Advertisement

Targeting Transcriptional Factors in Gastrointestinal Cancers and Future Prospective

  • Ganji Purnachandra Nagaraju
  • Pallaval Veera Bramhachari
  • Subasini Pattnaik
Chapter

Abstract

Transcription factors (TFs) are deregulated in the majority of human cancers and play a major role in tumor progression and metastasis. Targeting TFs could prove to be highly effective in the treatment of gastrointestinal (GI) malignancies, as highlighted by the clinical efficiency of target molecules aiming at the nuclear hormone receptors. In this chapter, we summarize the role of different TFs discussed in the previous chapters with a focus on the emerging chemical as well as phytochemical approaches to control their functions. The outstanding diversity and efficacy of TFs as the driving force of cell transformation demands a continued search of TFs as novel and therapeutic agents for anti-GI treatments.

Keywords

Transcription factors Gastrointestinal malignancies NF-κB AP-1 HIF-1α STAT-3 YY1 KLF4 LEF-TCF E2F-1 

References

  1. 1.
    Siegel RL, Miller KD, Jemal A (2016) Cancer statistics, 2016. CA Cancer J Clin 66:7–30CrossRefGoogle Scholar
  2. 2.
    Chiba T, Marusawa H, Ushijima T (2012) Inflammation-associated cancer development in digestive organs: mechanisms and roles for genetic and epigenetic modulation. Gastroenterology 143:550–563CrossRefPubMedGoogle Scholar
  3. 3.
    E.E.S.N.W. Group, (2012) Gastrointestinal stromal tumors: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol, 23 vii49-vii55Google Scholar
  4. 4.
    Lim L, Michael M, Mann GB, Leong T (2005) Adjuvant therapy in gastric cancer. J Clin Oncol 23:6220–6232CrossRefPubMedGoogle Scholar
  5. 5.
    Li B, Huang C (2017) Regulation of EMT by STAT3 in gastrointestinal cancer. Int J Oncol 50:753–767CrossRefPubMedGoogle Scholar
  6. 6.
    I. Verma, (2004) Nuclear factor (NF)-κB proteins: therapeutic targets. Ann Rheum Dis, 63 ii57-ii61CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420:860CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Duque N, Gomez-Guerrero C, Egido J (1997) Interaction of IgA with Fc alpha receptors of human mesangial cells activates transcription factor nuclear factor-kappa B and induces expression and synthesis of monocyte chemoattractant protein-1, IL-8, and IFN-inducible protein 10. J Immunol 159:3474–3482PubMedGoogle Scholar
  9. 9.
    He G, Karin M (2011) NF-κB and STAT3–key players in liver inflammation and cancer. Cell Res 21:159CrossRefPubMedGoogle Scholar
  10. 10.
    Yamamoto Y, Gaynor RB (2001) Therapeutic potential of inhibition of the NF-κB pathway in the treatment of inflammation and cancer. J Clin Investig 107:135CrossRefPubMedGoogle Scholar
  11. 11.
    Wurtz NR, Pomerantz JL, Baltimore D, Dervan PB (2002) Inhibition of DNA binding by NF-κB with pyrrole-imidazole polyamides. Biochemistry 41:7604–7609CrossRefPubMedGoogle Scholar
  12. 12.
    Salminen A, Hyttinen JM, Kaarniranta K (2011) AMP-activated protein kinase inhibits NF-κB signaling and inflammation: impact on healthspan and lifespan. J Mol Med 89:667–676CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Surh Y-J, Chun K-S, Cha H-H, Han SS, Keum Y-S, Park K-K, Lee SS (2001) Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-κB activation. Mutat Res Fundam Mol Mech Mutagen 480:243–268CrossRefGoogle Scholar
  14. 14.
    Tian F, Fan T, Zhang Y, Jiang Y, Zhang X (2012) Curcumin potentiates the antitumor effects of 5-FU in treatment of esophageal squamous carcinoma cells through downregulating the activation of NF-κB signaling pathway in vitro and in vivo. Acta Biochim Biophys Sin 44:847–855CrossRefPubMedGoogle Scholar
