Skip to main content

NF-κB Role and Potential Drug Targets in Gastrointestinal Cancer

  • Chapter
  • First Online:
Role of Transcription Factors in Gastrointestinal Malignancies

Abstract

A multifactorial disease cancer arises due to mutation in the gene encoding particular transcription factor or proteins. Globally cancer is one of the diseases which is responsible for maximum mortality annually. Transcription factor plays an important role in cell physiology, and any alteration in this transcription factor may lead to diseases like cancers. NF-κB is a transcription factor which has immense homeostasis role in cell physiology and in several diseases. NF-κB is actively expressed in many cancers and helps in initiations, cell proliferations, and metastasis of different cancers. The present chapter discusses the role of NF-κB in cancer promotion and different drug targets, targeting NF-κB pathway for the treatment of cancers.

The original version of this chapter was revised. The book was inadvertently published without Abstracts and Keywords, which are now included in all the chapters. An erratum to this chapter can be found at https://doi.org/10.1007/978-981-10-6728-0_39

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    Article  PubMed  CAS  Google Scholar 

  2. Gilmore TD, Temin HM (1986) Different localization of the product of the v-rel oncogene in chicken fibroblasts and spleen cells correlates with transformation by REV-T. Cell 44(5):791–800

    Article  PubMed  CAS  Google Scholar 

  3. Sen R, Baltimore D (1986) Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell 46(5):705–716

    Article  PubMed  CAS  Google Scholar 

  4. Baeuerle PA, Baltimore D (1988) IKB: a specific inhibitor of the NF-κ ‘B transcription factor. Science 242:540–546

    Google Scholar 

  5. Stephens RM, Rice NR, Hiebsch RR, Bose HR, Gilden RV (1983) Nucleotide sequence of v-rel: the oncogene of reticuloendotheliosis virus. Proc Natl Acad Sci 80(20):6229–6233

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Urban MB, Baeuerle PA (1991) The role of the p50 and p65 subunits of NF-kappa B in the recognition of cognate sequences. New Biol 3(3):279–288

    PubMed  CAS  Google Scholar 

  7. Devin A, Cook A, Lin Y, Rodriguez Y, Kelliher M, Liu ZG (2000) The distinct roles of TRAF2 and RIP in IKK activation by TNF-R1: TRAF2 recruits IKK to TNF-R1 while RIP mediates IKK activation. Immunity 12(4):419–429

    Article  PubMed  CAS  Google Scholar 

  8. Hatada EN, Nieters A, Wulczyn FG, Naumann M, Meyer R, Nucifora G, …, Scheidereit C (1992) The ankyrin repeat domains of the NF-kappa B precursor p105 and the protooncogene bcl-3 act as specific inhibitors of NF-kappa B DNA binding. Proc Natl Acad Sci 89(6):2489–2493

    Google Scholar 

  9. Rothwarf DM, Karin M (1999) The NF-κB activation pathway: a paradigm in information transfer from membrane to nucleus. Sci STKE 1999(5), re1

    Google Scholar 

  10. Ghosh, S., Karin, M. (2002). Missing pieces in the NF-κB puzzle. Cell, 109(2):S81–S96

    Google Scholar 

  11. Ghosh S, May MJ, Kopp EB (1998a) NF-κB and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol 16(1):225–260

    Article  CAS  PubMed  Google Scholar 

  12. Sun SC, Ley SC (2008) New insights into NF-κB regulation and function. Trends Immunol 29(10):469–478

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Karin M, Ben-Neriah Y (2000) Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu Rev Immunol 18(1):621–663

    Article  PubMed  CAS  Google Scholar 

  14. Kato T, Delhase M, Hoffmann A, Karin M (2003) CK2 is a C-terminal IκB kinase responsible for NF-κB activation during the UV response. Mol Cell 12(4):829–839

    Article  PubMed  CAS  Google Scholar 

  15. Tergaonkar V, Bottero V, Ikawa M, Li Q, Verma IM (2003) IκB kinase-independent IκBα degradation pathway: functional NF-κB activity and implications for cancer therapy. Mol Cell Biol 23(22):8070–8083

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Silverman N, Maniatis T (2001) NF-κB signaling pathways in mammalian and insect innate immunity. Genes Dev 15(18):2321–2342

    Article  PubMed  CAS  Google Scholar 

  17. Bonizzi G, Karin M (2004) The two NF-κB activation pathways and their role in innate and adaptive immunity. Trends Immunol 25(6):280–288

    Article  PubMed  CAS  Google Scholar 

  18. Aggarwal BB (2004a) Nuclear factor-κB: the enemy within. Cancer Cell 6(3):203–208

    Article  PubMed  CAS  Google Scholar 

  19. Chen ZJ (2005a) Ubiquitin signalling in the NF-κB pathway. Nat Cell Biol 7(8):758–765

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Barkett M, Gilmore TD (1999) Control of apoptosis by Rel/NF-κB transcription factors. Oncogene 18(49):6910

    Article  CAS  PubMed  Google Scholar 

  21. Marusawa H, Hijikata M, Chiba T, Shimotohno K (1999) Hepatitis C virus core protein inhibits Fas-and tumor necrosis factor alpha-mediated apoptosis via NF-κB activation. J Virol 73(6):4713–4720

    PubMed  PubMed Central  CAS  Google Scholar 

  22. Singh N, Kumar S, Singh P, Raj HG, Prasad AK, Parmar VS, Ghosh B (2008) Piper longum Linn. Extract inhibits TNF-α-induced expression of cell adhesion molecules by inhibiting NF-κB activation and microsomal lipid peroxidation. Phytomedicine 15(4):284–291

