Role and Regulation of Transcriptional Factors in Gastric Cancer

  • Nageswara Rao Reddy NeelapuEmail author


Gastric cancer is the second major cancer diagnosed worldwide. Cytokines, chemokines, metalloproteinases, prostaglandins, and reactive oxygen nitrogen species induce, amplify, and sustain inflammation (in the lining of the stomach) in the host. Signalling pathways like β-catenin, NF-κB, etc. bring about changes in the genetic material leading to diversification of genetic material. Genetic diversification in oncogenes and tumour suppressor genes leads to gastric cancer. Transcriptional factors’ role in apoptosis, cell cycle, cell proliferation, and metastasis (adhesion, invasion, migration, angiogenesis) is well known and established. The role and regulation of transcriptional factors in relation to gastric cancer was reviewed.


Apoptosis Cell cycle Cell proliferation Gastric cancer Metastasis Transcription factors 



Nageswara Rao Reddy Neelapu thanks Gandhi Institute of Technology and Management (GITAM), Visakhapatnam, India. The author is thankful to Dr. Challa Surekha for the suggestions on manuscript. The author is also thankful to former Head of the Department Prof. I Bhaskar Reddy and present Head of the Department Prof. Malla Rama Rao for the support.

Conflict of Interests

Author declares no conflict of interest.


  1. 1.
    Abdelrahim M, Samudio I, Smith R III, Burghardt R, Safe S (2002) Small inhibitory RNA duplexes for Sp1 mRNA block basal and estrogen-induced gene expression and cell cycle progression in MCF-7 breast cancer cells. J Biol Chem 277:28815–28822PubMedCrossRefGoogle Scholar
  2. 2.
    Beg AA, Baltimore D (1996) An essential role for NF-κB in preventing TNF alpha induced cell death. Science 274:782–784PubMedCrossRefGoogle Scholar
  3. 3.
    Bond M, Fabunmi RP, Baker AH, Newby AC (1998) Synergistic upregulation of metalloproteinase 9 by growth factors and inflammatory cytokines: an absolute requirement for transcription factor NF-κB. FEBS Lett 435:29–34PubMedCrossRefGoogle Scholar
  4. 4.
    Burrows CF (2010) The gastric mucosal barrier: why the stomach does not digest itself. In: Joseph Bojrab M, Eric Monnet M (eds) Mechanisms of disease in small animal surgery, 3rd edn. Teton New Media, JacksonGoogle Scholar
  5. 5.
    Cao Y, Bonizzi G, Seagroves TN, Greten FR, Johnson R, Schmidt EV, Karin M (2001) IKK provides an essential link between RANK signaling and cyclin D1 expression during mammary gland development. Cell 107:763–775PubMedCrossRefGoogle Scholar
  6. 6.
    Cavallini B, Huet J, Plassat JL, Sentenac A, Egly JM, Chambon P (1988) A yeast activity can substitute for the HeLa cell TATA box factor. Nature 334:77–80PubMedCrossRefGoogle Scholar
  7. 7.
    Chalaux E, Lopez-Rovira T, Rosa JL, Pons G, Boxer LM, Bartrons R, Ventura FA (1999) Zinc-finger transcription factor induced by TGF-ß promotes apoptotic cell death in epithelial Mv1Lu cells. FEBS Lett 457:478–482PubMedCrossRefGoogle Scholar
  8. 8.
    Chen F, Zhang F, Rao J, Studzinski GP (2000) Ectopic expression of truncated Sp1 transcription factor prolongs the S phase and reduces the growth rate. Anticancer Res 20:661–667PubMedGoogle Scholar
  9. 9.
    Chen CH, Chien CY, Huang CC, Hwang CF, Chuang HC, Fang FM, Huang HY, Chen CM, Liu HL, Huang CY (2009) Expression of FLJ10540 is correlated with aggressiveness of oral cavity squamous cell carcinoma by stimulating cell migration and invasion through increased FOXM1 and MMP-2 activity. Oncogene 28:2723–2737PubMedCrossRefGoogle Scholar
  10. 10.
    Cieslik K, Abrams CS, Wu KK (2001) Up-regulation of endothelial nitric-oxide synthase promoter by the phosphatidylinositol 3-kinase gamma/Janus kinase 2/MEK-1-dependent pathway. J Biol Chem 276:1211–1219PubMedCrossRefGoogle Scholar
  11. 11.
    Clark SJ, Harrison J, Molloy PL (1997) Sp1 binding is inhibited by (m)Cp(m)CpG methylation. Gene 195:67–71PubMedCrossRefGoogle Scholar
  12. 12.
    Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A (2009) Cancer related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis 30:1073–1081PubMedCrossRefGoogle Scholar
  13. 13.
    Costa RH (2005) FoxM1 dances with mitosis. Nat Cell Biol 7:108–110PubMedCrossRefGoogle Scholar
  14. 14.
    Daino H, Matsumura I, Takada K, Odajima J, Tanaka H, Ueda S, Shibayama H, Ikeda H, Hibi M, Machii T, Hirano T, Kanakura Y (2000) Induction of apoptosis by extracellular ubiquitin in human hematopoietic cells: possible involvement of STAT3 degradation by proteasome pathway in interleukin 6-dependent hematopoietic cells. Blood 95:2577–2585PubMedGoogle Scholar
  15. 15.
