AP-1: Its Role in Gastrointestinal Malignancies

  • P. S. SushmaEmail author
  • P. UdayKumar
  • Aliya Sheik


The role of transcription factor AP-1 (activator protein 1) in human physiology is distinct due to its involvement in tissue regeneration in which the metabolism is instigated by the signals which trigger undifferentiated proliferative cells to proceed toward cell differentiation. Consequently the functions of AP-1 may be altered in response to extracellular signals. The studies on gene-knockout mice and AP-1-deficient cell lines propose that AP-1 regulates multiple gene targets and accomplishes accurate physiological functions. There is a significant breakthrough in unveiling the molecular mechanisms and signaling pathways that monitors AP-1 activity. AP-1 functions as a double-edged sword in cancer progression through monitoring gene expression involving cell proliferation, cellular differentiation, cell death, and tumor invasion. AP-1 can be oncogenic and antioncogenic too. The activities of AP-1 in cancer appear to rely on composition of AP-1 dimers and type, stage, and genetic basis of cancer. c-Jun protein, one of the subunits of AP-1 up on activation, is expressed primarily at invasive front in carcinomas leading to the proliferation of malignant cells. Thus, c-Jun mainly has oncogenic functions, while JunB and JunD have antioncogenic effects. AP-1’s role is being studied not only in cancers but also in disorders such as psoriasis, asthma, and transplant rejection. AP-1 emerged as drug discovery target in recent years. This review is being structured to highlight the role of AP-1 transcription factor in the gastrointestinal malignancy progression.


AP-1 transcription factor c-Jun c-Fos Cell proliferation Cellular differentiation Apoptosis Gastrointestinal cancers 



Authors are grateful to the Dr. NTR University of Health Sciences and National Institute of Nutrition (ICMR) for their encouragement.

Conflict of Interest

None declared.