    Article  CAS  PubMed  Google Scholar 

  23. Shou Y, Li N, Li L, Borowitz JL, Isom GE (2002) NF-κB-mediated up-regulation of Bcl-XS and Bax contributes to cytochrome c release in cyanide-induced apoptosis. J Neurochem 81(4):842–852

    Article  CAS  PubMed  Google Scholar 

  24. Karin M, Greten FR (2005) NF-κB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 5(10):749–759

    Article  CAS  PubMed  Google Scholar 

  25. Pahl HL (1999) Activators and target genes of Rel/NF-κB transcription factors. Oncogene 18(49):6853

    Article  CAS  PubMed  Google Scholar 

  26. Kawano M, Hirano T, Matsuda T, Taga T, Horii Y, Iwato K, Kuramoto A (1988) Autocrine generation and requirement of BSF-2/IL-6 for human multiple myelomas. Nature 332:83

    Article  CAS  PubMed  Google Scholar 

  27. Osborn L, Hession C, Tizard R, Vassallo C, Luhowskyj S, Chi-Rosso G, Lobb R (1989) Direct expression cloning of vascular cell adhesion molecule 1, a cytokine-induced endothelial protein that binds to lymphocytes. Cell 59(6):1203–1211

    Article  CAS  PubMed  Google Scholar 

  28. Biswas DK, Cruz AP, Gansberger E, Pardee AB (2000) Epidermal growth factor-induced nuclear factor κB activation: a major pathway of cell-cycle progression in estrogen-receptor negative breast cancer cells. Proc Natl Acad Sci 97(15):8542–8547

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Myers RB, Brown D, Oelschlager DK, Waterbor JW, Marshall ME, Srivastava S, …, Grizzle WE (1996) Elevated serum levels of p105erbB-2 in patients with advanced-stage prostatic adenocarcinoma. Int J Cancer 69(5):398–402

    Google Scholar 

  30. Bharti AC, Aggarwal BB (2002) Nuclear factor-kappa B and cancer: its role in prevention and therapy. Biochem Pharmacol 64(5):883–888

    Article  CAS  PubMed  Google Scholar 

  31. Beg AA, Baltimore D (1996) An essential role for NF-κB in preventing TNF-alpha-induced cell death. Science 274(5288):782

    Article  CAS  PubMed  Google Scholar 

  32. Sun SC, Yamaoka S (2005) Activation of NF-κB by HTLV-I and implications for cell transformation. Oncogene 24(39):5952–5964

    Article  CAS  PubMed  Google Scholar 

  33. Tang H, Oishi N, Kaneko S, Murakami S (2006a) Molecular functions and biological roles of hepatitis B virus x protein. Cancer Sci 97(10):977–983

    Article  CAS  PubMed  Google Scholar 

  34. Kuper H, Adami HO, Trichopoulos D (2000) Infections as a major preventable cause of human cancer. J Intern Med 248(3):171–183

    Article  CAS  PubMed  Google Scholar 

  35. Greten FR, Eckmann L, Greten TF, Park JM, Li, Z. W., Egan LJ, …, Karin M (2004) IKKβ links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118(3):285–296

    Google Scholar 

  36. Pikarsky E, Porat RM, Stein I, Abramovitch R, Amit S, Kasem S, …, Ben-Neriah Y (2004) NF-κB functions as a tumour promoter in inflammation-associated cancer. Nature 431(7007):461–466

    Google Scholar 

  37. Ruland J, Duncan GS, Elia A, del Barco Barrantes I, Nguyen L, Plyte S, …, Mak TW (2001) Bcl10 is a positive regulator of antigen receptor–induced activation of NF-κ B and neural tube closure. Cell 104(1):33–42

    Google Scholar 

  38. Karin M (2006) Nuclear factor-κB in cancer development and progression. Nature 441(7092):431–436

    Article  PubMed  CAS  Google Scholar 

  39. Aggarwal BB (2003) Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol 3(9):745–756

    Article  CAS  PubMed  Google Scholar 

  40. Rius J, Guma M, Schachtrup C, Akassoglou K, Zinkernagel AS, Nizet V, …, Karin M (2008) NF-&kgr; B links innate immunity to the hypoxic response through transcriptional regulation of HIF-1&agr. Nature 453(7196):807–811

    Google Scholar 

  41. Helbig G, Christopherson KW 2nd, Bhat-Nakshatri P, Kumar S, Kishimoto H, Miller KD, Broxmeyer HE, Nakshatri H (2003) NF-kappaB promotes breast cancer cell migration and metastasis by inducing the expression of the chemokine receptor CXCR4. J Biol Chem 278(24):21631–21638

    Article  PubMed  CAS  Google Scholar 

  42. Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C, …, Weinberg RA (2004) Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117(7):927–939

    Google Scholar 

  43. Huber MA, Beug H, Wirth T (2004) Epithelial-mesenchymal transition: NF-κB takes center stage. Cell Cycle 3(12):1477–1480

    Article  PubMed  CAS  Google Scholar 

  44. Tabruyn SP, Griffioen AW (2007) A new role for NF B in angiogenesis inhibition. Cell Death Differ 14(8):1393–1397

    Article  PubMed  CAS  Google Scholar 

  45. Knecht H, Berger C, Rothenberger S, Odermatt BF, Brousset P (2001) The role of Epstein-Barr virus in neoplastic transformation. Oncology 60(4):289–302

    Article  PubMed  CAS  Google Scholar 

  46. Lei HY, Zhao XL (2007) Clinical significance of NF-kappaB continual activity and expression of WT1 and MDR1 in acute nonlymphocytic leukemia. Zhongguo shi yan xue ye xue za zhi/Zhongguo bing li sheng li xue hui= J Exp Hematol/Chin Assoc Pathophysiol 15(2):253–257