    Dennig J, Beato M, Suske G (1996) An inhibitor domain in Sp3 regulates its glutamine-rich activation domains. EMBO J 15:5659–5667PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Di Mario JX (2002) Activation and repression of growth factor receptor gene transcription (review). Int J Mol Med 10:65–71Google Scholar
  17. 17.
    Du JJ, Dou KF, Peng SY, Wang WZ, Wang ZH, Xiao HS, Guan WX, Liu YB, Gao ZQ (2003) Down-regulated full-length novel gene GDDR and its effect on gastric cancer. Zhonghua Yi Xue Za Zhi 10:1166–1168Google Scholar
  18. 18.
    Dunican DS, McWilliam P, Tighe O, Parle-McDermott A, Croke DT (2002) Gene expression differences between the microsatellite instability (MIN) and chromosomal instability (CIN) phenotypes in colorectal cancer revealed by high-density cDNA array hybridization. Oncogene 21:3253–3257PubMedCrossRefGoogle Scholar
  19. 19.
    Epling-Burnette PK, Liu JH, Catlett-Falcone R, Turkson J, Oshiro M, Kothapalli R, Li Y, Wang JM, Yang-Yen HF, Karras J, Jove R, Loughran TP Jr (2001) Inhibition of STAT3 signaling leads to apoptosis of leukemic large granular lymphocytes and decreased Mcl-1 expression. J Clin Investig 107:351–362PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Finkenzeller G, Sparacio A, Technau A, Marme D, Siemeister G (1997) Sp1 recognition sites in the proximal promoter of the human vascular endothelial growth factor gene are essential for platelet derived growth factor-induced gene expression. Oncogene 15:669–676PubMedCrossRefGoogle Scholar
  21. 21.
    Fukada T, Hibi M, Yamanaka Y, Takahashi-Tezuka M, Fujitani Y, Yamaguchi T, Nakajima K, Hirano T (1996) Two signals are necessary for cell proliferation induced by a cytokine receptor gp130: involvement of STAT3 in anti-apoptosis. Immunity 5:449–460PubMedCrossRefGoogle Scholar
  22. 22.
    Gerwins P, Skoldenberg E, Claesson-Welsh L (2000) Function of fibroblast growth factors and vascular endothelial growth factors and their receptors in angiogenesis. Crit Rev Oncol Hematol 34:185–194PubMedCrossRefGoogle Scholar
  23. 23.
    Ghosh S, May MJ, Kopp EB (1998) NF-κB and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol 16:225–260PubMedCrossRefGoogle Scholar
  24. 24.
    Gilmore TD (1999) Multiple mutations contribute to the oncogenicity of the retroviral oncoprotein vRel. Oncogene 18:6925–6937PubMedCrossRefGoogle Scholar
  25. 25.
    Goers Sweeney E, Henderson JN, Goers J, Wreden C, Hicks KG, Foster JK, Parthasarathy R, Remington SJ, Guillemin K (2012) Structure and proposed mechanism for the pH-sensing Helicobacter pylori chemoreceptor TlpB. Structure 20:1177–1188PubMedCrossRefGoogle Scholar
  26. 26.
    Green DR (2011) Means to an end: apoptosis and other cell death mechanisms. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  27. 27.
    Grillot DA, Gonzalez-Garcia M, Ekhterae D, Duan L, Inohara N, Ohta S, Seldin MF, Nunez G (1997) Genomic organization, promoter region analysis, and chromosome localization of the mouse bcl-x gene. J Immunol 158:4750–4757PubMedGoogle Scholar
  28. 28.
    Grinstein E, Jundt F, Weinert I, Wernet P, Royer H-D (2002) Sp1 as G1 cell cycle phase specific transcription factor in epithelial cells. Oncogene 21:1485–1492PubMedCrossRefGoogle Scholar
  29. 29.
    Guttridge DC, Albanese C, Reuther JY, Pestell RG, Baldwin AS Jr (1999) NF-κB controls cell growth and differentiation through transcriptional regulation of cyclin D1. Mol Cell Biol 19:5785–5799PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Hagen G, Dennig J, Prei A, Beato M, Suske G (1995) Functional analyses of the transcription factor Sp4 reveal properties distinct from Sp1 and Sp3. J Biol Chem 270:24989–24994PubMedCrossRefGoogle Scholar
  31. 31.
    Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Hata Y, Duh E, Zhang K, Robinson GS, Aiello LP (1998) Transcription factors Sp1 and Sp3 alter vascular endothelial growth factor receptor expression through a novel recognition sequence. J Biol Chem 273:19294–19303PubMedCrossRefGoogle Scholar
  33. 33.
    Hayden MS, Ghosh S (2008) Shared principles in NF-kappaB signaling. Cell 132:344–362PubMedCrossRefGoogle Scholar
  34. 34.
    Hinz M, Krappmann D, Eichten A, Heder A, Scheidereit C, Strauss M (1999) NF-κB function in growth control: regulation of cyclin D1 expression and G0/G1toSphase transition. Mol Cell Biol 19:2690–2698PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Hsu PI, Hsieh HL, Lee J, Lin LF, Chen HC, Lu PJ, Hsiao M (2009) Loss of RUNX3 expression correlates with differentiation, nodal metastasis, and poor prognosis in gastric cancer. Ann Surg Oncol 16:1686–1694PubMedCrossRefGoogle Scholar
  36. 36.
    Huang L, Wu R-L, Xu A-M (2015) Epithelial-mesenchymal transition in gastric cancer. Am J Transl Res 7(11):2141–2158PubMedPubMedCentralGoogle Scholar
  37. 37.
