Overview of Transcription Factors in Esophagus Cancer

  • Pallaval Veera Bramhachari
  • A. M. V. N. Prathyusha
  • D. Rama Sekhara Reddy
Chapter

Abstract

Esophageal cancer is one of the most malignant cancer types which rapidly invade into the neighbouring tissues, metastasize to adjacent lymph nodes, reside at distant organs, and develop secondary tumors. Transcription factors (TFs) are frequently deregulated in the pathogenesis of esophagus cancer and are a key class of cancer cell dependencies. Deregulated activation and inactivation of transcription factors in addition to mutations and translocations play centralrole in tumorigenesis. In normal physiological conditions, TFs are regulated in highly specific manner by upstream transcriptional regulators. However, in cancer, aberrant activation of transcriptional factors guide deregulated expression of numerous genes is coupled with tumor development and progression. This review will summarize about the transcriptional factors involved in poor prognosis of esophagus cancer and the chemotherapeutic drugs targeting transcriptional factors.

Keywords

Esophagus cancer STAT3 NF-κB HIF-1α Sp1 E2F1 KLF4 YY1 

References

  1. 1.
    Andl CD, Mizushima T, Oyama K, Bowser M, Nakagawa H, Rustgi AK (2004) EGFR-induced cell migration is mediated predominantly by the JAK-STAT pathway in primary esophageal keratinocytes. Am J Physiol Gastrointest Liver Physiol 287(6):G1227–G1237CrossRefPubMedGoogle Scholar
  2. 2.
    Arnal MJD, Arenas ÁF, Arbeloa ÁL (2015) Esophageal cancer: risk factors, screening and endoscopic treatment in western and eastern countries. World J Gastroenterol: WJG 21(26):7933CrossRefGoogle Scholar
  3. 3.
    Chen J, Lan T, Zhang W, Dong L, Kang N, Fu M, …, Zhan Q (2015) Dasatinib enhances cisplatin sensitivity in human esophageal squamous cell carcinoma (ESCC) cells via suppression of PI3K/AKT and Stat3 pathways. Arch Biochem Biophys 575:38–45Google Scholar
  4. 4.
    Chen MF, Chen PT, Lu MS, Lin PY, Chen WC, Lee KD (2013) IL-6 expression predicts treatment response and outcome in squamous cell carcinoma of the esophagus. Mol Cancer 12(1):1CrossRefGoogle Scholar
  5. 5.
    Cordani N, Pozzi S, Martynova E, Fanoni D, Borrelli S, Alotto D, …, Mantovani R (2011) Mutant p53 subverts p63 control over KLF4 expression in keratinocytes. Oncogene 30(8):922–932Google Scholar
  6. 6.
    Cui Y, Li YY, Li J, Zhang HY, Wang F, Bai X, Li SS (2016) STAT3 regulates hypoxia-induced epithelial mesenchymal transition in oesophageal squamous cell cancer. Oncol Rep 36(1):108–116CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Darnell JE (2002) Transcription factors as targets for cancer therapy. Nat Rev Cancer 2(10):740–749CrossRefPubMedGoogle Scholar
  8. 8.
    Dey A, Tergaonkar V, Lane DP (2008) Double-edged swords as cancer therapeutics: simultaneously targeting p53 and NF-κB pathways. Nat Rev Drug Discov 7(12):1031–1040CrossRefPubMedGoogle Scholar
  9. 9.
    Dvorak K, Chavarria M, Payne CM, Ramsey L, Crowley-Weber C, Dvorakova B, …, Bernstein C (2007) Activation of the interleukin-6/STAT3 antiapoptotic pathway in esophageal cells by bile acids and low pH: relevance to Barrett’s esophagus. Clin Cancer Res 13(18):5305–5313Google Scholar
  10. 10.
