NF-κB: Its Role in Pancreatic Cancer

  • Appiya Santharam Madanraj
  • Saipriya Laxmi Lammata
  • Ganji Purnachandra Nagaraju
Chapter

Abstract

Nuclear factor κB (NF-κB) is one of the transcription factors involved in the progression of pancreatic cancer. Pancreatic cancer (PC) is a deadly cancer in today’s world, and treatment approaches become critical due to poor prognosis and chemoresistance of the cancer. The NF-κB signaling pathway is known to induce cell proliferation and metastasis, including migration and angiogenesis. Furthermore, the NF-κB pathway is also involved in the prevention of apoptosis in PC. In this present chapter, we discuss the role of NF-κB in the progression of PC, resistance to chemo drugs such as gemcitabine, and the influence of downstream targets on the metastatic characteristics of cancer. Therefore, targeting the NF-κB signaling pathway stands as a rational approach for future treatment of pancreatic cancer.

Keywords

Pancreatic cancer NF-κB Cell growth Metastasis Epigenetics 

References

  1. 1.
    Arlt A, Müerköster SS, Schäfer H (2013) Targeting apoptosis pathways in pancreatic cancer. Cancer Lett 332(2):346–358PubMedCrossRefGoogle Scholar
  2. 2.
    Arora S, Bhardwaj A, Srivastava SK, Singh S, McClellan S, Wang B, Singh AP (2011) Honokiol arrests cell cycle, induces apoptosis, and potentiates the cytotoxic effect of gemcitabine in human pancreatic cancer cells. PLoS One 6(6):e21573PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Asano T, Yao Y, Zhu J, Li D, Abbruzzese JL, Reddy SA (2004) The PI 3-kinase/Akt signaling pathway is activated due to aberrant Pten expression and targets transcription factors NF-κB and c-Myc in pancreatic cancer cells. Oncogene 23(53):8571–8580PubMedCrossRefGoogle Scholar
  4. 4.
    Banerjee S, Zhang Y, Ali S, Bhuiyan M, Wang Z, Chiao PJ, Philip PA, Abbruzzese J, Sarkar FH (2005) Molecular evidence for increased antitumor activity of gemcitabine by genistein in vitro and in vivo using an orthotopic model of pancreatic cancer. Cancer Res 65(19):9064–9072PubMedCrossRefGoogle Scholar
  5. 5.
    Bang D, Wilson W, Ryan M, Yeh JJ, Baldwin AS (2013) GSK-3α promotes oncogenic KRAS function in pancreatic cancer via TAK1–TAB stabilization and regulation of noncanonical NF-κB. Cancer Discov 3(6):690–703PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Basha R, Connelly SF, Sankpal UT, Nagaraju GP, Patel H, Vishwanatha JK, Shelake S, Tabor-Simecka L, Shoji M, Simecka JW (2016) Small molecule tolfenamic acid and dietary spice curcumin treatment enhances antiproliferative effect in pancreatic cancer cells via suppressing Sp1, disrupting NF-κB translocation to nucleus and cell cycle phase distribution. J Nutr Biochem 31:77–87PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Batra S, Sahu RP, Kandala PK, Srivastava SK (2010) Benzyl isothiocyanate–mediated inhibition of histone deacetylase leads to NF-κB turnoff in human pancreatic carcinoma cells. Mol Cancer Ther 9(6):1596–1608PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Chehl N, Gong Q, Chipitsyna G, Aziz T, Yeo CJ, Arafat HA (2009) Angiotensin II regulates the expression of monocyte chemoattractant protein-1 in pancreatic cancer cells. J Gastrointest Surg 13(12):2189PubMedCrossRefGoogle Scholar
  9. 9.
    Chen H, Sun B, Wang S, Pan S, Gao Y, Bai X, Xue D (2010) Growth inhibitory effects of dihydroartemisinin on pancreatic cancer cells: involvement of cell cycle arrest and inactivation of nuclear factor-κB. J Cancer Res Clin Oncol 136(6):897–903PubMedCrossRefGoogle Scholar
  10. 10.
    Chen H, Zhang J, Luo J, Lai F, Wang Z, Tong H, Lu D, Bu H, Zhang R, Lin S (2013) Antiangiogenic effects of oxymatrine on pancreatic cancer by inhibition of the NF-κB-mediated VEGF signaling pathway. Oncol Rep 30(2):589–595PubMedCrossRefGoogle Scholar
  11. 11.