    Huang S, Robinson JB, Deguzman A, Bucana CD, Fidler IJ (2000) Blockade of NF-κB signaling inhibits angiogenesis and tumorigenicity of human ovarian cancer cells by suppressing expression of vascular endothelial growth factor and interleukin8. Cancer Res 60:5334–5339Google Scholar
  38. 38.
    Ibanez-Tallon I, Ferrai C, Longobardi E, Facetti I, Blasi F, Crippa MP (2002) Binding of Sp1 to the proximal promoter links constitutive expression of the human uPA gene and invasive potential of PC3 cells. Blood 100:3325–3332PubMedCrossRefGoogle Scholar
  39. 39.
    Ilver D, Arnqvist A, Ogren J, Frick IM, Kersulyte D, Incecik ET, Berg DE, Covacci A, Engstrand L, Borén T (1998) Helicobacter pylori adhesin binding fucosylated histo-blood group antigens revealed by retagging. Science 279:373–377PubMedCrossRefGoogle Scholar
  40. 40.
    Ishibashi H, Nakagawa K, Onimaru M, Castellanous EJ, Kaneda Y, Nakashima Y, Shirasuna K, Sueishi K (2000) Sp1 decoy transfected to carcinoma cells suppresses the expression of vascular endothelial growth factor, transforming growth factor beta 1, and tissue factor and also cell growth and invasion activities. Cancer Res 60:6531–6536PubMedPubMedCentralGoogle Scholar
  41. 41.
    Ishikawa H, Carrasco D, Claudio E, Ryseck RP, Bravo R (1997) Gastric hyperplasia and increased proliferative responses of lymphocytes in mice lacking the COOH terminal ankyrin domain of NFB2. J Exp Med 186:999–1014PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Ito Y (2004) Oncogenic potential of the RUNX gene family: ‘overview’. Oncogene 23:4198–4208PubMedCrossRefGoogle Scholar
  43. 43.
    Jensen DE, Black AR, Swick AG, Azizkhan JC (1997) Distinct roles for Sp1 and E2F sites in the growth/cell cycle regulation of the DHFR promoter. J Cell Biochem 67:24–31PubMedCrossRefGoogle Scholar
  44. 44.
    Kalluri R (2003) Basement membranes: structure, assembly and role in tumour angiogenesis. Nat Rev Cancer 3:422–433PubMedCrossRefGoogle Scholar
  45. 45.
    Kanai M, Konda Y, Nakajima T, Izumi Y, Kanda N, Nanakin A, Kubohara Y, Chiba T (2003) Differentiation-inducing factor-1 (DIF-1) inhibits STAT3 activity involved in gastric cancer cell proliferation via MEK-ERK-dependent pathway. Oncogene 22:548–554PubMedCrossRefGoogle Scholar
  46. 46.
    Kanno M, Chalut C, Egly JM (1992) Genomic structure of the putative BTF3 transcription factor. Gene 117:219–228PubMedCrossRefGoogle Scholar
  47. 47.
    Karin M, BenNeriah Y (2000) Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu Rev Immunol 18:621–663PubMedCrossRefGoogle Scholar
  48. 48.
    Karin M, Cao Y, Greten FR, Li ZW (2002) NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer 2(4):301–310PubMedCrossRefGoogle Scholar
  49. 49.
    Karin M, Lin A (2002) NF-κB at the crossroad of life and death. Nat Immun 3:221–227PubMedCrossRefGoogle Scholar
  50. 50.
    Katayama Y, Takahashi M, Kuwayama H (2009) Helicobacter pylori causes Runx3 gene methylation and loss of expression in gastric epithelial cells, which is mediated by nitric oxide produced by macrophages. Biochem Biophys Res Commun 388:496–500PubMedCrossRefGoogle Scholar
  51. 51.
    Keates S, Hitti YS, Upton M, Kelly CP (1997) Helicobacter pylori infection activates NF-κB in gastric epithelial cells. Gastroenterology 113:1099–1109PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Kim SJ, Denhez F, Kim KY, Holt JT, Sporn MB, Roberts AB (1989) Activation of the second promoter of the transforming growth factor beta -1 gene by transforming growth factor beta-1 and phorbol ester occurs through the same target sequences. J Biol Chem 264:19373–19378PubMedPubMedCentralGoogle Scholar
  53. 53.
    Kim TY, Lee HJ, Hwang KS, Lee M, Kim JW, Bang YJ, Kang GH (2004) Methylation of RUNX3 in various types of human cancers and premalignant stages of gastric carcinoma. Lab Investig 84:479–484PubMedCrossRefGoogle Scholar
  54. 54.
    Koch AE, Polverini PJ, Kunkel SL, Harlow LA, DiPietro LA, Elner VM, Elner SG, Strieter RM (1992) Interleukin8 as a macrophage derived mediator of angiogenesis. Science 258:1798–1801PubMedCrossRefGoogle Scholar
  55. 55.
    Kojima K, Kishimoto T, Nagai Y, Tanizawa T, Nakatani Y, Miyazaki M, Ishikura H (2006) The expression of hepatocyte nuclear factor-4alpha, a developmental regulator of visceral endoderm, correlates with the intestinal phenotype of gastric adenocarcinomas. Pathology 38:548–554PubMedCrossRefGoogle Scholar
  56. 56.