  15. 15.
    Priyadarsini RV, Murugan RS, Maitreyi S, Ramalingam K, Karunagaran D, Nagini S (2010) The flavonoid quercetin induces cell cycle arrest and mitochondria-mediated apoptosis in human cervical cancer (HeLa) cells through p53 induction and NF-κB inhibition. Eur J Pharmacol 649:84–91CrossRefGoogle Scholar
  16. 16.
    Schindler C, Darnell J Jr (1995) Transcriptional responses to polypeptide ligands: the JAK-STAT pathway. Annu Rev Biochem 64:621–652CrossRefPubMedGoogle Scholar
  17. 17.
    Haura EB, Turkson J, Jove R (2005) Mechanisms of disease: insights into the emerging role of signal transducers and activators of transcription in cancer. Nat Rev Clin Oncol 2:315CrossRefGoogle Scholar
  18. 18.
    Yu H, Pardoll D, Jove R (2009) STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 9:798CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Gartel AL, Kandel ES (2006) RNA interference in cancer. Biomol Eng 23:17–34CrossRefPubMedGoogle Scholar
  20. 20.
    Zhang X, Liu P, Zhang B, Wang A, Yang M (2010) Role of STAT3 decoy oligodeoxynucleotides on cell invasion and chemosensitivity in human epithelial ovarian cancer cells. Cancer Genet Cytogenet 197:46–53CrossRefPubMedGoogle Scholar
  21. 21.
    Huntzinger E, Izaurralde E (2011) Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 12:99CrossRefPubMedGoogle Scholar
  22. 22.
    Shehzad A, Lee J, Lee YS (2013) Curcumin in various cancers. Biofactors 39:56–68CrossRefPubMedGoogle Scholar
  23. 23.
    Banerjee S, Li Y, Wang Z, Sarkar FH (2008) Multi-targeted therapy of cancer by genistein. Cancer Lett 269:226–242CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Berra E, Roux D, Richard DE, Pouysségur J (2001) Hypoxia-inducible factor-1α (HIF-1α) escapes O 2-driven proteasomal degradation irrespective of its subcellular localization: nucleus or cytoplasm. EMBO Rep 2:615–620CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Mottet D, Dumont V, Deccache Y, Demazy C, Ninane N, Raes M, Michiels C (2003) Regulation of hypoxia-inducible factor-1α protein level during hypoxic conditions by the phosphatidylinositol 3-kinase/Akt/glycogen synthase kinase 3β pathway in HepG2 cells. J Biol Chem 278:31277–31285CrossRefPubMedGoogle Scholar
  26. 26.
    Schmid T, Zhou J, Brüne B (2004) HIF-1 and p53: communication of transcription factors under hypoxia. J Cell Mol Med 8:423–431CrossRefPubMedGoogle Scholar
  27. 27.
    Blancher C, Moore JW, Robertson N, Harris AL (2001) Effects of ras and von Hippel-Lindau (VHL) gene mutations on hypoxia-inducible factor (HIF)-1α, HIF-2α, and vascular endothelial growth factor expression and their regulation by the phosphatidylinositol 3′-kinase/Akt signaling pathway. Cancer Res 61:7349–7355PubMedGoogle Scholar
  28. 28.
    Finger EC, Giaccia AJ (2010) Hypoxia, inflammation, and the tumor microenvironment in metastatic disease. Cancer Metastasis Rev 29:285–293CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Han K-Q, He X-Q, Ma M-Y, Guo X-D, Zhang X-M, Chen J, Han H, Zhang W-W, Zhu Q-G, Zhao W-Z (2015) Targeted silencing of CXCL1 by siRNA inhibits tumor growth and apoptosis in hepatocellular carcinoma. Int J Oncol 47:2131–2140CrossRefPubMedGoogle Scholar
  30. 30.
    Chen C, Yu Z (2009) siRNA targeting HIF-1α induces apoptosis of pancreatic cancer cells through NF-κB-independent and-dependent pathways under hypoxic conditions. Anticancer Res 29:1367–1372PubMedGoogle Scholar
  31. 31.