  1. 1.
    Ameyar M, Wisniewska M, Weitzman JB (2003) A role for AP-1 in apoptosis: the case for and against. Biochimie 85(8):747–752CrossRefPubMedGoogle Scholar
  2. 2.
    Lee W, Haslinger A, Karin M, Tjian R (1987) Activation of transcription by two factors that bind promoter and enhancer sequences of the human metallothionein gene and SV40. Nature 325(6102):368–372CrossRefPubMedGoogle Scholar
  3. 3.
    Angel P et al (1987) Phorbol ester-inducible genes contain a common cis element recognized by a TPA-modulated trans-acting factor. Cell 49(6):729–739CrossRefPubMedGoogle Scholar
  4. 4.
    Wagner EF (2001) AP-1—introductory remarks. Oncogene 20(19):2334–2335CrossRefPubMedGoogle Scholar
  5. 5.
    Hess J, Angel P, Schorpp-Kistner M (2004) AP-1 subunits: quarrel and harmony among siblings. J Cell Sci 117(25):5965–5973CrossRefPubMedGoogle Scholar
  6. 6.
    Michael K, Zheng-gang L, Ebrahim Z (1997) AP-1 function and regulation. Curr Opin Cell Biol 9(2):240–246CrossRefGoogle Scholar
  7. 7.
    Junro Y, McCauley, Laurie K (2006) The activating Protein-1 transcriptional complex: essential and multifaceted roles in bone. Clin Rev Bone Miner Metab 4(2):107–122CrossRefGoogle Scholar
  8. 8.
    Shaulian E, Karin M (2002) AP-1 as a regulator of cell life and death. Nat Cell Biol 4:E131–E136CrossRefPubMedGoogle Scholar
  9. 9.
    Bossy-Wetzel E (1997) Induction of apoptosis by the transcription factor c-Jun. EMBO J 16(7):1695–1709CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Willi VP, Bernhard SP, Gerald H, Lukas K (2009) Translational regulation mechanisms of AP-1 proteins. Mutat Res Rev Mutat Res 682(1):7–12CrossRefGoogle Scholar
  11. 11.
    Peter A, Axel S, Marina S-K (2001) Function and regulation of AP-1 subunits in skin physiology and pathology. Oncogene 20(19):2413–2423CrossRefGoogle Scholar
  12. 12.
    Shen Q et al (2007) The AP-1 transcription factor regulates breast cancer cell growth via cyclins and E2F factors. Oncogene 27(3):366–377CrossRefPubMedGoogle Scholar
  13. 13.
    Parkin DM, Bray F, Ferlay J, Pisani P (2000) Estimating the world cancer burden: Globocan. Int J Cancer 94:153–156CrossRefGoogle Scholar
  14. 14.
    Block TM, Mehta AS, Fimmel CJ, Jordan R (2003) Molecular viral oncology of hepatocellular carcinoma. Oncogene 22:5093–5107CrossRefPubMedGoogle Scholar
  15. 15.
    Nakamoto Y, Kaneko S (2003) Mechanisms of viral hepatitis induced liver injury. Curr Mol Med 3:537–544CrossRefPubMedGoogle Scholar
  16. 16.
    Brechot C (2004) Pathogenesis of hepatitis B virus-related hepatocellular carcinoma: old and new paradigms. Gastroenterology 127:S56–S61CrossRefPubMedGoogle Scholar
  17. 17.
    Wu X, Pandolfi PP (2001) Mouse models for multistep tumorigenesis. Trends Cell Biol 11:S2–S9CrossRefPubMedGoogle Scholar
  18. 18.
    Kato M, Popp JA, Conolly RB, Cattley RC (1993) Relationship between hepatocyte necrosis, proliferation, and initiation induced by diethylnitrosamine in the male F344 rat. Fundam Appl Toxicol 20:155–162CrossRefPubMedGoogle Scholar
  19. 19.
    Lee JS et al (2004) Application of comparative functional genomics to identify best-fit mouse models to study human cancer. Nat Genet 36:1306–1311CrossRefPubMedGoogle Scholar
  20. 20.
    Maeda S, Kamata H, Luo JL, Leffert H, Karin M (2005) IKK beta couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell 121:977–990CrossRefPubMedGoogle Scholar
  21. 21.
    Pikarsky E et al (2004) NF-kappa B functions as a tumour promoter in inflammation-associated cancer. Nature 431:461–466CrossRefPubMedGoogle Scholar
  22. 22.
    Johnson RS, Van Lingen B, Papaioannou VE, Spiegelman BM (1993) A null mutation at the c-Jun locus causes embryonic lethality and retarded cell growth in culture. Genes Dev 7:1309–1317CrossRefPubMedGoogle Scholar
  23. 23.
    Eferl R et al (2003) Liver tumor development: c-Jun antagonizes the proapoptotic activity of p53. Cell 112:181–192CrossRefPubMedGoogle Scholar
