agrawal M, Marshall FM (2010b) Health risk assessment of heavy metals via dietary intake of foodstuffs from the wastewater irrigated site of a dry tropical area of India. Food Chem Toxicol 48:611–619

    Article  CAS  PubMed  Google Scholar 

  • Siripornadulsil S, Traina S, Verma DP, Sayre RT (2002) Molecular mechanisms of proline-mediated tolerance to toxic heavy metals in transgenic microalgae. Plant Cell 14:2837–2847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smirnoval TA, Kolomiitseval YG, Prusoval AN, Vanyushin BF (2006) Zinc and copper content in developing and aging coleoptiles of wheat seedling. Russ J Plant Physiol 53:535–540

    Article  Google Scholar 

  • Somashekaraiah BV, Padmaja K, Prasad ARK (1992) Phytotoxicity of cadmium ions on germinating seedlings of mung bean (Phaseolus vulgaris): involvement of lipid peroxides in chlorophyll degradation. Physiol Plant. https://doi.org/10.1111/j.1399-3054.1992.tb05267.x

  • Van de Mortel JE (2006) Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens. Plant Physiol 142:1127–1147

    Article  PubMed  PubMed Central  Google Scholar 

  • Vikram A, Johri T, Tandon PK (2011) Effect of chromium (IV) on growth and metabolism of Spinacia oleracea (Spinach) plants. Res Environ Life Sci 4(3):119–124

    Google Scholar 

  • Vranova E, Inze D, Van Breusegem F (2002) Signal transduction during oxidative stress. J Exp Bot 53(372):1227–1236

    Article  CAS  PubMed  Google Scholar 

  • Willems G, Dräger DB, Courbot M (2007) The genetic basis of zinc tolerance in the metallophyte Arabidopsis halleri ssp. halleri (Brassicaceae) an analysis of quantitative trait loci. Genetics 176:659–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willner H, Vasak M, Kagi JH (1987) Cadmium thiolate clusters in metallothionein: spectrophotometric and spectropolarimetric features. Biochemistry 26:6287–6292

    Article  CAS  PubMed  Google Scholar 

  • Wojas S, Clemens S, SkÅ‚odowska A, Maria Antosiewicz D (2010) Arsenic response of AtPCS1- and CePCS-expressing plants – effects of external As(V) concentration on As-accumulation pattern and NPT metabolism. J Plant Physiol 167:169–175

    Article  CAS  PubMed  Google Scholar 

  • Wojcik M, Vangronsveld J, Tukiendorf DHJA (2005) Cadmium tolerance in Thlaspi caerulescens- II. Localization of cadmium in Thlaspi caerulescens. Environ Exp Bot 53:163–171

    CAS  Google Scholar 

  • Wright CF, Mckenney K, Hamer DH, Byrd J, Winge DR (1987) Structural and functional studies of the amino terminus of yeast metallothionein. J Biol Chem 262:219–258

    Google Scholar 

  • Yamamoto F, Kozlowski TT (1987) Effect of flooding, tilting of stem, and ethrel application on growth, stem anatomy, and ethylene production of Acer platanoides seedlings. Scand J For Res 2:141–156

    Article  Google Scholar 

  • Zenk MH (1996) Heavy metal detoxification in higher plants: a review. Gene 179:21–30

    Article  CAS  PubMed  Google Scholar 

  • Zhou G, Xu Y, Li J, Yang L, Liu JL (2006) Molecular analyses of the metallothionein gene family in rice (Oryza sativa L.) J Biochem Mol Biol 39(5):595–606

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narendra Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, D., Kumar, S., Shukla, V., Kumar, N. (2017). Adaptation Strategies of Plants Against Common Inorganic Pollutants and Metals. In: Shukla, V., Kumar, S., Kumar, N. (eds) Plant Adaptation Strategies in Changing Environment. Springer, Singapore. https://doi.org/10.1007/978-981-10-6744-0_13

Download citation

Publish with us

Policies and ethics