    Chen Q, Wang Z, Zhang K, Liu X, Cao W, Zhang L, Zhang S, Yan B, Wang Y, Xia C (2011) Clusterin confers gmcitabine resistance in pancreatic cancer. World J Surg Oncol 9(1):59PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Chien W, Lee DH, Zheng Y, Wuensche P, Alvarez R, Wen DL, Aribi AM, Thean SM, Doan NB, Said JW (2014) Growth inhibition of pancreatic cancer cells by histone deacetylase inhibitor belinostat through suppression of multiple pathways including HIF, NF-κB, and mTOR signaling in vitro and in vivo. Mol Carcinog 53(9):722–735PubMedCrossRefGoogle Scholar
  13. 13.
    Chiorean EG, Coveler AL (2015) Pancreatic cancer: optimizing treatment options, new, and emerging targeted therapies. Drug Des Devel Ther 9:3529PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Codony-Servat J, Marín-Aguilera M, Visa L, García-Albéniz X, Pineda E, Fernández PL, Filella X, Gascón P, Mellado B (2013) Nuclear factor-kappa B and interleukin-6 related docetaxel resistance in castration-resistant prostate cancer. Prostate 73(5):512–521PubMedCrossRefGoogle Scholar
  15. 15.
    Cogswell PC, Guttridge DC, Funkhouser WK, Baldwin AS (2000) Selective activation of NF-[kappa] B subunits in human breast cancer: potential roles for NF-[kappa] B2/p52 and for Bcl-3. Oncogene 19(9):1123PubMedCrossRefGoogle Scholar
  16. 16.
    Correa RG, Tergaonkar V, Ng JK, Dubova I, Izpisua-Belmonte JC, Verma IM (2004) Characterization of NF-κΒ/IκΒ proteins in zebra fish and their involvement in notochord development. Mol Cell Biol 24(12):5257–5268PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    De Simone V, Franze E, Ronchetti G, Colantoni A, Fantini M, Di Fusco D, Sica G, Sileri P, MacDonald T, Pallone F (2015) Th17-type cytokines, IL-6 and TNF-α synergistically activate STAT3 and NF-κB to promote colorectal cancer cell growth. Oncogene 34(27):3493–3503PubMedCrossRefGoogle Scholar
  18. 18.
    Deng Z-H, Gomez TS, Osborne DG, Phillips-Krawczak CA, Zhang J-S, Billadeau DD (2015) Nuclear FAM21 participates in NF-κB-dependent gene regulation in pancreatic cancer cells. J Cell Sci 128(2):373–384PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    DeSantis CE, Lin CC, Mariotto AB, Siegel RL, Stein KD, Kramer JL, Alteri R, Robbins AS, Jemal A (2014) Cancer treatment and survivorship statistics, 2014. CA Cancer J Clin 64(4):252–271PubMedCrossRefGoogle Scholar
  20. 20.
    Dhawan P, Su Y, Thu YM, Yu Y, Baugher P, Ellis DL, Sobolik-Delmaire T, Kelley M, Cheung TC, Ware CF (2008) The lymphotoxin-β receptor is an upstream activator of NF-κB-mediated transcription in melanoma cells. J Biol Chem 283(22):15399–15408PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    DiDonato JA, Mercurio F, Karin M (2012) NF-κB and the link between inflammation and cancer. Immunol Rev 246(1):379–400PubMedCrossRefGoogle Scholar
  22. 22.
    Du S, Jia L, Zhang Y, Fang L, Zhang X, Fan Y (2014) CARMA3 is upregulated in human pancreatic carcinoma, and its depletion inhibits tumor proliferation, migration, and invasion. Tumor Biol 35(6):5965–5970CrossRefGoogle Scholar
  23. 23.
    Erstad DJ, Cusack JC (2013) Targeting the NF-κB pathway in cancer therapy. Surg Oncol Clin N Am 22(4):705–746PubMedCrossRefGoogle Scholar
  24. 24.
    Freudlsperger C, Bian Y, Wise SC, Burnett J, Coupar J, Yang X, Chen Z, Van Waes C (2013) TGF-β and NF-κB signal pathway cross-talk is mediated through TAK1 and SMAD7 in a subset of head and neck cancers. Oncogene 32(12):1549–1559PubMedCrossRefGoogle Scholar
  25. 25.