    CAS  Google Scholar 

  47. Nakshatri H, Bhat-Nakshatri P, Martin DA, Goulet RJ, Sledge GW (1997) Constitutive activation of NF-kappaB during progression of breast cancer to hormone-independent growth. Mol Cell Biol 17(7):3629–3639

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Sovak MA, Bellas RE, Kim DW, Zanieski GJ, Rogers AE, Traish AM, Sonenshein GE (1997) Aberrant nuclear factor-kappaB/Rel expression and the pathogenesis of breast cancer. J Clin Investig 100(12):2952

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Ahmed KM, Cao N, Li JJ (2006) HER-2 and NF-κB as the targets for therapy-resistant breast cancer. Anticancer Res 26(6B):4235–4243

    PubMed  PubMed Central  CAS  Google Scholar 

  50. Nair A, Venkatraman M, Maliekal TT, Nair B, Karunagaran D (2003) NF-κB is constitutively activated in high-grade squamous intraepithelial lesions and squamous cell carcinomas of the human uterine cervix. Oncogene 22(1):50–58

    Article  PubMed  CAS  Google Scholar 

  51. Shehata MF (2005) Rel/nuclear factor-kappa B apoptosis pathways in human cervical cancer cells. Cancer Cell Int 5(1):1

    Article  CAS  Google Scholar 

  52. Ramdass B, Maliekal TT, Lakshmi S, Rehman M, Rema P, Nair P, …, Pillai MR (2007) Coexpression of Notch1 and NF-κB signaling pathway components in human cervical cancer progression. Gynecol Oncol 104(2):352–361

    Google Scholar 

  53. Dejardin E, Deregowski V, Chapelier M, Jacobs N, Gielen J, Merville MP, Bours V (1999) Regulation of NF-κB activity by IkB-related proteins in adenocarcinoma cells. Oncogene 18(16):2567–2578

    Article  PubMed  CAS  Google Scholar 

  54. Huang S, Robinson JB, DeGuzman A, Bucana CD, Fidler IJ (2000) Blockade of nuclear factor-κB signaling inhibits angiogenesis and tumorigenicity of human ovarian cancer cells by suppressing expression of vascular endothelial growth factor and interleukin 8. Cancer Res 60(19):5334–5339

    PubMed  CAS  Google Scholar 

  55. Seppänen M, Vihko KK (2000) Activation of transcription factor NF-κB by growth inhibitory cytokines in vulvar carcinoma cells. Immunol Lett 74(2):103–109

    Article  PubMed  Google Scholar 

  56. Huang S, Pettaway CA, Uehara H, Bucana CD, Fidler IJ (2001) Blockade of NF-κB activity in human prostate cancer cells is associated with suppression of angiogenesis, invasion, and metastasis. Oncogene 20(31):4188

    Article  PubMed  CAS  Google Scholar 

  57. Palayoor ST, Youmell MY, Calderwood SK, Coleman CN, Price BD (1999a) Constitutive activation of IkB kinase a and NF-κB in prostate cancer cells is inhibited by ibuprofen. Oncogene 18(51):7389–7394

    Article  PubMed  CAS  Google Scholar 

  58. Fradet V, Lessard L, Bégin LR, Karakiewicz P, Masson AMM, Saad F (2004) Nuclear factor-κB nuclear localization is predictive of biochemical recurrence in patients with positive margin prostate cancer. Clin Cancer Res 10(24):8460–8464

    Article  PubMed  CAS  Google Scholar 

  59. Lessard L, Karakiewicz PI, Bellon-Gagnon P, Alam-Fahmy M, Ismail HA, Mes-Masson AM, Saad F (2006) Nuclear localization of nuclear factor-κB p65 in primary prostate tumors is highly predictive of pelvic lymph node metastases. Clin Cancer Res 12(19):5741–5745

    Article  PubMed  CAS  Google Scholar 

  60. Paule B, Terry S, Kheuang L, Soyeux P, Vacherot F, de la Taille A (2007) The NF-κB/IL-6 pathway in metastatic androgen-independent prostate cancer: new therapeutic approaches? World J Urol 25(5):477–489

    Article  CAS  PubMed  Google Scholar 

  61. Oya M, Ohtsubo M, Takayanagi A, Tachibana M, Shimizu N, Murai M (2001) Constitutive activation of nuclear factor-kB prevents TRAIL-induced apoptosis in renal cancer cells. Oncogene 20(3888):3896

    Google Scholar 

  62. Horiguchi Y, Kuroda K, Nakashima J, Murai M, Umezawa K (2003) Antitumor effect of a novel nuclear factor-κB activation inhibitor in bladder cancer cells. Expert Rev Anticancer Ther 3(6):793–798

    Article  CAS  PubMed  Google Scholar 

  63. Kadhim HS, TI AL-J, Tawfik MS (2006) Possible role of nuclear factor kB detected by in situ hybridization in the pathogenesis of transitional cell carcinoma of the bladder. J Med Liban 54:96–99

    Google Scholar 

  64. Levidou G, Korkolopoulou P, Nikiteas N, Tzanakis N, Thymara I, Saetta AA, …, Patsouris E (2007) Expression of nuclear factor κB in human gastric carcinoma: relationship with IκBa and prognostic significance. Virchows Archiv 450(5):519–527

    Google Scholar 

  65. Tichelaar JW, Zhang Y, Lam S, Anderson MW (2004) Activation of the Akt/nuclear factor-κB signaling Axis in developing lung neoplasia. Chest J 125(5_suppl):153S–153S