    Feng Y, Ke C, Tang Q, Dong H, Zheng X, Lin W, …, Zhang H (2014) Metformin promotes autophagy and apoptosis in esophageal squamous cell carcinoma by downregulating Stat3 signaling. Cell Death Dis 5(2):e1088Google Scholar
  11. 11.
    Fuchs CS, Tomasek J, Yong CJ, Dumitru F, Passalacqua R, Goswami C, …, Melichar B (2014) Ramucirumabmonotherapy for previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (REGARD): an international, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet 383(9911):31–39Google Scholar
  12. 12.
    Gao SY, Li EM, Cui L, Lu XF, Meng LY, Yuan HM, …, Xu LY (2009) Sp1 and AP-1 regulate expression of the human gene VIL2 in esophageal carcinoma cells. J Biol Chem 284(12):7995–8004Google Scholar
  13. 13.
    Grivennikov SI, Karin M (2010) Dangerous liaisons: STAT3 and NF-κB collaboration and crosstalk in cancer. Cytokine Growth Factor Rev 21(1):11–19CrossRefPubMedGoogle Scholar
  14. 14.
    Hammond EM, Giaccia AJ (2005) The role of p53 in hypoxia-induced apoptosis. Biochem Biophys Res Commun 331(3):718–725CrossRefPubMedGoogle Scholar
  15. 15.
    Huang C, Wang L, Yang X, Lai L, Chen D, Duan C (2015) Expression of activated signal transducer and activator of transcription-3 as a predictive and prognostic marker in advanced esophageal squamous cell carcinoma. World J Surg Oncol 13(1):1CrossRefGoogle Scholar
  16. 16.
    Jenkins GJS, Harries K, Doak SH, Wilmes A, Griffiths AP, Baxter JN, Parry JM (2004) The bile acid deoxycholic acid (DCA) at neutral pH activates NF-κB and induces IL-8 expression in oesophageal cells in vitro. Carcinogenesis 25(3):317–323CrossRefPubMedGoogle Scholar
  17. 17.
    Jung YD, Mansfield PF, Akagi M, Takeda A, Liu W, Bucana CD, …, Ellis LM (2002) Effects of combination anti-vascular endothelial growth factor receptor and anti-epidermal growth factor receptor therapies on the growth of gastric cancer in a nude mouse model. Eur J Cancer 38(8):1133–1140Google Scholar
  18. 18.
    Kanai M, Wei D, Li Q, Jia Z, Ajani J, Le X, …, Xie K (2006) Loss of Krüppel-like factor 4 expression contributes to Sp1 overexpression and human gastric cancer development and progression. Clin Cancer Res 12(21):6395–6402Google Scholar
  19. 19.
    Karin M, Lin A (2002) NF-κB at the crossroads of life and death. Nat Immunol 3(3):221–227CrossRefPubMedGoogle Scholar
  20. 20.
    Kimura S, Kitadai Y, Tanak, S, Kuwai T, Hihara J, Yoshida K, …, Chayama K (2004) Expression of hypoxia-inducible factor (HIF)-1α is associated with vascular endothelial growth factor expression and tumor angiogenesis in human oesophageal squamous cell carcinoma. Eur J Cancer 40(12):1904–1912Google Scholar
  21. 21.
    Koon HW, Zhao D, Zhan Y, Rhee SH, Moyer MP, Pothoulakis C (2006) Substance P stimulates cyclooxygenase-2 and prostaglandin E2 expression through JAK-STAT activation in human colonic epithelial cells. J Immunol 176(8):5050–5059CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Kumar V, Gabrilovich DI (2014) Hypoxia-inducible factors in regulation of immune responses in tumor microenvironment. Immunology 143(4):512–519CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Li B, Li YY, Tsao SW, Cheung AL (2009) Targeting NF-κB signaling pathway suppresses tumor growth, angiogenesis, and metastasis of human esophageal cancer. Mol Cancer Ther 8(9):2635–2644CrossRefPubMedGoogle Scholar
  24. 24.