    Geismann C, Grohmann F, Sebens S, Wirths G, Dreher A, Häsler R, Rosenstiel P, Hauser C, Egberts J, Trauzold A (2014) c-Rel is a critical mediator of NF-κB-dependent TRAIL resistance of pancreatic cancer cells. Cell Death Dis 5(10):e1455PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Ghosh S, Karin M (2002) Missing pieces in the NF-κB puzzle. Cell 109(2):S81–S96PubMedCrossRefGoogle Scholar
  27. 27.
    Gingery A, Bradley EW, Pederson L, Ruan M, Horwood NJ, Oursler MJ (2008) TGF-β coordinately activates TAK1/MEK/AKT/NF-κB and SMAD pathways to promote osteoclast survival. Exp Cell Res 314(15):2725–2738PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Gong J, Xie J, Bedolla R, Rivas P, Chakravarthy D, Freeman JW, Reddick R, Kopetz S, Peterson A, Wang H (2014) Combined targeting of STAT3/NF-κB/COX-2/EP4 for effective management of pancreatic cancer. Clin Cancer Res 20(5):1259–1273PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Guo F, Kang S, Zhou P, Guo L, Ma L, Hou J (2011) Maspin expression is regulated by the non-canonical NF-κB subunit in androgen-insensitive prostate cancer cell lines. Mol Immunol 49(1):8–17PubMedCrossRefGoogle Scholar
  30. 30.
    Guo L, Dong F, Hou Y, Cai W, Zhou X, Huang AL, Yang M, Allen TD, Liu J (2014) Dihydroartemisinin inhibits vascular endothelial growth factor-induced endothelial cell migration by a p38 mitogen-activated protein kinase-independent pathway. Exp Ther Med 8(6):1707–1712PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Hacker H, Karin M (2006) Regulation and function of IKK and IKK-related kinases. Sci STKE 2006(357):re13PubMedCrossRefGoogle Scholar
  32. 32.
    Hering J, Garrean S, Dekoj TR, Razzak A, Saied A, Trevino J, Babcock TA, Espat NJ (2007) Inhibition of proliferation by omega-3 fatty acids in chemoresistant pancreatic cancer cells. Ann Surg Oncol 14(12):3620–3628PubMedCrossRefGoogle Scholar
  33. 33.
    Hezel AF, Kimmelman AC, Stanger BZ, Bardeesy N, DePinho RA (2006) Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev 20(10):1218–1249PubMedCrossRefGoogle Scholar
  34. 34.
    Huang S-H, Wu L-W, Huang A-C, Yu C-C, Lien J-C, Huang Y-P, Yang J-S, Yang J-H, Hsiao Y-P, Wood WG (2012) Benzyl isothiocyanate (BITC) induces G2/M phase arrest and apoptosis in human melanoma A375. S2 cells through reactive oxygen species (ROS) and both mitochondria-dependent and death receptor-mediated multiple signaling pathways. J Agric Food Chem 60(2):665–675PubMedCrossRefGoogle Scholar
  35. 35.
    Husain K, Francois RA, Yamauchi T, Perez M, Sebti SM, Malafa MP (2011) Vitamin E δ-tocotrienol augments the antitumor activity of gemcitabine and suppresses constitutive NF-κB activation in pancreatic cancer. Mol Cancer Ther 10(12):2363–2372PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Karin M (2006) Nuclear factor-κB in cancer development and progression. Nature 441(7092):431–436PubMedCrossRefGoogle Scholar
  37. 37.
    Khanbolooki S, Nawrocki ST, Arumugam T, Andtbacka R, Pino MS, Kurzrock R, Logsdon CD, Abbruzzese JL, McConkey DJ (2006) Nuclear factor-κB maintains TRAIL resistance in human pancreatic cancer cells. Mol Cancer Ther 5(9):2251–2260PubMedCrossRefGoogle Scholar
  38. 38.
    Kong R, Sun B, Jiang H, Pan S, Chen H, Wang S, Krissansen GW, Sun X (2010) Downregulation of nuclear factor-κB p65 subunit by small interfering RNA synergizes with gemcitabine to inhibit the growth of pancreatic cancer. Cancer Lett 291(1):90–98PubMedCrossRefGoogle Scholar
  39. 39.