    Article  Google Scholar 

  66. Tang X, Liu D, Shishodia S, Ozburn N, Behrens C, Lee JJ, …, Wistuba II (2006b) Nuclear factor-κB (nf-κB) is frequently expressed in lung cancer and preneoplastic lesions. Cancer 107(11):2637–2646

    Google Scholar 

  67. Zhang D, Jin X, Wang F, Wang S, Deng C, Gao Z, Guo C (2007) Combined prognostic value of both RelA and IκB-α expression in human non–small cell lung cancer. Ann Surg Oncol 14(12):3581–3592

    Article  PubMed  Google Scholar 

  68. Motadi LR, Misso NL, Dlamini Z, Bhoola KD (2007) Molecular genetics and mechanisms of apoptosis in carcinomas of the lung and pleura: therapeutic targets. Int Immunopharmacol 7(14):1934–1947

    Article  PubMed  CAS  Google Scholar 

  69. Stathopoulos GT, Sherrill TP, Han W, Sadikot RT, Yull FE, Blackwell TS, Fingleton B (2008) Host nuclear factor-κB activation potentiates lung cancer metastasis. Mol Cancer Res 6(3):364–371

    Article  PubMed  CAS  Google Scholar 

  70. Bertino P, Marconi A, Palumbo L, Bruni BM, Barbone D, Germano S, …, Gaudino G (2007) Erionite and asbestos differently cause transformation of human mesothelial cells. Int J Cancer 121(1):12–20

    Google Scholar 

  71. Carbone M, Bedrossian CW (2006) The pathogenesis of mesothelioma. In Seminars in diagnostic pathology, 23(1). WB Saunders, p 56–60

    Google Scholar 

  72. Zhang Z, Ma J, Li N, Sun N, Wang C (2006) Expression of nuclear factor-κB and its clinical significance in nonsmall-cell lung cancer. Ann Thorac Surg 82(1):243–248

    Article  PubMed  Google Scholar 

  73. Tew GW, Lorimer EL, Berg TJ, Zhi H, Li R, Williams CL (2008) SmgGDS regulates cell proliferation, migration, and NF-κB transcriptional activity in non-small cell lung carcinoma. J Biol Chem 283(2):963–976

    Article  CAS  PubMed  Google Scholar 

  74. Jin X, Wang Z, Qiu L, Zhang D, Guo Z, Gao Z, …, Guo C (2008) Potential biomarkers involving IKK/RelA signal in early stage non-small cell lung cancer. Cancer Sci 99(3):582–589

    Google Scholar 

  75. Tai DI, Tsai SL, Chang YH, Huang SN, Chen TC, Chang KS, Liaw YF (2000) Constitutive activation of nuclear factor κB in hepatocellular carcinoma. Cancer 89(11):2274–2281

    Article  CAS  PubMed  Google Scholar 

  76. Arsura M, Cavin LG (2005) Nuclear factor-κB and liver carcinogenesis. Cancer Lett 229(2):157–169

    Article  CAS  PubMed  Google Scholar 

  77. Qiao L, Zhang H, Yu J, Francisco R, Dent P, Ebert MP, ... & Farrell G (2006) Constitutive activation of NF-κB in human hepatocellular carcinoma: evidence of a cytoprotective role. Hum Gene Ther 17(3):280–290

    Google Scholar 

  78. Seki E, Brenner DA (2007) The role of NF-κB in hepatocarcinogenesis: promoter or suppressor? J Hepatol 47(2):307–309

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Wang W, Abbruzzese JL, Evans DB, Larry L, Cleary KR, Chiao PJ (1999) The nuclear factor-κB RelA transcription factor is constitutively activated in human pancreatic adenocarcinoma cells. Clin Cancer Res 5(1):119–127

    PubMed  CAS  Google Scholar 

  80. Sclabas GM, Fujioka S, Schmidt C, Evans DB, Chiao PJ (2003) NF-κB in pancreatic cancer. Int J Gastrointest Cancer 33(1):15–26

    Article  PubMed  CAS  Google Scholar 

  81. Xiong HQ (2004) Molecular targeting therapy for pancreatic cancer. Cancer Chemother Pharmacol 54(1):S69–S77

    PubMed  Google Scholar 

  82. Jackson L, Evers BM (2006) Chronic inflammation and pathogenesis of GI and pancreatic cancers. In The link between inflammation and cancer. Springer US, pp 39–65

    Google Scholar 

  83. Sutter AP, Zeitz M, Scherübl H (2004) Recent results in understanding molecular pathways in the medical treatment of esophageal and gastric cancer. Oncol Res Treat 27(1):17–21

    Article  CAS  Google Scholar 

  84. Lee BL, Lee HS, Jung J, Cho SJ, Chung HY, Kim WH, …, Nam SY (2005) Nuclear factor-κB activation correlates with better prognosis and Akt activation in human gastric cancer. Clin Cancer Res 11(7):2518–2525

    Google Scholar 

  85. Abdel-Latif MM, Kelleher D, Reynolds JV (2009) Potential role of NF-κB in esophageal adenocarcinoma: as an emerging molecular target. J Surg Res 153(1):172–180

    Article  PubMed  CAS  Google Scholar 

  86. Zhu J, Hu G, Sun Y (2004) Expression and significance of nuclear factor kB in laryngeal carcinoma [article in Chinese]. Lin Chuang Er Bi Yan Hou Ke Za Zhi 18(745–6):766

    Google Scholar 

  87. Pan S, Tao Z, Wu L, Xiao B, Chen S (2005) Nuclear factor kappaB/p65 and cyclooxygenase-2 expression and clinic significance in human laryngeal squamous cell carcinoma. Lin Chuang Er Bi Yan Jou Ke Za Zhi 19(12):535–537