    Li H, Lu Y, Pang Y, Li M, Cheng X, Chen J (2017) Propofol enhances the cisplatin-induced apoptosis on cervical cancer cells via EGFR/JAK2/STAT3 pathway. Biomed Pharmacother 86:324–333CrossRefPubMedGoogle Scholar
  25. 25.
    Libermann TA, Zerbini LF (2006) Targeting transcription factors for cancer gene therapy. Curr Genet Ther 6(1):17–33CrossRefGoogle Scholar
  26. 26.
    Lin C, Song L, Gong H, Liu A, Lin X, Wu J, …, Li J (2013a). Nkx2-8 downregulation promotes angiogenesis and activates NF-κB in esophageal cancer. Cancer Res 73(12):3638–3648Google Scholar
  27. 27.
    Lin C, Song L, Liu A, Gong H, Lin X, Wu J, …, Li J (2015) Overexpression of AKIP1 promotes angiogenesis and lymphangiogenesis in human esophageal squamous cell carcinoma. Oncogene 34(3):384–393Google Scholar
  28. 28.
    Lin Y, Totsuka Y, He Y, Kikuchi S, Qiao Y, Ueda J, …, Tanaka H (2013b) Epidemiology of esophageal cancer in Japan and China. J Epidemiol 23(4):233–242Google Scholar
  29. 29.
    Liu JR, Wu WJ, Liu SX, Zuo LF, Wang Y, Yang JZ, Nan YM (2015) Nimesulide inhibits the growth of human esophageal carcinoma cells by inactivating the JAK2/STAT3 pathway. Pathol Res Pract 211(6):426–434CrossRefPubMedGoogle Scholar
  30. 30.
    Lopez-Pajares V, Qu K, Zhang J, Webster DE, Barajas BC, Siprashvili Z, …, Kretz M (2015) ALncRNA-MAF: MAFB transcription factor network regulates epidermal differentiation. Dev Cell 32(6):693–706Google Scholar
  31. 31.
    Luo J, Jiang X, Cao L, Dai K, Zhang S, Ge X, …, Lu X (2014) Expression of YY1 correlates with progression and metastasis in esophageal squamous cell carcinomas. Oncol Targets Ther 7:1753–9Google Scholar
  32. 32.
    Luo J, Zhou X, Ge X, Liu P, Cao J, Lu X, …, Zhang S (2013) Upregulation of Ying Yang 1 (YY1) suppresses esophageal squamous cell carcinoma development through heme oxygenase-1. Cancer Sci 104(11):1544–1551Google Scholar
  33. 33.
    McConnell BB, Yang VW (2010) Mammalian Krüppel-like factors in health and diseases. Physiol Rev 90(4):1337–1381CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Nagata T, Shimada Y, Sekine S, Hori R, Matsui K, Okumura T, …, Tsukada K (2014)Prognostic significance of NANOG and KLF4 for breast cancer. Breast Cancer 21(1):96–101Google Scholar
  35. 35.
    Nagoya H, Futagami S, Shimpuku M, Tatsuguchi A, Wakabayashi T, Yamawaki H, …, Miyashita M (2014) Apurinic/apyrimidinic endonuclease-1 is associated with angiogenesis and VEGF production via upregulation of COX-2 expression in esophageal cancer tissues. Am J Physiol-Gastrointest Liver Physiol 306(3):G183–G190Google Scholar
  36. 36.
    Natsuizaka M, Naganuma S, Kagawa S, Ohashi S, Ahmadi A, Subramanian H, …, Klein-Szanto AJ (2012) Hypoxia induces IGFBP3 in esophageal squamous cancer cells through HIF-1α-mediated mRNA transcription and continuous protein synthesis. FASEB J 26(6):2620–2630Google Scholar
  37. 37.
    Naugler WE, Karin M (2008) NF-κB and cancer—identifying targets and mechanisms. Curr Opin Genet Dev 18(1):19–26CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    O’Donovan TR, O’Sullivan GC, McKenna SL (2011) Induction of autophagy by drug-resistant esophageal cancer cells promotes their survival and recovery following treatment with chemotherapeutics. Autophagy 7(5):509–524CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Papineni S, Chintharlapalli S, Abdelrahim M, Lee SO, Burghardt R, Abudayyeh A, …, Safe S (2009) Tolfenamic acid inhibits esophageal cancer through repression of specificity proteins and c-Met. Carcinogenesis 30(7):1193–1201Google Scholar