    Lee HY, Park KS, Kim M-K, Lee T, Ryu SH, Woo KJ, Kwon TK, Bae Y-S (2005) A small compound that inhibits tumor necrosis factor-α-induced matrix metalloproteinase-9 upregulation. Biochem Biophys Res Commun 336(2):716–722PubMedCrossRefGoogle Scholar
  40. 40.
    Lee JS, Yoon IS, Lee MS, Cha EY, Thuong PT, Diep TT, Kim JR (2013) Anticancer activity of pristimerin in epidermal growth factor receptor 2-positive SKBR3 human breast cancer cells. Biol Pharm Bull 36(2):316–325PubMedCrossRefGoogle Scholar
  41. 41.
    Li W, Cao L, Han L, Xu Q, Ma Q (2015) Superoxide dismutase promotes the epithelial-mesenchymal transition of pancreatic cancer cells via activation of the H2O2/ERK/NF-κB axis. Int J Oncol 46(6):2613–2620PubMedCrossRefGoogle Scholar
  42. 42.
    Li W, Ma J, Ma Q, Li B, Han L, Liu J, Xu Q, Duan W, Yu S, Wang F (2013) Resveratrol inhibits the epithelial-mesenchymal transition of pancreatic cancer cells via suppression of the PI-3K/Akt/NF-κB pathway. Curr Med Chem 20(33):4185–4194PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Liu A, Shao C, Jin G, Liu R, Hao J, Shao Z, Liu Q, Hu X (2014) Downregulation of CPE regulates cell proliferation and chemosensitivity in pancreatic cancer. Tumor Biol 35(12):12459–12465CrossRefGoogle Scholar
  44. 44.
    Lu Y, Liu C, Cheng H, Xu Y, Jiang J, Xu J, Long J, Liu L, Yu X (2014) Stathmin, interacting with Nf-κB, promotes tumor growth and predicts poor prognosis of pancreatic cancer. Curr Mol Med 14(3):328–339PubMedCrossRefGoogle Scholar
  45. 45.
    Ma J, Siegel R, Jemal A (2013) Pancreatic cancer death rates by race among US men and women, 1970–2009. J Natl Cancer Inst 105(22):1694–1700PubMedCrossRefGoogle Scholar
  46. 46.
    Maier HJ, Schmidt-Straßburger U, Huber MA, Wiedemann EM, Beug H, Wirth T (2010) NF-κB promotes epithelial–mesenchymal transition, migration and invasion of pancreatic carcinoma cells. Cancer Lett 295(2):214–228PubMedCrossRefGoogle Scholar
  47. 47.
    Matsuo Y, Sawai H, Ochi N, Yasuda A, Sakamoto M, Takahashi H, Funahashi H, Takeyama H, Guha S (2010) Proteasome inhibitor MG132 inhibits angiogenesis in pancreatic cancer by blocking NF-κB activity. Dig Dis Sci 55(4):1167–1176PubMedCrossRefGoogle Scholar
  48. 48.
    Melisi D, Niu J, Chang Z, Xia Q, Peng B, Ishiyama S, Evans DB, Chiao PJ (2009) Secreted interleukin-1α induces a metastatic phenotype in pancreatic cancer by sustaining a constitutive activation of nuclear factor-κB. Mol Cancer Res 7(5):624–633PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Nguyen DP, Li J, Yadav SS, Tewari AK (2014) Recent insights into NF-κB signalling pathways and the link between inflammation and prostate cancer. BJU Int 114(2):168–176PubMedCrossRefGoogle Scholar
  50. 50.
    Niu J, Li Z, Peng B, Chiao PJ (2004) Identification of an autoregulatory feedback pathway involving interleukin-1α in induction of constitutive NF-κB activation in pancreatic cancer cells. J Biol Chem 279(16):16452–16462PubMedCrossRefGoogle Scholar
  51. 51.
    Ougolkov AV, Fernandez-Zapico ME, Bilim VN, Smyrk TC, Chari ST, Billadeau DD (2006) Aberrant nuclear accumulation of glycogen synthase kinase-3β in human pancreatic cancer: association with kinase activity and tumor dedifferentiation. Clin Cancer Res 12(17):5074–5081PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Palgrave CJ, Gilmour L, Lowden CS, Lillico SG, Mellencamp MA, Whitelaw CBA (2011) Species-specific variation in RELA underlies differences in NF-κB activity: a potential role in African swine fever pathogenesis. J Virol 85(12):6008–6014PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Papademetrio DL, Lompardía SL, Simunovich T, Costantino S, Mihalez CY, Cavaliere V, Álvarez É (2016) Inhibition of survival pathways MAPK and NF-κB triggers apoptosis in pancreatic ductal adenocarcinoma cells via suppression of autophagy. Target Oncol 11(2):183–195PubMedCrossRefGoogle Scholar
  54. 54.