    Google Scholar 

  88. Sasaki N, Morisaki T, Hashizume K, Yao T, Tsuneyoshi M, Noshiro H, …, Katano M (2001) Nuclear factor-κB p65 (RelA) transcription factor is constitutively activated in human gastric carcinoma tissue. Clin Cancer Res 7(12):4136–4142

    Google Scholar 

  89. Wu L, Pu Z, Feng J, Li G, Zheng Z, Shen W (2008) The ubiquitin-proteasome pathway and enhanced activity of NF-κB in gastric carcinoma. J Surg Oncol 97(5):439–444

    Article  PubMed  CAS  Google Scholar 

  90. Lind DS, Hochwald SN, Malaty J, Rekkas S, Hebig P, Mishra G, …, MacKay S (2001) Nuclear factor-κB is upregulated in colorectal cancer. Surgery 130(2):363–369

    Google Scholar 

  91. Schottelius AJ, Dinter H (2006) Cytokines, NF-κB, microenvironment, intestinal inflammation and cancer. In The link between inflammation and cancer. Springer US, p 67–87

    Google Scholar 

  92. Aranha MM, Borralho PM, Ravasco P, Moreira da Silva IB, Correia L, Fernandes A, ..., Rodrigues CMP (2007) NF-κB and apoptosis in colorectal tumourigenesis. Eur J Clin Investig 37(5):416–424

    Google Scholar 

  93. Visconti R, Cerutti J, Battista S, Fedele M, Trapasso F, Zeki K, …, Santoro M (1997) Expression of the neoplastic phenotype by human thyroid carcinoma cell lines requires NF-κB p65 protein expression. Oncogene 15(16):1987–1994

    Google Scholar 

  94. Pacifico F, Leonardi A (2006) NF-κB in solid tumors. Biochem Pharmacol 72(9):1142–1152

    Article  CAS  PubMed  Google Scholar 

  95. Gombos K, Szele E, Kiss I, Varjas T, Puskás L, Kozma L, …, Ember I (2007) Characterization of microarray gene expression profiles of early stage thyroid tumours. Cancer Genomics-Proteomics 4(6):403–409

    Google Scholar 

  96. Corbetta S, Vicentini L, Ferrero S, Lania A, Mantovani G, Cordella D, …, Spada A (2005) Activity and function of the nuclear factor kappaB pathway in human parathyroid tumors. Endocr-Relat Cancer 12(4):929–937

    Google Scholar 

  97. Yang J, Richmond A (2001) Constitutive IκB kinase activity correlates with nuclear factor-κB activation in human melanoma cells. Cancer Res 61(12):4901–4909

    PubMed  CAS  Google Scholar 

  98. Van den Oord JJ, Sarasin A, Winnepenninckx V, Spatz A (2007) Expression profiling of melanoma cell lines: in search of a progression-related molecular signature

    Google Scholar 

  99. Ondrey FG, Dong G, Sunwoo J, Chen Z, Wolf JS, Crowl-Bancroft CV, Van Waes C (1999) Constitutive activation of transcription factors NF-κB, AP-1, and NF-IL6 in human head and neck squamous cell carcinoma cell lines that express pro-inflammatory and pro-angiogenic cytokines. Mol Carcinog 26(2):119–129

    Article  CAS  PubMed  Google Scholar 

  100. Chung CH, Parker JS, Ely K, Carter J, Yi Y, Murphy BA, …, Levy S (2006) Gene expression profiles identify epithelial-to-mesenchymal transition and activation of nuclear factor-κB signaling as characteristics of a high-risk head and neck squamous cell carcinoma. Cancer Res 66(16):8210–8218

    Google Scholar 

  101. Allen CT, Ricker JL, Chen Z, Van Waes C (2007) Role of activated nuclear factor-κB in the pathogenesis and therapy of squamous cell carcinoma of the head and neck. Head Neck 29(10):959–971

    Article  PubMed  Google Scholar 

  102. Jackson-Bernitsas DG, Ichikawa H, Takada Y, Myers JN, Lin XL, Darnay BG, …, Aggarwal BB (2007) Evidence that TNF-TNFR1-TRADD-TRAF2-RIP-TAK1-IKK pathway mediates constitutive NF-κB activation and proliferation in human head and neck squamous cell carcinoma. Oncogene 26(10):1385–1397

    Google Scholar 

  103. Pallares J, Martínez-Guitarte JL, Dolcet X, Llobet D, Rue M, Palacios J, Matias-Guiu X (2004) Abnormalities in the NF-κB family and related proteins in endometrial carcinoma. J Pathol 204(5):569–577

    Article  CAS  PubMed  Google Scholar 

  104. Domenyuk VP, Litovkin KV, Verbitskaya TG, Dubinina VG, Bubnov VV (2007) Identification of new DNA markers of endometrial cancer in patients from the Ukrainian population. Exp Oncol 29(2):152–155

    PubMed  CAS  Google Scholar 

  105. Kovalenko A, Chable-Bessia C, Cantarella G, Israël A, Wallach D, Courtois G (2003) The tumour suppressor CYLD negatively regulates NF-κB signalling by deubiquitination. Nature 424(6950):801–805

    Article  CAS  PubMed  Google Scholar 

  106. Brummelkamp TR, Nijman SM, Dirac AM, Bernards R (2003) Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-κB. Nature 424(6950):797–801

    Article  CAS  PubMed  Google Scholar 

  107. Trompouki E, Hatzivassiliou E, Tsichritzis T, Farmer H, Ashworth A, Mosialos G (2003) CYLD is a deubiquitinating enzyme that negatively regulates NF-κB activation by TNFR family members. Nature 424(6950):793–796