    Kumar AP, Butler AP (1998) Serum responsive gene expression mediated by Sp1. Biochem Biophys Res Commun 252:517–523PubMedCrossRefGoogle Scholar
  57. 57.
    Kuo CT, Veselits ML, Leiden JM (1997) LKLF: a transcriptional regulator of single-positive T cell quiescence and survival. Science 277:1986–1990PubMedCrossRefGoogle Scholar
  58. 58.
    Kutoh E, Margot JB, Schwander J (1999) Identification and characterization of the putative retinoblastoma control element of the rat insulin-like growth factor binding protein-2 gene. Cancer Lett 136:187–194PubMedCrossRefGoogle Scholar
  59. 59.
    Kwon H-S, Kim M-S, Edenberg HJ, Hur M-W (1999) Sp3 and Sp4 can repress transcription by competing with sp1 for the core cis-elements on the human ADH5/FDH minimal promoter. J Biol Chem 274:20–28PubMedCrossRefGoogle Scholar
  60. 60.
    Lee RJ, Albanese C, Fu M, D’Amico M, Lin B, Watanabe G, Haines GK 3rd, Siegel PM, Hung MC, Yarden Y, Horowitz JM, Muller WJ, Pestell RG (2000) Cyclin D1 is required for transformation by activated Neu and is induced through an E2F-dependent signaling pathway. Mol Cell Biol 20(2):672–683PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Li F, Altieri DC (1999) The cancer antiapoptosis mouse survivin gene: characterization of locus and transcriptional requirements of basal and cell cycle-dependent expression. Cancer Res 59:3143–3151PubMedPubMedCentralGoogle Scholar
  62. 62.
    Li ZW, Chu W, Hu Y, Delhase M, Deerinck T, Ellisman M, Johnson R, Karin M (1999) The IKK subunit of I B kinase (IKK) is essential for NF-κB activation and prevention of apoptosis. J Exp Med 189:1839–1845PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Li QL, Ito K, Sakakura C, Fukamachi H, Inoue K, Chi XZ, Lee KY, Nomura S, Lee CW, Han SB, Kim HM, Kim WJ, Yamamoto H, Yamashita N, Yano T, Ikeda T, Itohara S, Inazawa J, Abe T, Hagiwara A, Yamagishi H, Ooe A, Kaneda A, Sugimura T, Ushijima T, Bae SC, Ito Y (2002) Causal relationship between the loss of RUNX3 expression and gastric cancer. Cell 109:113–124PubMedCrossRefGoogle Scholar
  64. 64.
    Li Q, Yu YY, Zhu ZG, Ji YB, Zhang Y, Liu BY, Chen XH, Lin YZ (2005) Effect of NF-kappaB constitutive activation on proliferation and apoptosis of gastric cancer cell lines. Eur Surg Res 37(2):105–110PubMedCrossRefGoogle Scholar
  65. 65.
    Li Q, Zhang N, Jia Z, Le X, Dai B, Wei D, Huang S, Tan D, Xie K (2009) Critical role and regulation of transcription factor FoxM1 in human gastric cancer angiogenesis and progression. Cancer Res 69:3501–3509PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Li X, Qiu W, Liu B, Yao R, Liu S, Yao Y, Liang J (2013) Forkhead box transcription factor 1 expression in gastric cancer: FOXM1 is a poor prognostic factor and mediates resistance to docetaxel. J Transl Med.
  67. 67.
    Liu ZG, Hu H, Goeddel DV, Karin M (1996) Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis, while NF-κB activation prevents cell death. Cell 87:565–576PubMedCrossRefGoogle Scholar
  68. 68.
    Liu M, Dai B, Kang SH, Ban K, Huang FJ, Lang FF, Aldape KD, Xie TX, Pelloski CE, Xie K, Sawaya R, Huang S (2006) FoxM1B is overexpressed in human glioblastomas and critically regulates the tumorigenicity of glioma cells. Cancer Res 66:3593–3602PubMedCrossRefGoogle Scholar
  69. 69.
    Liu Q, Zhou J-P, Li B, Huang Z-C, Dong H-Y, Li G-Y, Zhou K, Nie S-L (2013) Basic transcription factor 3 is involved in gastric cancer development and progression. World J Gastroenterol 19(28):4495–4503PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Luster TA, Johnson LR, Nowling TK, Lamb KA, Philipsen S, Rizzino A (2000) Effects of three Sp1 motifs on the transcription of the FGF-4 gene. Mol Reprod Dev 57:4–15PubMedCrossRefGoogle Scholar
  71. 71.
    Mahdavi J, Sondén B, Hurtig M, Olfat FO, Forsberg L, Roche N, Angstrom J, Larsson T, Teneberg S, Karlsson KA, Altraja S, Wadström T, Kersulyte D, Berg DE, Dubois A, Petersson C, Magnusson KE, Norberg T, Lindh F, Lundskog BB, Arnqvist A, Hammarström L, Borén T (2002) Helicobacter pylori SabA adhesin in persistent infection and chronic inflammation. Science 297:573–578PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Majello B, De Luca P, Lania L (1997) Sp3 is a bifunctional transcription regulator with modular independent activation and repression domains. J Biol Chem 272:4021–4026PubMedCrossRefGoogle Scholar
  73. 73.
    Martin TE, Powell CT, Wang Z, Bhattacharyya S, Walsh-reitz MM, Agarwal K, Toback FG (2003) A novel mitogenic protein that is highly expressed in cells of the gastric antrum mucosa. Am J Physiol Gastrointest Liver Physiol 285(2):G332–G343PubMedCrossRefGoogle Scholar
  74. 74.