    Prabhu L, Mundade R, Korc M, Loehrer PJ, Lu T (2014) Critical role of NF-κB in pancreatic cancer. Oncotarget 5(22):10969PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Prasad R, Katiyar SK (2013) Grape seed proanthocyanidins inhibit migration potential of pancreatic cancer cells by promoting mesenchymal-to-epithelial transition and targeting NF-κB. Cancer Lett 334(1):118–126PubMedCrossRefGoogle Scholar
  56. 56.
    Rimmon A, Vexler A, Berkovich L, Earon G, Ron I, Lev-Ari S (2013) Escin chemosensitizes human pancreatic cancer cells and inhibits the nuclear factor-kappaB signaling pathway. Biochem Res Int 2013:251752PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Rong Y, Wu W, Ni X, Kuang T, Jin D, Wang D, Lou W (2013) Lactate dehydrogenase A is overexpressed in pancreatic cancer and promotes the growth of pancreatic cancer cells. Tumor Biol 34(3):1523–1530CrossRefGoogle Scholar
  58. 58.
    Ross JA, Maingay JP, Fearon KC, Sangster K, Powell JJ (2003) Eicosapentaenoic acid perturbs signalling via the NF-κB transcriptional pathway in pancreatic tumour cells. Int J Oncol 23(6):1733–1738PubMedGoogle Scholar
  59. 59.
    Sankpal UT, Abdelrahim M, Connelly SF, Lee CM, Madero-Visbal R, Colon J, Smith J, Safe S, Maliakal P, Basha R (2012) Small molecule tolfenamic acid inhibits PC-3 cell proliferation and invasion in vitro, and tumor growth in orthotopic mouse model for prostate cancer. Prostate 72(15):1648–1658PubMedCrossRefGoogle Scholar
  60. 60.
    Schmitz ML, Mattioli I, Buss H, Kracht M (2004) NF-κB: a multifaceted transcription factor regulated at several levels. Chembiochem 5(10):1348–1358PubMedCrossRefGoogle Scholar
  61. 61.
    Schottelius AJ, Dinter H (2006) Cytokines, NF-κB, microenvironment, intestinal inflammation and cancer. In: The link between inflammation and cancer. Springer, Berlin, pp 67–87Google Scholar
  62. 62.
    Shamoto T, Matsuo Y, Shibata T, Tsuboi K, Nagasaki T, Takahashi H, Funahashi H, Okada Y, Takeyama H (2014) Zerumbone inhibits angiogenesis by blocking NF-κB activity in pancreatic cancer. Pancreas 43(3):396–404PubMedCrossRefGoogle Scholar
  63. 63.
    Shen M, Duan X, Zhou P, Zhou W, Wu X, Xu S, Chen Y, Tao Z (2015) Lymphotoxin β receptor activation promotes bladder cancer in a nuclear factor-κB-dependent manner. Mol Med Rep 11:783–790PubMedCrossRefGoogle Scholar
  64. 64.
    Shi M, He X, Wei W, Wang J, Zhang T, Shen X (2015) Tenascin-C induces resistance to apoptosis in pancreatic cancer cell through activation of ERK/NF-κB pathway. Apoptosis 20(6):843–857PubMedCrossRefGoogle Scholar
  65. 65.
    Shin H-M, Kim M-H, Kim BH, Jung S-H, Kim YS, Park HJ, Hong JT, Min KR, Kim Y (2004) Inhibitory action of novel aromatic diamine compound on lipopolysaccharide-induced nuclear translocation of NF-κB without affecting IκB degradation. FEBS Lett 571(1–3):50–54PubMedCrossRefGoogle Scholar
  66. 66.
    Shirai Y, Shiba H, Iwase R, Haruki K, Fujiwara Y, Furukawa K, Uwagawa T, Ohashi T, Yanaga K (2016) Dual inhibition of nuclear factor kappa-B and Mdm2 enhance the antitumor effect of radiation therapy for pancreatic cancer. Cancer Lett 370(2):177–184PubMedCrossRefGoogle Scholar
  67. 67.