  24. 24.
    Smeal T, Benetruy B, Mercola D, Birrer M, Karin M (1991) Oncogenic and transcriptional cooperation with Ha-Ras requires phosphorylation of c-Jun on serines 63 and 73. Nature 354:494–496CrossRefPubMedGoogle Scholar
  25. 25.
    Ostrovsky O, Bengal E, Aronheim A (2002) Induction of terminal differentiation by the c-Jun dimerization protein JDP2 in C2 myoblasts and rhabdomyosarcoma cells. J Biol Chem 277:40043–40054CrossRefPubMedGoogle Scholar
  26. 26.
    Kawaida R et al (2003) Jun dimerization protein 2 (JDP2), a member of the AP-1 family of transcription factor, mediates osteoclast differentiation induced by RANKL. J Exp Med 197:1029–1035CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Piu F, Aronheim A, Katz S, Karin M (2001) AP-1 repressor protein JDP-2: inhibition of UV-mediated apoptosis through p53 down-regulation. Mol Cell Biol 21:3012–3024CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Heinrich R, Livne E, Ben-Izhak O, Aronheim A (2004) The c-Jun dimerization protein 2 inhibits cell transformation and acts as a tumor suppressor gene. J Biol Chem 279:5708–5715CrossRefPubMedGoogle Scholar
  29. 29.
    Hezel AF, Kimmelman AC, Stanger BZ, Bardeesy N, Depinho RA (2006) Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev 20:1218–1249CrossRefGoogle Scholar
  30. 30.
    Fujioka S et al (2003) Inhibition of constitutive NF-κB activity by IκBαM suppresses tumorigenesis. Oncogene 22:1365–1370CrossRefPubMedGoogle Scholar
  31. 31.
    Niu J, Li Z, Peng B, Chiao PJ (2004) Identification of an autoregulatory feedback pathway involving interleukin-1α in induction of constitutive NF-κB activation in pancreatic cancer cells. J Biol Chem 279:16452–16462CrossRefPubMedGoogle Scholar
  32. 32.
    Eferl R, Wagner EF (2003) AP-1: a double-edged sword in tumorigenesis. Nat Rev Cancer 3:859–868CrossRefPubMedGoogle Scholar
  33. 33.
    Jochum W, Passegue E, Wagner EF (2001) AP-1 in mouse development and tumorigenesis. Oncogene 20:2401–2412CrossRefGoogle Scholar
  34. 34.
    Mathas S et al (2002) Aberrantly expressed c-Jun and JunB are a hallmark of Hodgkin lymphoma cells, stimulate proliferation and synergize with NF-κB. EMBO J 21:4104–4113CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Ferrara C et al (1999) Ki-67 and c-jun expression in pancreatic cancer: a prognostic marker? Oncol Rep 6:1117–1122PubMedGoogle Scholar
  36. 36.
    Tessari G et al (1999) The expression of proto-oncogene c-jun in human pancreatic cancer. Anticancer Res 19:863–867PubMedGoogle Scholar
  37. 37.
    Murphy LO et al (2001) Pancreatic cancer cells require an EGF receptor-mediated autocrine pathway for proliferation in serum-free conditions. Br J Cancer 84:926–935CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Wagner M et al (1996) Expression of a truncated EGF receptor is associated with inhibition of pancreatic cancer cell growth and enhanced sensitivity to cisplatinum. Int J Cancer 68:782–787CrossRefPubMedGoogle Scholar
  39. 39.
    Wisdom R, Johnson RS, Moore C (1999) c-Jun regulates cell cycle progression and apoptosis by distinct mechanisms. EMBO J 18:188–197CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Eferl R et al (1999) Functions of c-Jun in liver and heart development. J Cell Biol 145:1049–1061CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Le-Niculescu H et al (1999) Withdrawal of survival factors results in activation of the JNK pathway in neuronal cells leading to Fas ligand induction and cell death. Mol Cell Biol 19:751–763CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Shaulian E, Karin M (2001) AP-1 in cell proliferation and survival. Oncogene 20:2390–2400CrossRefGoogle Scholar
  43. 43.
    Chang F et al (2003) Signal transduction mediated by the Ras/Raf/MEK/ERK pathway from cytokine receptors to transcription factors: potential targeting for therapeutic intervention. Leukemia 17:1263–1293CrossRefPubMedGoogle Scholar