    Michod RE, Bernstein H, Nedelcu AM (2008) Adaptive value of sex in microbial pathogens. Infect Genet Evol 8:267–285PubMedCrossRefGoogle Scholar
  75. 75.
    Milanini J, Vinals F, Pouyssegur J., d Pages G (1998) p42/p44 MAP kinase module plays a key role in the transcriptional regulation of the vascular endothelial growth factor gene in fibroblasts. J Biol Chem 273:18165–18172PubMedCrossRefGoogle Scholar
  76. 76.
    Moodley Y, Linz B, Yamaoka Y, Windsor HM, Breurec S, Wu JY, Maady A, Bernhöft S, Thiberge JM, Phuanukoonnon S, Jobb G, Siba P, Graham DY, Marshall BJ, Achtman M (2009) The peopling of the Pacific from a bacterial perspective. Science 323(5913):527–530PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Moss SF, Lee JW, Sabo E, Rubin AK, Rommel J, Westley BR, May FE, Gao J, Meitner PA, Tavares R, Resnick MB (2008) Decreased expression of gastrokine 1 and the trefoil factor interacting protein TFIZ1/GKN2 in gastric cancer: influence of tumor histology and relationship to prognosis. Clin Cancer Res 14(13):4161–4167PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Mukhopadhyay D, Knebelmann B, Cohen HT, Ananth S, Sukhatme VP (1997) The von Hippel-Lindau tumor suppressor gene product interacts with Sp1 to repress vascular endothelial growth factor promoter activity. Mol Cell Biol 17:5629–5639PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Nardone G, Rippa E, Martin G, Rocco A, Siciliano RA, Fiengo A, Cacace G, Malorni A, Budillon G, Arcari P (2007) Gastrokine 1 expression in patients with and without Helicobacter pylori infection. Dig Liver Dis 39:122–129PubMedCrossRefGoogle Scholar
  80. 80.
    Nardone G, Martin G, Rocco A, Rippa E, La Monica G, Caruso F, Arcari P (2008) Molecular expression of gastrokine 1 in normal mucosa and in Helicobacter pylori related preneoplastic and neoplastic gastric lesions. Cancer Biol Ther 7:1890–1895PubMedCrossRefGoogle Scholar
  81. 81.
    Neelapu NRR, Nammi D, Pasupuleti ACM, Surekha C (2014) Helicobacter pylori induced gastric inflammation, ulcer, and cancer: a pathogenesis perspective. Interdiscip J Microinflammation.
  82. 82.
    Noe V, Chen C, Alemany C, Nicolas M, Caragol I, Chasin LA, Ciudad CJ (1997) Cell-growth regulation of the hamster dihydrofolate reductase gene promoter by transcription factor Sp1. Eur J Biochem 249:13–20PubMedCrossRefGoogle Scholar
  83. 83.
    Odreman F, Vindigni M, Gonzales ML, Niccolini B, Candiano G, Zanotti B, Skrap M, Pizzolitto S, Stanta G, Vindigni A (2005) Proteomic studies on low- and high-grade human brain astrocytomas. J Proteome Res 4:698–708PubMedCrossRefGoogle Scholar
  84. 84.
    Oien KA, Mcgregor F, Butler S, Ferrier RK, Downie I, Bryce S, Burns S, Keith WN (2004) Gastrokine 1 is abundantly and specifically expressed in superficial gastric epithelium, down-regulated in gastric carcinoma, and shows high evolutionary conservation. J Pathol 203:789–797PubMedCrossRefGoogle Scholar
  85. 85.
    Okada K, Fujiwara Y, Takahashi T, Nakamura Y, Takiguchi S, Nakajima K, Miyata H, Yamasaki M, Kurokawa Y, Mori M, Doki Y (2013) Overexpression of forkhead box M1 transcription factor (FOXM1) is a potential prognostic marker and enhances chemoresistance for docetaxel in gastric cancer. Ann Surg Oncol 20:1035–1043PubMedCrossRefGoogle Scholar
  86. 86.
    Olczak AA, Olson JW, Maier RJ (2002) Oxidative-stress resistance mutants of Helicobacter pylori. J Bacteriol 184:3186–3193PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Orr GA, Verdier-Pinard P, McDaid H, Horwitz SB (2003) Mechanisms of taxol resistance related to microtubules. Oncogene 22:7280–7295PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Otto F, Lübbert M, Stock M (2003) Upstream and downstream targets of RUNX proteins. J Cell Biochem 89:9–18PubMedCrossRefGoogle Scholar
  89. 89.
    Parakati R, DiMario JX (2002) Sp1- and Sp3-mediated transcriptional regulation of the fibroblast growth factor receptor 1 gene in chicken skeletal muscle cells. J Biol Chem 277:9278–9285PubMedCrossRefGoogle Scholar
  90. 90.
    Parvin JD, Shykind BM, Meyers RE, Kim J, Sharp PA (1994) Multiple sets of basal factors initiate transcription by RNA polymerase II. J Biol Chem 269:18414–18421PubMedGoogle Scholar
  91. 91.
    Pasquale EB (2010) Eph receptors and ephrins in cancer: bidirectional signalling and beyond. Nat Rev Cancer 10:165–180PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Patel SG, DiMario JX (2001) Two distal Sp1-binding cis-elements regulate fibroblast growth factor receptor 1 (FGFR1) gene expression in myoblasts. Gene 270:171–180PubMedCrossRefGoogle Scholar
  93. 93.