    Shroff S, Rashid A, Wang H, Katz MH, Abbruzzese JL, Fleming JB, Wang H (2014) SOX9: a useful marker for pancreatic ductal lineage of pancreatic neoplasms. Hum Pathol 45(3):456–463PubMedCrossRefGoogle Scholar
  68. 68.
    Siegel R, Naishadham D, Jemal A (2013) Cancer statistics, 2013. CA Cancer J Clin 63(1):11–30PubMedCrossRefGoogle Scholar
  69. 69.
    Sirotkin AV, Dekanová P, Harrath AH, Alwasel SH, Vašíček D (2014) Interrelationships between sirtuin 1 and transcription factors p53 and NF-κB (p50/p65) in the control of ovarian cell apoptosis and proliferation. Cell Tissue Res 358(2):627–632PubMedCrossRefGoogle Scholar
  70. 70.
    Srivastava SK, Singh SV (2004) Cell cycle arrest, apoptosis induction and inhibition of nuclear factor kappa B activation in anti-proliferative activity of benzyl isothiocyanate against human pancreatic cancer cells. Carcinogenesis 25(9):1701–1709PubMedCrossRefGoogle Scholar
  71. 71.
    Sun L, Mathews LA, Cabarcas SM, Zhang X, Yang A, Zhang Y, Young MR, Klarmann KD, Keller JR, Farrar WL (2013) Epigenetic regulation of SOX9 by the NF-κB signaling pathway in pancreatic cancer stem cells. Stem Cells 31(8):1454–1466PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Tak PP, Firestein GS (2001) NF-κB: a key role in inflammatory diseases. J Clin Invest 107(1):7–11PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Tang Y, Liu F, Zheng C, Sun S, Jiang Y (2012) Knockdown of clusterin sensitizes pancreatic cancer cells to gemcitabine chemotherapy by ERK1/2 inactivation. J Exp Clin Cancer Res 31(1):73PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Thomas RP, Farrow BJ, Kim S, May MJ, Hellmich MR, Evers BM (2002) Selective targeting of the nuclear factor-κB pathway enhances tumor necrosis factor–related apoptosis-inducing ligand-mediated pancreatic cancer cell death. Surgery 132(2):127–134PubMedCrossRefGoogle Scholar
  75. 75.
    Tomar D, Sripada L, Prajapati P, Singh R, Singh AK, Singh R (2012) Nucleo-cytoplasmic trafficking of TRIM8, a novel oncogene, is involved in positive regulation of TNF induced NF-κB pathway. PLoS One 7(11):e48662PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Tyagi N, Bhardwaj A, Singh AP, McClellan S, Carter JE, Singh S (2014) p-21 activated kinase 4 promotes proliferation and survival of pancreatic cancer cells through AKT-and ERK-dependent activation of NF-κB pathway. Oncotarget 5(18):8778–8789PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Uwagawa T, Chiao PJ, Gocho T, Hirohara S, Misawa T, Yanaga K (2009) Combination chemotherapy of nafamostat mesilate with gemcitabine for pancreatic cancer targeting NF-κB activation. Anticancer Res 29(8):3173–3178PubMedGoogle Scholar
  78. 78.
    Vasseur R, Skrypek N, Duchêne B, Renaud F, Martínez-Maqueda D, Vincent A, Porchet N, Van Seuningen I, Jonckheere N (2015) The mucin MUC4 is a transcriptional and post-transcriptional target of K-ras oncogene in pancreatic cancer. Implication of MAPK/AP-1, NF-κB and RalB signaling pathways. Biochimica et Biophysica Acta (BBA)-Gene Regul Mech 1849(12):1375–1384CrossRefGoogle Scholar
  79. 79.
    Wang S-J, Gao Y, Chen H, Kong R, Jiang H-C, Pan S-H, Xue D-B, Bai X-W, Sun B (2010) Dihydroartemisinin inactivates NF-κB and potentiates the anti-tumor effect of gemcitabine on pancreatic cancer both in vitro and in vivo. Cancer Lett 293(1):99–108PubMedCrossRefGoogle Scholar
  80. 80.
    Wang S-J, Sun B, Cheng Z-X, Zhou H-X, Gao Y, Kong R, Chen H, Jiang H-C, Pan S-H, Xue D-B (2011) Dihydroartemisinin inhibits angiogenesis in pancreatic cancer by targeting the NF-κB pathway. Cancer Chemother Pharmacol 68(6):1421–1430PubMedCrossRefGoogle Scholar
  81. 81.