    Article  CAS  PubMed  Google Scholar 

  108. Chen F (2005b) Is NF-κB a culprit in type 2 diabetes? Biochem Biophys Res Commun 332(1):1–3

    Article  CAS  PubMed  Google Scholar 

  109. Nakayama H, Ikebe T, Beppu M, Shirasuna K (2001) High expression levels of nuclear factor κB, IκB kinase α and Akt kinase in squamous cell carcinoma of the oral cavity. Cancer 92(12):3037–3044

    Article  CAS  PubMed  Google Scholar 

  110. Bindhu OS, Ramadas K, Sebastian P, Pillai MR (2006) High expression levels of nuclear factor kappa B and gelatinases in the tumorigenesis of oral squamous cell carcinoma. Head Neck 28(10):916–925

    Article  PubMed  CAS  Google Scholar 

  111. Mishra A, Bharti AC, Varghese P, Saluja D, Das BC (2006) Differential expression and activation of NF-κB family proteins during oral carcinogenesis: role of high risk human papillomavirus infection. Int J Cancer 119(12):2840–2850

    Article  CAS  PubMed  Google Scholar 

  112. Sawhney M, Rohatgi N, Kaur J, Shishodia S, Sethi G, Gupta SD, …, Ralhan R (2007) Expression of NF-κB parallels COX-2 expression in oral precancer and cancer: association with smokeless tobacco. Int J Cancer 120(12):2545–2556

    Google Scholar 

  113. Ruan M, Ji T, Yang W, Duan W, Zhou X, He J, …, Zhang C (2008) Growth inhibition and induction of apoptosis in human oral squamous cell carcinoma Tca-8113 cell lines by shikonin was partly through the inactivation of NF-κB pathway. Phytother Res 22(3):407–415

    Google Scholar 

  114. Hayashi S, Yamamoto M, Ueno Y, Ikeda K, Ohshima K, Soma GI, Fukushima T (2001) Expression of nuclear factor-. KAPPA. B, tumor necrosis factor receptor type 1, and c-Myc in human astrocytomas. Neurol Med Chir 41(4):187–195

    Article  CAS  Google Scholar 

  115. Garkavtsev I, Kozin SV, Chernova O, Xu L, Winkler F, Brown E, …, Jain RK (2004) The candidate tumour suppressor protein ING4 regulates brain tumour growth and angiogenesis. Nature 428(6980):328–332

    Google Scholar 

  116. Zenali MJ, Zhang PL, Bendel AE, Brown RE (2009) Morphoproteomic confirmation of constitutively activated mTOR, ERK, and NF-kappaB pathways in Ewing family of tumors. Ann Clin Lab Sci 39(2):160–166

    PubMed  CAS  Google Scholar 

  117. Widera D, Kaus A, Kaltschmidt C, Kaltschmidt B (2008) Neural stem cells, inflammation and NF-κB: basic principle of maintenance and repair or origin of brain tumours? J Cell Mol Med 12(2):459–470

    Article  PubMed  CAS  Google Scholar 

  118. Raychaudhuri B, Han Y, Lu T, Vogelbaum MA (2007) Aberrant constitutive activation of nuclear factor κB in glioblastoma multiforme drives invasive phenotype. J Neuro-Oncol 85(1):39–47

    Article  CAS  Google Scholar 

  119. Smith D, Shimamura T, Barbera S, Bejcek BE (2008) NF-κB controls growth of glioblastomas/astrocytomas. Mol Cell Biochem 307(1–2):141–147

    PubMed  CAS  Google Scholar 

  120. Bargou RC, Leng C, Krappmann D, Emmerich F, Mapara MY, Bommert K, …, Dorken B (1996) High-level nuclear NF-kappa B and Oct-2 is a common feature of cultured Hodgkin/Reed-Sternberg cells. Blood 87(10):4340–4347

    Google Scholar 

  121. Bargou RC, Emmerich F, Krappmann D, Bommert K, Mapara MY, Arnold W, …, Dörken B (1997) Constitutive nuclear factor-kappaB-RelA activation is required for proliferation and survival of Hodgkin’s disease tumor cells. J Clin Invest 100(12):2961

    Google Scholar 

  122. Staudt LM (2000) The molecular and cellular origins of Hodgkin’s disease. J Exp Med 191(2):207–212

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Kordes U, Krappmann D, Heissmeyer V, Ludwig WD, Scheidereit C (2000) Transcription factor NF-κB is constitutively activated in acute lymphoblastic leukemia cells. Leukemia 14(3):399–402

    Article  PubMed  CAS  Google Scholar 

  124. Munzert G, Kirchner D, Ottmann O, Bergmann L, Schmid RM (2004) Constitutive NF-κB/Rel activation in Philadelphia chromosome positive (Ph+) acute lymphoblastic leukemia (ALL). Leuk Lymphoma 45(6):1181–1184

    Article  PubMed  CAS  Google Scholar 

  125. Guzman ML, Neering SJ, Upchurch D, Grimes B, Howard DS, Rizzieri DA, …, Jordan CT (2001) Nuclear factor-κB is constitutively activated in primitive human acute myelogenous leukemia cells. Blood 98(8):2301–2307

    Google Scholar 

  126. Fabre C, Carvalho G, Tasdemir E, Braun T, Ades L, Grosjean J, …, Fenaux P (2007) NF-κB inhibition sensitizes to starvation-induced cell death in high-risk myelodysplastic syndrome and acute myeloid leukemia. Oncogene 26(28):4071–4083

    Google Scholar 

  127. Arima N, Tei C (2001) HTLV-I tax related dysfunction of cell cycle regulators and oncogenesis of Radult T cell leukemia. Leuk Lymphoma 40(3–4):267–278