  40. 40.
    Pore N, Jiang Z, Gupta A, Cerniglia G, Kao GD, Maity A (2006) EGFR tyrosine kinase inhibitors decrease VEGF expression by both hypoxia-inducible factor (HIF)-1–independent and HIF-1–dependent mechanisms. Cancer Res 66(6):3197–3204CrossRefPubMedGoogle Scholar
  41. 41.
    Rapisarda A, Hollingshead M, Uranchimeg B, Bonomi CA, Borgel SD, Carter JP, …, Anver MR (2009) Increased antitumor activity of bevacizumab in combination with hypoxia inducible factor-1 inhibition. Mol Cancer Ther 8(7):1867–1877Google Scholar
  42. 42.
    Rapisarda A, Uranchimeg B, Scudiero DA, Selby M, Sausville EA, Shoemaker RH, Melillo G (2002) Identification of small molecule inhibitors of hypoxia-inducible factor 1 transcriptional activation pathway. Cancer Res 62(15):4316–4324PubMedGoogle Scholar
  43. 43.
    Rizkallah R, Alexander KE, Kassardjian A, Lüscher B, Hurt MM (2011) The transcription factor YY1 is a substrate for Polo-like kinase 1 at the G2/M transition of the cell cycle. PLoS One 6(1):e15928CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Safe S, Imanirad P, Sreevalsan S, Nair V, Jutooru I (2014) Transcription factor Sp1, also known as specificity protein 1 as a therapeutic target. Expert Opin Ther Targets 18(7):759–769CrossRefPubMedGoogle Scholar
  45. 45.
    Semenza GL (2000) HIF-1: mediator of physiological and pathophysiological responses to hypoxia. J Appl Physiol 88(4):1474–1480CrossRefPubMedGoogle Scholar
  46. 46.
    Semenza GL (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3(10):721–732CrossRefPubMedGoogle Scholar
  47. 47.
    Sen GL, Boxer LD, Webster DE, Bussat RT, Qu K, Zarnegar BJ, …, Khavari PA (2012) ZNF750 is a p63 target gene that induces KLF4 to drive terminal epidermal differentiation. Dev Cell 22(3):669–677Google Scholar
  48. 48.
    Shishodia S, Aggarwal BB (2004) Nuclear factor-κB: a friend or a foe in cancer? Biochem Pharmacol 68(6):1071–1080CrossRefPubMedGoogle Scholar
  49. 49.
    Siveen KS, Sikka S, Surana R, Dai X, Zhang J, Kumar AP, …, Bishayee A (2014) Targeting the STAT3 signaling pathway in cancer: role of synthetic and natural inhibitors. Biochimi Biophys Acta (BBA)-Rev Cancer 1845(2):136–154Google Scholar
  50. 50.
    Squarize CH, Castilho RM, Sriuranpong V, Pinto DS, Gutkind JS (2006) Molecular cross-talk between the NFκB and STAT3 signaling pathways in head and neck squamous cell carcinoma. Neoplasia 8(9):733–746CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Stevens C, La Thangue NB (2003) E2F and cell cycle control: a double-edged sword. Arch Biochem Biophys 412(2):157–169CrossRefPubMedGoogle Scholar
  52. 52.
    Sun Z, Andersson R (2002) NF-κB activation and inhibition: a review. Shock 18(2):99–106CrossRefPubMedGoogle Scholar
  53. 53.
    Tabernero J, Macarulla T, Ramos FJ, Baselga J (2005) Novel targeted therapies in the treatment of gastric and esophageal cancer. Ann Oncol 16(11):1740–1748CrossRefPubMedGoogle Scholar
  54. 54.
    Tacchini L, De Ponti C, Matteucci E, Follis R, Desiderio MA (2004) Hepatocyte growth factor-activated NF-κB regulates HIF-1 activity and ODC expression, implicated in survival, differently in different carcinoma cell lines. Carcinogenesis 25(11):2089–2100CrossRefPubMedGoogle Scholar