    Petersen AM, Krogfelt KA (2003) Helicobacter pylori: an invading microorganism? A review. FEMS Immunol Med Microbiol 36:117–126PubMedCrossRefGoogle Scholar
  94. 94.
    Pevny LH, Lovell-Badge R (1997) Sox genes find their feet. Curr Opin Genet Dev 7:338–344PubMedCrossRefGoogle Scholar
  95. 95.
    Piedrafita FJ, Pfahl M (1997) Retinoid-induced apoptosis and Sp1 cleavage occur independently of transcription and require caspase activation. Mol Cell Biol 17:6348–6358PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Potashkin J, Wentz-Hunter K, Callaci J (1996) BTF3 is evolutionarily conserved in fission yeast. Biochim Biophys Acta 1308:182–184PubMedCrossRefGoogle Scholar
  97. 97.
    Price SJ, Greaves DR, Watkins H (2001) Identification of novel, functional genetic variants in the human matrix metalloproteinase-2 gene: role of Sp1 in allele-specific transcriptional regulation. J Biol Chem 276:7549–7558PubMedCrossRefGoogle Scholar
  98. 98.
    Qin H, Sun Y, Benveniste EN (1999) The transcription factors Sp1, Sp3, and AP-2 are required for constitutive matrix metalloproteinase-2 gene expression in astroglioma cells. J Biol Chem 274:29130–29137PubMedCrossRefGoogle Scholar
  99. 99.
    Qu Y, Dang S, Hou P (2013) Gene methylation in gastric cancer. Clin Chim Acta 424:53–65PubMedCrossRefGoogle Scholar
  100. 100.
    Que J, Okubo T, Goldenring JR, Nam KT, Kurotani R, Morrisey EE, Taranova O, Pevny LH, Hogan BL (2007) Multiple dose-dependent roles for Sox2 in the patterning and differentiation of anterior foregut endoderm. Development 134:2521–2531PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Rebollo A, Dumoutier L, Renauld JC, Zaballos A, Ayllon V, Martinez AC (2000) Bcl-3 expression promotes cell survival following interleukin-4 deprivation and is controlled by AP1 and AP1-like transcription factors. Mol Cell Biol 20:3407–3416PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Rieber M, Strasberg S, Rieber M (1999) Unequal nuclear Sp1/GC box DNA binding activity distinguishes proliferating from differentiated senescent or apoptotic cells. Int J Cancer 83:359–364PubMedCrossRefGoogle Scholar
  103. 103.
    Rippa E, Martin G, Rocco A, La Monica G, Fiengo A, Siciliano RA, Cacace G, Malori A, Nardone G, Arcari P (2007) Changes of protein expression in Helicobacter pylori-infected human gastric mucosa. Curr Top Peptide Protein Res 8:35–43Google Scholar
  104. 104.
    Rippa E, La Monica G, Allocca R, Romano MF, De Palma M, Arcari P (2011) Overexpression of gastrokine 1 in gastric cancer cells induces fas-mediated apoptosis. J Cell Physiol 226:2571–2578PubMedCrossRefGoogle Scholar
  105. 105.
    Roy L, Laboissière S, Abdou E, Thibault G, Hamel N, Taheri M, Boismenu D, Lanoix J, Kearney RE, Paiement J (2010) Proteomic analysis of the transitional endoplasmic reticulum in hepatocellular carcinoma: an organelle perspective on cancer. Biochim Biophys Acta 1804:1869–1881PubMedCrossRefGoogle Scholar
  106. 106.
    Sakakura C, Hasegawa K, Miyagawa K, Nakashima S, Yoshikawa T, Kin S, Nakase Y, Yazumi S, Yamagishi H, Okanoue T, Chiba T, Hagiwara A (2005) Possible involvement of RUNX3 silencing in the peritoneal metastases of gastric cancers. Clin Cancer Res 11(18):6479–6488PubMedCrossRefGoogle Scholar
  107. 107.
    Saudemont A, Jouy N, Hetuin D, Quesnel B (2005) NK cells that are activated by CXCL10 can kill dormant tumor cells that resist CTL-mediated lysis and can express B7-H1 that stimulates T cells. Blood 105:2428–2435PubMedCrossRefGoogle Scholar
  108. 108.
    Schilling LJ, Farnham PJ (1995) The bidirectionally transcribed dihydrofolate reductase and rep-3a promoters are growth regulated by distinct mechanisms. Cell Growth Differ 6:541–548PubMedGoogle Scholar
  109. 109.
    Schubert ML, Peura DA (2008) Control of gastric acid secretion in health and disease. Gastroenterology 134:1842–1860PubMedCrossRefGoogle Scholar
  110. 110.
    Senftleben U, Cao Y, Xiao G, Greten FR, Krähn G, Bonizzi G, Chen Y, Hu Y, Fong A, Sun SC, Karin M (2001) Activation by IKK alpha of a second, evolutionary conserved, NFB signaling pathway. Science 293:1495–1499PubMedCrossRefGoogle Scholar
  111. 111.
    Shi Q, Le X, Peng Z, Tang H, Xiong Q, Wang B, Li X-C, Abbruzzese JL, Xie K (2001) Constitutive Sp1 activity is essential for differential constitutive expression of vascular endothelial growth factor in human pancreatic adenocarcinoma. Cancer Res 61:4143–4154PubMedGoogle Scholar
  112. 112.