  44. 44.
    Tiwari G, Sakaue H, Pollack JR, Roth RA (2003) Gene expression profiling in prostate cancer cells with Akt activation reveals Fra-1 as an Akt-inducible gene. Mol Cancer Res 1:475–484PubMedGoogle Scholar
  45. 45.
    Boyle WJ et al (1991) Activation of protein kinase C decreases phosphorylation of c-Jun at sites that negatively regulate its DNA-binding activity. Cell 64:573–584CrossRefPubMedGoogle Scholar
  46. 46.
    Morton S, Davis RJ, McLaren A, Cohen P (2003) A reinvestigation of the multisite phosphorylation of the transcription factor c-Jun. EMBO J 22:3876–3886CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Troussard AA, Tan C, Yoganathan TN, Dedhar S (1999) Cell-extracellular matrix interactions stimulate the AP-1 transcription factor in an integrin-linked kinase and glycogen synthase kinase 3- dependent manner. Mol Cell Biol 19:7420–7427CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Wei W, Jin J, Schlisio S, Harper JW, Kaelin WG Jr (2005) The v-Jun point mutation allows c-Jun to escape GSK3-dependent recognition and destruction by the Fbw7 ubiquitin ligase. Cancer Cell 8:25–33CrossRefPubMedGoogle Scholar
  49. 49.
    Salas TR et al (2003) Alleviating the suppression of glycogen synthase kinase-3β by Akt leads to the phosphorylation of cAMP-response element-binding protein and its transactivation in intact cell nuclei. J Biol Chem 278:41338–41346CrossRefPubMedGoogle Scholar
  50. 50.
    Leaner VD, Donninger H, Ellis CA, Clark GJ, Birrer MJ (2005) p75-Ras-GRF1 is a c-Jun/AP-1 target protein: its up regulation results in increased Ras activity and is necessary for c-Jun-induced non adherent growth of Rat1a cells. Mol Cell Biol 25:3324–3337CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Hettinger K et al (2007) c-Jun promotes cellular survival by suppression of PTEN. Cell Death Differc 14:218–229CrossRefGoogle Scholar
  52. 52.
    Hirano T et al (2002) Dominant negative MEKK1 inhibits survival of pancreatic cancer cells. Oncogene 21:5923–5928CrossRefPubMedGoogle Scholar
  53. 53.
    Asano T et al (2004) The PI 3-kinase/Akt signaling pathway is activated due to aberrant Pten expression and targets transcription factors NF-κB and c-Myc in pancreatic cancer cells. Oncogene 23:8571–8580CrossRefPubMedGoogle Scholar
  54. 54.
    Asano T et al (2005) Insulin receptor substrate is a mediator of phosphoinositide 3-kinase activation in quiescent pancreatic cancer cells. Cancer Res 65:9164–9168CrossRefPubMedGoogle Scholar
  55. 55.
    Pennathur A, Gibson MK, Jobe BA, Luketich JD (2013) Oesophageal carcinoma. Lancet 381:400–412CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Yang H et al (2015) Stemness and chemotherapeutic drug resistance induced by EIF5A2 overexpression in esophageal squamous cell carcinoma. Oncotarget 6:26079–26089PubMedCentralPubMedGoogle Scholar
  57. 57.
    Luo A et al (2013) Small proline-rich repeat protein 3 enhances the sensitivity of esophageal cancer cells in response to DNA damage-induced apoptosis. Mol Oncol 7:955–967CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Zhang S et al (2014) Apollon modulates chemosensitivity in human esophageal squamous cell carcinoma. Oncotarget 5:7183–7197PubMedCentralPubMedGoogle Scholar
  59. 59.
    Ling MT, Wang X, Zhang X, Wong YC (2006) The multiple roles of Id-1 in cancer progression. Differentiation 74:481–487CrossRefPubMedGoogle Scholar
  60. 60.
    Liu J et al (2010) Expression and prognostic relevance of Id1 in stage III esophageal squamous cell carcinoma. Cancer Biomark 8:67–72CrossRefPubMedGoogle Scholar
  61. 61.
    Li B et al (2015) Competitive binding between Id1 and E2F1 to Cdc20 regulates E2F1 degradation and thymidylate synthase expression to promote esophageal cancer chemoresistance. Clin Cancer Res 15:1196Google Scholar
  62. 62.