  55. 55.
    Tang W, Zhu Y, Gao J, Fu J, Liu C, Liu Y, …, Chen W (2014) MicroRNA-29a promotes colorectal cancer metastasis by regulating matrix metalloproteinase 2 and E-cadherin via KLF4. Br J Cancer 110(2):450–458Google Scholar
  56. 56.
    Tetreault MP, Weinblatt D, Shaverdashvili K, Yang Y, Katz JP (2016) KLF4 transcriptionally activates non-canonical WNT5A to control epithelial stratification. Sci Rep 6Google Scholar
  57. 57.
    Tsantoulis PK, Gorgoulis VG (2005) Involvement of E2F transcription factor family in cancer. Eur J Cancer 41(16):2403–2414CrossRefPubMedGoogle Scholar
  58. 58.
    Wang Y, Li M, Zang W, Ma Y, Wang N, Li P, …, Zhao G (2013) MiR-429 up-regulation induces apoptosis and suppresses invasion by targeting Bcl-2 and SP-1 in esophageal carcinoma. Cell Oncol 36(5):385–394Google Scholar
  59. 59.
    Weinberg RA (1995) The retinoblastoma protein and cell cycle control. Cell 81(3):323–330CrossRefPubMedGoogle Scholar
  60. 60.
    Wu L, Timmers C, Maiti B, Saavedra HI, Sang L, Chong GT, …, Greenberg ME (2001) The E2F1–3 transcription factors are essential for cellular proliferation. Nature 414(6862):457–462Google Scholar
  61. 61.
    Xiong A, Yang Z, Shen Y, Zhou J, Shen Q (2014) Transcription factor STAT3 as a novel molecular target for cancer prevention. Cancer 6(2):926–957CrossRefGoogle Scholar
  62. 62.
    Yan Y, Zhiwei LI, Kong X, Jia Z, Zuo X, Gagea M, …, Xie K (2016) KLF4-mediated suppression of CD44 signaling negatively impacts pancreatic cancer stemness and metastasis. Cancer Res 76(8):2419–2431Google Scholar
  63. 63.
    Yeo SY, Ha SY, Yu EJ, Lee KW, Kim JH, Kim SH (2014) ZNF282 (zinc finger protein 282), a novel E2F1 co-activator, promotes esophageal squamous cell carcinoma. Oncotarget 5(23):12260CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Yu H, Pardoll D, Jove R (2009) STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 9(11):798–809CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Zeng W, Li H, Chen Y, Lv H, Liu L, Ran J, …, Lai W (2016) Survivin activates NF-κB p65 via the IKKβ promoter in esophageal squamous cell carcinoma. Mol Med Rep 13(2) 1869–1880Google Scholar
  66. 66.
    Zhang C, Fu L, Fu J, Hu L, Yang H, Rong TH, …, Guan XY (2009) Fibroblast growth factor receptor 2–positive fibroblasts provide a suitable microenvironment for tumor development and progression in esophageal carcinoma. Clin Cancer Res 15(12):4017–4027Google Scholar
  67. 67.
    Zhang XD, Xie JJ, Liao LD, Long L, Xie YM, Li EM, Xu LY (2015) 12-O-Tetradecanoylphorbol-13-acetate induces up-regulated transcription of variant 1 but not variant 2 of VIL2 in esophageal squamous cell carcinoma cells via ERK1/2/AP-1/Sp1 signaling. PLoS One 10(4):e0124680CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Zhao M, Zhang Y, Zhang H, Wang S, Zhang M, Chen X, …, Zhou C (2015) Hypoxia-induced cell stemness leads to drug resistance and poor prognosis in lung adenocarcinoma. Lung Cancer 87(2):98–106Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd 2017

Authors and Affiliations

  • Pallaval Veera Bramhachari
    • 1
  • A. M. V. N. Prathyusha
    • 1
  • D. Rama Sekhara Reddy
    • 2
  1. 1.Department of BiotechnologyKrishna UniversityMachilipatnamIndia
  2. 2.Department of ChemistryKrishna UniversityMachilipatnamIndia

Personalised recommendations