    Shiozaki K, Nakamori S, Tsujie M, Okami J, Yamamoto H, Nagano H, Dono K, Umeshita K, Sakon M, Furukawa H, Hiratsuka M, Kasugai T, Ishiguro S, Monden M (2001) Human stomach specific gene, CA11, is down-regulated in gastric cancer. Int J Oncol 19:701–707PubMedGoogle Scholar
  113. 113.
    Shirogane T, Fukada T, Muller JM, Shima DT, Hibi M, Hirano T (1999) Synergistic roles for Pim-1 and c-Myc in STAT3-mediated cell cycle progression and antiapoptosis. Immunity 11:709–719PubMedCrossRefGoogle Scholar
  114. 114.
    Silberg DG, Swain GP, Suh ER, Traber PG (2000) Cdx1 and cdx2 expression during intestinal development. Gastroenterology 119:961–971PubMedCrossRefGoogle Scholar
  115. 115.
    Solan NJ, Miyoshi H, Bren GD, Paya CV (2002) RelB cellular regulation and transcriptional activity are regulated by p100. J Biol Chem 277:1405–1418PubMedCrossRefGoogle Scholar
  116. 116.
    Sorensen P, Wintersberger E (1999) Sp1 and NF-Y are necessary and sufficient for growth-dependent regulation of the hamster thymidine kinase promoter. J Biol Chem 274:30943–30949PubMedCrossRefGoogle Scholar
  117. 117.
    Spencer JA, Misra RP (1999) Expression of the SRF gene occurs through a Ras/Sp/SRF-mediated- mechanism in response to serum growth signals. Oncogene 18:7319–7327PubMedCrossRefGoogle Scholar
  118. 118.
    Sulahian R, Casey F, Shen J, Qian ZR, Shin H, Ogino S, Weir BA, Vazquez F, Liu XS, Hahn WC, Bass AJ, Chan V, Shivdasani RA (2013) An integrative analysis reveals functional targets of GATA6 transcriptional regulation in gastric cancer. Oncogene 33(49):5637–5648PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Surawska H, Ma PC, Salgia R (2004) The role of ephrins and Eph receptors in cancer. Cytokine Growth Factor Rev 15:419–433PubMedCrossRefGoogle Scholar
  120. 120.
    Suske G (1999) The Sp-family of transcription factors. Gene 238:291–300PubMedCrossRefGoogle Scholar
  121. 121.
    Takeshita H, Yoshizaki T, Miller WE, Sato H, Furukawa M, Pagano JS, Raab-Traub N (1999) Matrix metalloproteinase 9 expression is induced by Epstein– Barr virus latent membrane protein 1 C-terminal activation regions 1 and 2. J Virol 73:5548–5555PubMedPubMedCentralGoogle Scholar
  122. 122.
    Tanaka T, Jiang S, Hotta H, Takano K, Iwanari H, Sumi K, Daigo K, Ohashi R, Sugai M, Ikegame C, Umezu H, Hirayama Y, Midorikawa Y, Hippo Y, Watanabe A, Uchiyama Y, Hasegawa G, Reid P, Aburatani H, Hamakubo T, Sakai J, Naito M, Kodama T (2006) Dysregulated expression of P1 and P2 promoter-driven hepatocyte nuclear factor-4alpha in the pathogenesis of human cancer. J Pathol 208:662–672PubMedCrossRefGoogle Scholar
  123. 123.
    Tsukamoto T, Inada K, Tanaka H, Mizoshita T, Mihara M, Ushijima T, Yamamura Y, Nakamura S, Tatematsu M (2004) Down-regulation of a gastric transcription factor, Sox2, and ectopic expression of intestinal homeobox genes, Cdx1 and Cdx2: inverse correlation during progression from gastric/intestinal-mixed to complete intestinal metaplasia. J Cancer Res Clin Oncol 130:135–145PubMedCrossRefGoogle Scholar
  124. 124.
    Udvadia AJ, Rogers KT, Higgins PD, Murata Y, Martin KH, Humphrey PA, Horowitz JM (1993) Sp-1 binds promoter elements regulated by the RB protein and Sp-1-mediated transcription is stimulated by RB coexpression. Proc Natl Acad Sci U S A 90:3265–3269PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Uhlen M, Oksvold P, Fagerberg L, Lundberg E, Jonasson K, Forsberg M, Zwahlen M, Kampf C, Wester K, Hober S, Wernerus H, Björling L, Ponten F (2010) Towards a knowledge-based human protein atlas. Nat Biotechnol 28:1248–1250PubMedCrossRefGoogle Scholar
  126. 126.
    Van Antwerp DJ, Martin SJ, Kafri T, Green DR, Verma IM (1996) Suppression of TNF-alpha-induced apoptosis by NF-kappaB. Science 274(5288):787–789PubMedCrossRefGoogle Scholar
  127. 127.
    Wang CY, Mayo MW, Baldwin AS Jr (1996) TNF and cancer therapy induced apoptosis: potentiation by inhibition of NFB. Science 274(5288):784–787PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Wang W, Abbruzzese JL, Evans DB, Chiao PJ (1999) Overexpression of urokinase-type plasminogen activator in pancreatic adenocarcinoma is regulated by constitutively activated RelA. Oncogene 18:4554–4563PubMedCrossRefGoogle Scholar
  129. 129.