    Zhou Y-D, Kim Y-P, Li X-C, Baerson SR, Agarwal AK, Hodges TW, Ferreira D, Nagle DG (2004) Hypoxia-inducible factor-1 activation by (−)-epicatechin gallate: potential adverse effects of cancer chemoprevention with high-dose green tea extracts. J Nat Prod 67:2063–2069CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Kataoka K, Noda M, Nishizawa M (1994) Maf nuclear oncoprotein recognizes sequences related to an AP-1 site and forms heterodimers with both Fos and Jun. Mol Cell Biol 14:700–712CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Loayza-puch F, Yoshida Y, Matsuzaki T, Takahashi C, Kitayama H, Noda M (2010) Hypoxia and RAS-signaling pathways converge on, and cooperatively downregulate, the RECK tumor-suppressor protein through microRNAs. Oncogene 29:2638CrossRefPubMedGoogle Scholar
  34. 34.
    Gee J, Robertson J, Gutteridge E, Ellis I, Pinder S, Rubini M, Nicholson R (2005) Epidermal growth factor receptor/HER2/insulin-like growth factor receptor signalling and oestrogen receptor activity in clinical breast cancer. Endocr Relat Cancer 12:S99–S111CrossRefPubMedGoogle Scholar
  35. 35.
    Balasubramanian S, Eckert RL (2007) Curcumin suppresses AP1 transcription factor-dependent differentiation and activates apoptosis in human epidermal keratinocytes. J Biol Chem 282:6707–6715CrossRefPubMedGoogle Scholar
  36. 36.
    Liang Z, Wu R, Xie W, Geng H, Zhao L, Xie C, Wu J, Geng S, Li X, Zhu M (2015) Curcumin suppresses MAPK pathways to reverse tobacco smoke-induced gastric epithelial–mesenchymal transition in mice. Phytother Res 29:1665–1671CrossRefPubMedGoogle Scholar
  37. 37.
    Wang S-D, Chen B-C, Kao S-T, Liu C-J, Yeh C-C (2014) Genistein inhibits tumor invasion by suppressing multiple signal transduction pathways in human hepatocellular carcinoma cells. BMC Complement Altern Med 14:26CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    P. Zhou, The polycomb group complex PRC1 collaborates with cohesin to stabilize the synaptonemal complex and promote crossovers during Meiosis, Dartmouth College 2012Google Scholar
  39. 39.
    Meier K, Brehm A (2014) Chromatin regulation: how complex does it get? Epigenetics 9:1485–1495CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Margueron R, Reinberg D (2010) Chromatin structure and the inheritance of epigenetic information. Nat Rev Genet 11:285CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Metz R, Bannister AJ, Sutherland JA, Hagemeier C, O’Rourke EC, Cook A, Bravo R, Kouzarides T (1994) c-Fos-induced activation of a TATA-box-containing promoter involves direct contact with TATA-box-binding protein. Mol Cell Biol 14:6021–6029CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Dong S, Ma X, Wang Z, Han B, Zou H, Wu Z, Zang Y, Zhuang L (2017) YY1 promotes HDAC1 expression and decreases sensitivity of hepatocellular carcinoma cells to HDAC inhibitor. Oncotarget 8:40583PubMedPubMedCentralGoogle Scholar
  43. 43.
    Kang W, Tong JH, Chan AW, Zhao J, Dong Y, Wang S, Yang W, Sin FM, Ng SS, Yu J (2014) Yin Yang 1 contributes to gastric carcinogenesis and its nuclear expression correlates with shorter survival in patients with early stage gastric adenocarcinoma. J Transl Med 12:80CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Yang Y, Goldstein BG, Chao H-H, Katz J (2005) KLF4 and KLF5 regulate proliferation, apoptosis and invasion in esophageal cancer cells. Cancer Biol Ther 4:1216–1221CrossRefPubMedGoogle Scholar
  45. 45.
    Wei D, Kanai M, Huang S, Xie K (2005) Emerging role of KLF4 in human gastrointestinal cancer. Carcinogenesis 27:23–31CrossRefPubMedGoogle Scholar
  46. 46.
    Rowland BD, Peeper DS (2006) KLF4, p21 and context-dependent opposing forces in cancer. Nat Rev Cancer 6:11CrossRefPubMedGoogle Scholar
  47. 47.