    Trevino JG et al (2012) Nicotine induces inhibitor of differentiation-1 in a Src-dependent pathway promoting metastasis and chemoresistance in pancreatic adenocarcinoma. Neoplasia 14:1102–1114CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Yap WN et al (2010) Id1, inhibitor of differentiation, is a key protein mediating anti-tumor responses of gamma-tocotrienol in breast cancer cells. Cancer Lett 291:187–199CrossRefPubMedGoogle Scholar
  64. 64.
    Yu H et al (2014) LIF negatively regulates tumour-suppressor p53 through Stat3/ID1/MDM2 in colorectal cancers. Nat Commun 5:5218CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    McNeely SC et al (2006) Exit from arsenite-induced mitotic arrest is p53 dependent. Environ Health Perspect 114:1401–1406CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Steidl U et al (2006) Essential role of Jun family transcription factors in PU.1 knockdown-induced leukemic stem cells. Nat Genet 38(11):1269–1277CrossRefPubMedGoogle Scholar
  67. 67.
    Boeckx C et al (2015) Establishment and characterization of cetuximab resistant head and neck squamous cell carcinoma cell lines: focus on the contribution of the AP-1 transcription factor. Am J Cancer Res 5:1921–1938PubMedCentralPubMedGoogle Scholar
  68. 68.
    Ma J et al (2013) Regulation of Id1 expression by epigallocatechin-3-gallate and its effect on the proliferation and apoptosis of poorly differentiated AGS gastric cancer cells. Int J Oncol 43(4):1052–1058CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Birkenkamp KU et al (2007) FOXO3a induces differentiation of Bcr-Abl-transformed cells through transcriptional down-regulation of Id1. J Biol Chem 282(4):2211–2220CrossRefPubMedGoogle Scholar
  70. 70.
    Ming J, Zhang Q, Qiu X, Wang E (2009) Interleukin 7/interleukin 7 receptor induce c-Fos/c-Jun-dependent vascular endothelial growth factor-D up-regulation: a mechanism of lymphangiogenesis in lung cancer. Eur J Cancer 45(5):866–873CrossRefPubMedGoogle Scholar
  71. 71.
    Parameswaran N, Patial S (2010) Tumor necrosis factor-α signaling in macrophages. Crit Rev Eukaryot Gene Expr 20(2):87–103CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Nateri AS, Spencer-Dene B, Behrens A (2005) Interaction of phosphorylated c-Jun with TCF4 regulates intestinal cancer development. Nature 437(7056):281–285CrossRefPubMedGoogle Scholar
  73. 73.
    Chiou S-H et al (2008) Positive correlations of Oct-4 and Nanog in oral cancer stem-like cells and highgrade oral squamous cell carcinoma. Clin Cancer Res 14(13):4085–4095CrossRefPubMedGoogle Scholar
  74. 74.
    Yoon C-H et al (2012) c-Jun N-terminal kinase has a pivotal role in the maintenance of self-renewal and tumorigenicity in glioma stem-like cells. Oncogene 31(44):4655–4666CrossRefPubMedGoogle Scholar
  75. 75.
    Ibrahim EE et al (2012) Embryonic NANOG activity defines colorectal cancer stem cells and modulates through AP1- and TCF-dependent mechanisms. Stem Cells 30(10):2076–2087CrossRefPubMedGoogle Scholar
  76. 76.
    Okada S, Fukuda T, Inada K, Tokuhisa T (1999) Prolonged expression of c-fos suppresses cell cycle entry of dormant hematopoietic stem cells. Blood 93(3):816–825PubMedGoogle Scholar
  77. 77.
    Yang S-R et al (2005) The role of p38 MAP kinase and c-Jun N-terminal protein kinase signaling in the differentiation and apoptosis of immortalized neural stemcells. Mutat Res 579(1–2):47–57CrossRefPubMedGoogle Scholar
  78. 78.
    Mruthyunjaya S, Rumma M, Ravibhushan G, Anjali S, Padma S (2011) c-Jun/AP-1 transcription factor regulates laminin- 1-induced neurite outgrowth in human bone marrow mesenchymal stem cells: role of multiple signaling pathways. FEBS Lett 585(12):1915–1922CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd 2017

Authors and Affiliations

  1. 1.Dr. NTR University of Health SciencesVijayawadaIndia
  2. 2.National Institute of Nutrition (ICMR)HyderabadIndia
  3. 3.Jawaharlal Nehru Technological UniversityHyderabadIndia

Personalised recommendations