    Wang L, Wei D, Huang S, Peng Z, Le X, Wu TT, Yao J, Ajani J, Xie K (2003) Transcription factor Sp1 expression is a significant predictor of survival in human gastric cancer. Clin Cancer Res 9(17):6371–6380PubMedGoogle Scholar
  130. 130.
    Wang T, Niu G, Kortylewski M, Burdelya L, Shain K, Zhang S, Bhattacharya R, Gabrilovich D, Heller R, Coppola D, Dalton W, Jove R, Pardoll D, Yu H (2004) Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nat Med 10(1):48–54CrossRefPubMedGoogle Scholar
  131. 131.
    Wang IC, Chen YJ, Hughes D, Petrovic V, Major ML, Park HJ, Tan Y, Ackerson T, Costa RH (2005) Forkhead box M1 regulates the transcriptional network of genes essential for mitotic progression and genes encoding the SCF (Skp2-Cks1) ubiquitin ligase. Mol Cell Biol 25:10875–10894PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Wang CJ, Frånbergh-Karlson H, Wang DW, Arbman G, Zhang H, Sun XF (2013) Clinicopathological significance of BTF3 expression in colorectal cancer. Tumour Biol 34:2141–2146PubMedCrossRefGoogle Scholar
  133. 133.
    Webster GA, Perkins ND (1999) Transcriptional cross talk between NFB and p53. Mol Cell Biol 19:3485–3495PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Wen Y, Marcus EA, Matrubutham U, Gleeson MA, Scott DR, Sachs G (2003) Acid-adaptive genes of Helicobacter pylori. Infect Immun 71:5921–5939PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Wierstra I, Alves J (2007) FOXM1, a typical proliferation-associated transcription factor. Biol Chem 388:1257–1274PubMedPubMedCentralGoogle Scholar
  136. 136.
    Wolf G, Hannken T, Schroeder R, Zahner G, Ziyadeh FN, Stahl RA (2001) Antioxidant treatment induces transcription and expression of transforming growth factor beta in cultured renal proximal tubular cells. FEBS Lett 488:154–159PubMedCrossRefGoogle Scholar
  137. 137.
    Xing R, Li W, Cui J, Zhang J, Kang B, Wang Y, Wang Z, Liu S, Lu Y (2011) Gastrokine 1 induces senescence through p16/Rb pathway activation in gastric cancer cells. Gut 61(1):43–52PubMedCrossRefGoogle Scholar
  138. 138.
    Xiong A, Yang Z, Shen Y, Zhou J, Shen Q (2014) Transcription factor STAT3 as a novel molecular target for cancer prevention. Cancers 6:926–957PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Xu G, Li K, Zhang N, Zhu B, Feng G (2016) Screening driving transcription factors in the processing of gastric cancer. Gastroenterol Res Pract.
  140. 140.
    Yamaoka Y (2010) Mechanisms of disease: Helicobacter pylori virulence factors. Nat Rev Gastroenterol Hepatol 7:629–641PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Yang XD, Huang B, Li M, Lamb A, Kelleher NL, Chen LF (2009) Negative regulation of NF-kappaB action by Set9-mediated lysine methylation of the RelA subunit. EMBO J 28:1055–1066PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Yau C, Wang Y, Zhang Y, Foekens JA, Benz CC (2011) Young age, increased tumor proliferation and FOXM1 expression predict early metastatic relapse only for endocrine-dependent breast cancers. Breast Cancer Res Treat 126:803–810PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Yoon JH, Song JH, Zhang C, Jin M, Kang YH, Nam SW, Lee JY, Park WS (2011) Inactivation of the Gastrokine 1 gene in gastric adenomas and carcinomas. J Pathol 223(5):618–625PubMedCrossRefGoogle Scholar
  144. 144.
    Yoon JH, Kang YH, Choi YJ, Park IS, Nam SW, Lee JY, Lee YS, Park WS (2011) Gastrokine 1 functions as a tumor suppressor by inhibition of epithelial-mesenchymal transition in gastric cancers. J Cancer Res Clin Oncol 137(11):1697–1704PubMedCrossRefGoogle Scholar
  145. 145.
    You W, Tang Q, Zhang C, Wu J, Gu C, Wu Z, Li X (2013) IL-26 promotes the proliferation and survival of human gastric cancer cells by regulating the balance of STAT1 and STAT3 activation. PLoS One 8:e63588PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Yu H, Pardoll D, Jove R (2009) STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 9:798–809PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Zhang X, Li Y, Dai C, Yang J, Mundel P, Liu Y (2003) Sp1 and Sp3 transcription factors synergistically regulate HGF receptor gene expression in kidney. Am J Physiol Ren Physiol 284:F82–F94CrossRefGoogle Scholar
  148. 148.
    Zheng XM, Moncollin V, Egly JM, Chambon P (1987) A general transcription factor forms a stable complex with RNA polymerase B (II). Cell 50:361–368PubMedCrossRefGoogle Scholar
  149. 149.
    Zheng XM, Black D, Chambon P, Egly JM (1990) Sequencing and expression of complementary DNA for the general transcription factor BTF3. Nature 344:556–559PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd 2017

Authors and Affiliations

  1. 1.Department of Biochemistry and Bioinformatics, School of Life Sciences, GITAM Institute of ScienceGandhi Institute of Technology and Management (GITAM)VisakhapatnamIndia

Personalised recommendations