    Article  PubMed  CAS  Google Scholar 

  128. Horie R, Watanabe T, Umezawa K (2006) Blocking NF-kappaB as a potential strategy to treat adult T-cell leukemia/lymphoma. Drug News Perspect 19(4):201–209

    Article  PubMed  CAS  Google Scholar 

  129. Furman RR, Asgary Z, Mascarenhas JO, Liou HC, Schattner EJ (2000) Modulation of NF-κB activity and apoptosis in chronic lymphocytic leukemia B cells. J Immunol 164(4):2200–2206

    Article  PubMed  CAS  Google Scholar 

  130. Pickering BM, De Mel S, Lee M, Howell M, Habens F, Dallman CL, Johnson PWM (2007) Pharmacological inhibitors of NF-κB accelerate apoptosis in chronic lymphocytic leukaemia cells. Oncogene 26(8):1166–1177

    Article  PubMed  CAS  Google Scholar 

  131. Hewamana S, Alghazal S, Lin TT, Clement M, Jenkins C, Guzman ML, …, Pratt G (2008) The NF-κB subunit Rel A is associated with in vitro survival and clinical disease progression in chronic lymphocytic leukemia and represents a promising therapeutic target. Blood 111(9):4681–4689

    Google Scholar 

  132. Berenson JR, Ma HM, Vescio R (2001) The role of nuclear factor-κB in the biology and treatment of multiple myeloma. In Seminars in oncology (Vol. 28, No. 6). WB Saunders, pp 626–633

    Google Scholar 

  133. Gilmore TD (2007) Multiple myeloma: lusting for NF-κB. Cancer Cell 12(2):95–97

    Article  PubMed  CAS  Google Scholar 

  134. Gilmore T, Gapuzan ME, Kalaitzidis D, Starczynowski D (2002) Rel/NF-κB/IκB signal transduction in the generation and treatment of human cancer. Cancer Lett 181(1):1–9

    Article  PubMed  CAS  Google Scholar 

  135. Sagaert X, De Wolf-Peeters C, Noels H, Baens M (2007) The pathogenesis of MALT lymphomas: where do we stand? Leukemia 21(3):389–396

    Article  PubMed  CAS  Google Scholar 

  136. Inagaki H (2007) Mucosa-associated lymphoid tissue lymphoma: molecular pathogenesis and clinicopathological significance. Pathol Int 57(8):474–484

    Article  PubMed  CAS  Google Scholar 

  137. Du MQ (2007) MALT lymphoma: recent advances in aetiology and molecular genetics. J Clin Exp Hematop 47(2):31–42

    Article  PubMed  Google Scholar 

  138. Agathocleous A, Rohatiner A, Rule S, Hunter H, Kerr JP, Neeson SM, …, Radford J (2010) Weekly versus twice weekly bortezomib given in conjunction with rituximab, in patients with recurrent follicular lymphoma, mantle cell lymphoma and Waldenström macroglobulinaemia. Br J Haematol 151(4):346–353

    Google Scholar 

  139. Gupta SC, Sundaram C, Reuter S, Aggarwal BB (2010) Inhibiting NF-κB activation by small molecules as a therapeutic strategy. Biochim Biophys Acta (BBA)-Gene Regul Mech 1799(10):775–787

    Article  CAS  Google Scholar 

  140. Wilczynski J, Duechler M, Czyz M (2011) Targeting NF-κB and HIF-1 pathways for the treatment of cancer: part II. Arch Immunol Ther Exp 59(4):301–307

    Article  CAS  Google Scholar 

  141. García MG, Alaniz L, Lopes EC, Blanco G, Hajos SE, Alvarez E (2005) Inhibition of NF-κB activity by BAY 11-7082 increases apoptosis in multidrug resistant leukemic T-cell lines. Leuk Res 29(12):1425–1434

    Article  PubMed  CAS  Google Scholar 

  142. Yang J, Amiri KI, Burke JR, Schmid JA, Richmond A (2006) BMS-345541 targets inhibitor of κB kinase and induces apoptosis in melanoma: involvement of nuclear factor κB and mitochondria pathways. Clin Cancer Res 12(3):950–960

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Choo M, Sakurai H, Kim D, Saiki I (2008) A ginseng saponin metabolite suppresses tumor necrosis factor-alpha-promoted metastasis by suppressing nuclear factor-kappa B signaling in murine colon cancer cells. Oncol Rep 19(3):595

    PubMed  CAS  Google Scholar 

  144. Ravaud A, Cerny T, Terret C, Wanders J, Bui BN, Hess D, …, Twelves C (2005) Phase I study and pharmacokinetic of CHS-828, a guanidino-containing compound, administered orally as a single dose every 3weeks in solid tumours: an ECSG/EORTC study. Euro J Cancer 41(5):702–707

    Google Scholar 

  145. Podar K, Anderson KC (2011) Emerging therapies targeting tumor vasculature in multiple myeloma and other hematologic and solid malignancies. Curr Cancer Drug Targets 11(9):1005–1024

    Article  CAS  PubMed  Google Scholar 

  146. Gasparian AV, Guryanova OA, Chebotaev DV, Shishkin AA, Yemelyanov AY, Budunova IV (2009) Targeting transcription factor NFκB: comparative analysis of proteasome and IKK inhibitors. Cell Cycle 8(10):1559–1566

    Article  PubMed  CAS  Google Scholar 

  147. Mabuchi S, Ohmichi M, Nishio Y, Hayasaka T, Kimura A, Ohta T, …, Sakata M (2004) Inhibition of NFκB increases the efficacy of cisplatin in in vitro and in vivo ovarian cancer models. J Biol Chem279(22):23477–23485