    Hashimoto I, Nagata T, Sekine S, Moriyama M, Shibuya K, Hojo S, Matsui K, Yoshioka I, Okumura T, Hori T (2017) Prognostic significance of KLF4 expression in gastric cancer. Oncol Lett 13:819–826CrossRefPubMedGoogle Scholar
  48. 48.
    Lin RJ, Xiao DW, Liao LD, Chen T, Xie ZF, Huang WZ, Wang WS, Jiang TF, Wu BL, Li EM (2012) MiR-142-3p as a potential prognostic biomarker for esophageal squamous cell carcinoma. J Surg Oncol 105:175–182CrossRefPubMedGoogle Scholar
  49. 49.
    Ji J, Wang H-S, Gao Y-Y, Sang L-M, Zhang L (2014) Synergistic anti-tumor effect of KLF4 and curcumin in human gastric carcinoma cell line. Asian Pac J Cancer Prev 15:7747–7752CrossRefPubMedGoogle Scholar
  50. 50.
    Leung KW, Pon YL, Wong RN, Wong AS (2006) Ginsenoside-Rg1 induces vascular endothelial growth factor expression through the glucocorticoid receptor-related phosphatidylinositol 3-kinase/Akt and β-catenin/T-cell factor-dependent pathway in human endothelial cells. J Biol Chem 281:36280–36288CrossRefPubMedGoogle Scholar
  51. 51.
    Logan CY, Nusse R (2004) The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20:781–810CrossRefGoogle Scholar
  52. 52.
    Easwaran V, Pishvaian M, Byers S (1999) Cross-regulation of β-catenin–LEF/TCF and retinoid signaling pathways. Curr Biol 9:1415–1419CrossRefPubMedGoogle Scholar
  53. 53.
    Dihlmann S, Kloor M, Fallsehr C, von Knebel Doeberitz M (2005) Regulation of AKT1 expression by beta-catenin/Tcf/Lef signaling in colorectal cancer cells. Carcinogenesis 26:1503–1512CrossRefPubMedGoogle Scholar
  54. 54.
    Dyson N (1998) The regulation of E2F by pRB-family proteins. Genes Dev 12:2245–2262CrossRefPubMedGoogle Scholar
  55. 55.
    Harbour JW, Dean DC (2000) The Rb/E2F pathway: expanding roles and emerging paradigms. Genes Dev 14:2393–2409CrossRefPubMedGoogle Scholar
  56. 56.
    Stevaux O, Dyson NJ (2002) A revised picture of the E2F transcriptional network and RB function. Curr Opin Cell Biol 14:684–691CrossRefPubMedGoogle Scholar
  57. 57.
    Wyllie AH (2002) E2F1 selects tumour cells for both life and death. J Pathol 198:139–141CrossRefPubMedGoogle Scholar
  58. 58.
    Xu G, Livingston DM, Krek W (1995) Multiple members of the E2F transcription factor family are the products of oncogenes. Proc Natl Acad Sci 92:1357–1361CrossRefPubMedGoogle Scholar
  59. 59.
    Suzuki T, Yasui W, Yokozaki H, Naka K, Ishikawa T, Tahara E (1999) Expression of the E2F family in human gastrointestinal carcinomas. Int J Cancer 81:535–538CrossRefPubMedGoogle Scholar
  60. 60.
    Johnson DG, Schwarz JK, Cress WD, Nevins JR (1993) Expression of transcription factor E2F1 induces quiescent cells to enter S phase. Nature 365:349CrossRefPubMedGoogle Scholar
  61. 61.
    Atienza C, Elliott MJ, Dong Y, Yang H, Stilwell A, Liu T, McMASTERS KM (2000) Adenovirus-mediated E2F-1 gene transfer induces an apoptotic response in human gastric carcinoma cells that is enhanced by cyclin dependent kinase inhibitors. Int J Mol Med 6:55–118CrossRefPubMedGoogle Scholar
  62. 62.
    Yamasaki L, Jacks T, Bronson R, Goillot E, Harlow E, Dyson NJ (1996) Tumor induction and tissue atrophy in mice lacking E2F-1. Cell 85:537–548CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd 2017

Authors and Affiliations

  1. 1.Department of Hematology and Medical Oncology, Winship Cancer InstituteEmory UniversityAtlantaUSA
  2. 2.Department of Zoology and Department of BiotechnologyBerhampur UniversityBhanjavihar, BerhampurIndia
  3. 3.Department of BiotechnologyKrishna UniversityMachilipatnamIndia
  4. 4.Department of Zoology and Department of BiotechnologyBerhampur UniversityBerhampurIndia

Personalised recommendations