    Google Scholar 

  148. Baron JA (2009) Aspirin and NSAIDs for the prevention of colorectal cancer. In Cancer prevention II. Springer Berlin Heidelberg, pp 223–229

    Google Scholar 

  149. Rahman I, Biswas SK, Kirkham PA (2006) Regulation of inflammation and redox signaling by dietary polyphenols. Biochem Pharmacol 72(11):1439–1452

    Article  PubMed  CAS  Google Scholar 

  150. Lee CT, Seol JY, Lee SY, Park KH, Han SJ, Yoo CG, …, Kim YW (2003) The effect of adenovirus-IκBα transduction on the chemosensitivity of lung cancer cell line with resistance to cis-diamminedichloroplatinum (II)(cisplatin) and doxorubicin (adriamycin). Lung Cancer 41(2):199–206

    Google Scholar 

  151. Sethi G, Sung B, Aggarwal BB (2008) Nuclear factor-κB activation: from bench to bedside. Exp Biol Med 233(1):21–31

    Article  CAS  Google Scholar 

  152. Uetsuka H, Haisa M, Kimura M, Gunduz M, Kaneda Y, Ohkawa T, …, Matsuoka J (2003) Inhibition of inducible NF-κB activity reduces chemoresistance to 5-fluorouracil in human stomach cancer cell line. Exp Cell Res 289(1):27–35

    Google Scholar 

  153. Wajant H, Scheurich P (2011) TNFR1-induced activation of the classical NF-κB pathway. FEBS J 278(6):862–876

    Article  CAS  PubMed  Google Scholar 

  154. Pierce JW, Schoenleber R, Jesmok G, Best J, Moore SA, Collins T, Gerritsen ME (1997) Novel inhibitors of cytokine-induced IκBα phosphorylation and endothelial cell adhesion molecule expression show anti-inflammatory effects in vivo. J Biol Chem 272(34):21096–21103

    Article  CAS  PubMed  Google Scholar 

  155. Hideshima T, Neri P, Tassone P, Yasui H, Ishitsuka K, Raje N, …, Munshi N (2006) MLN120B, a novel IκB kinase β inhibitor, blocks multiple myeloma cell growth in vitro and in vivo. Clin Cancer Res 12(19):5887–5894

    Google Scholar 

  156. Podolin PL, Callahan JF, Bolognese BJ, Li YH, Carlson K, Davis TG, …, Roshak AK (2005) Attenuation of murine collagen-induced arthritis by a novel, potent, selective small molecule inhibitor of IκB kinase 2, TPCA-1 (2-[(aminocarbonyl) amino]-5-(4-fluorophenyl)-3-thiophenecarboxamide), occurs via reduction of proinflammatory cytokines and antigen-induced T cell proliferation. J Pharmacol Exp Ther 312(1):373–381

    Google Scholar 

  157. Du Z, Whitt MA, Baumann J, Garner JM, Morton CL, Davidoff AM, Pfeffer LM (2012) Inhibition of type I interferon-mediated antiviral action in human glioma cells by the IKK inhibitors BMS-345541 and TPCA-1. J Interferon Cytokine Res 32(8):368–377

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Tanaka A, Konno M, Muto S, Kambe N, Morii E, Nakahata T, …, Matsuda H (2005) A novel NF-κB inhibitor, IMD-0354, suppresses neoplastic proliferation of human mast cells with constitutively activated c-kit receptors. Blood 105(6):2324–2331

    Google Scholar 

  159. Sugita A, Ogawa H, Azuma M, Muto S, Honjo A, Yanagawa H, …,Sone S (2008) Antiallergic and anti-inflammatory effects of a novel IκB kinase β inhibitor, IMD-0354, in a mouse model of allergic inflammation. Int Arch Allergy Immunol 148(3):186–198

    Google Scholar 

  160. Waelchli R, Bollbuck B, Bruns C, Buhl T, Eder J, Feifel R, …, Schlapbach A (2006) Design and preparation of 2-benzamido-pyrimidines as inhibitors of IKK. Bioorg Med Chem Lett 16(1):108–112

    Google Scholar 

  161. Murugan A et al (2014) Exploiting the differential Reactivities of halogen atoms: development of a scalable route to IKK2 inhibitor AZD3264. Org Process Res Dev 18(5):646–651

    Article  CAS  Google Scholar 

  162. Shishodia S, Sethi G, Konopleva M, Andreeff M, Aggarwal BB (2006) A synthetic triterpenoid, CDDO-Me, inhibits IκBα kinase and enhances apoptosis induced by TNF and chemotherapeutic agents through down-regulation of expression of nuclear factor κB–regulated gene products in human leukemic cells. Clin Cancer Res 12(6):1828–1838

    Article  CAS  PubMed  Google Scholar 

  163. Gupta SV, Hertlein E, Lu Y, Sass EJ, Lapalombella R, Chen TL, …, Byrd JC (2013) The proteasome inhibitor carfilzomib functions independently of p53 to induce cytotoxicity and an atypical NF-κB response in chronic lymphocytic leukemia cells. Clin Cancer Res 19(9):2406–2419

    Google Scholar 

  164. Yamamoto Y, Yin MJ, Lin KM, Gaynor RB (1999) Sulindac inhibits activation of the NF-κB pathway. J Biol Chem 274(38):27307–27314

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prudhvi Lal Bhukya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhukya, P.L., Laxmivandana, R., Sundaram, G.M. (2017). NF-κB Role and Potential Drug Targets in Gastrointestinal Cancer. In: Nagaraju, G., Bramhachari, P. (eds) Role of Transcription Factors in Gastrointestinal Malignancies. Springer, Singapore. https://doi.org/10.1007/978-981-10-6728-0_5

Download citation

Publish with us

Policies and ethics