    Wang X, Deng Y, Mao Z, Ma X, Fan X, Cui L, Qu J, Xie D, Zhang J (2012) CCN1 promotes tumorigenicity through Rac1/Akt/NF-κB signaling pathway in pancreatic cancer. Tumor Biol 33(5):1745–1758CrossRefGoogle Scholar
  82. 82.
    Wang Y, Zhou Y, Zhou H, Jia G, Liu J, Han B, Cheng Z, Jiang H, Pan S, Sun B (2012) Pristimerin causes G1 arrest, induces apoptosis, and enhances the chemosensitivity to gemcitabine in pancreatic cancer cells. PLoS One 7(8):e43826PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Wang Y-W, Wang S-J, Zhou Y-N, Pan S-H, Sun B (2012) Escin augments the efficacy of gemcitabine through down-regulation of nuclear factor-κB and nuclear factor-κB-regulated gene products in pancreatic cancer both in vitro and in vivo. J Cancer Res Clin Oncol 138(5):785–797PubMedCrossRefGoogle Scholar
  84. 84.
    Wang Z, Zhang Y, Banerjee S, Li Y, Sarkar FH (2006) Retracted: inhibition of nuclear factor κb activity by genistein is mediated via Notch-1 signaling pathway in pancreatic cancer cells. Int J Cancer 118(8):1930–1936PubMedCrossRefGoogle Scholar
  85. 85.
    Xie K, Zhi X, Tang J, Zhu Y, Zhang J, Li Z, Tao J, Xu Z (2014) Upregulation of the splice variant MUC4/Y in the pancreatic cancer cell line MIA PaCa-2 potentiates proliferation and suppresses apoptosis: new insight into the presence of the transcript variant of MUC4. Oncol Rep 31(5):2187–2194PubMedCrossRefGoogle Scholar
  86. 86.
    Xu M, Chen X, Han Y, Ma C, Ma L, Li S (2015) Clusterin silencing sensitizes pancreatic cancer MIA-PaCa-2 cells to gmcitabine via regulation of NF-κB/Bcl-2 signaling. Int J Clin Exp Med 8(8):12476PubMedPubMedCentralGoogle Scholar
  87. 87.
    Xu Y, Zhang C, Wang N, Ling F, Li P, Gao Y, Hua W (2011) Adiponectin inhibits lymphotoxin-β receptor-mediated NF-κB signaling in human umbilical vein endothelial cells. Biochem Biophys Res Commun 404(4):1060–1064PubMedCrossRefGoogle Scholar
  88. 88.
    Zehavi L, Schayek H, Jacob-Hirsch J, Sidi Y, Leibowitz-Amit R, Avni D (2015) MiR-377 targets E2F3 and alters the NF-κB signaling pathway through MAP3K7 in malignant melanoma. Mol Cancer 14(1):68PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Zhang D, Ma Q, Wang Z, Zhang M, Guo K, Wang F, Wu E (2011) β 2-adrenoceptor blockage induces G 1/S phase arrest and apoptosis in pancreatic cancer cells via Ras/Akt/NF κ B pathway. Mol Cancer 10(1):146PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Zhang D, Yong Ma Q, Hu H-T, Zhang M (2010) β2-adrenergic antagonists suppress pancreatic cancer cell invasion by inhibiting CREB, NF-κB and AP-1. Cancer Biol Ther 10(1):19–29PubMedCrossRefGoogle Scholar
  91. 91.
    Zhang H, Ma G, Dong M, Zhao M, Shen X, Ma Z, Guo K (2006) Epidermal growth factor promotes invasiveness of pancreatic cancer cells through NF-κB-mediated proteinase productions. Pancreas 32(1):101–109PubMedCrossRefGoogle Scholar
  92. 92.
    Zhang J, Herreros-Villanueva M, Koenig A, Deng Z, De Narvajas AA, Gomez T, Meng X, Bujanda L, Ellenrieder V, Li X (2014) Differential activity of GSK-3 isoforms regulates NF-κB and TRAIL-or TNFα induced apoptosis in pancreatic cancer cells. Cell Death Dis 5(3):e1142PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd 2017

Authors and Affiliations

  • Appiya Santharam Madanraj
    • 1
  • Saipriya Laxmi Lammata
    • 2
  • Ganji Purnachandra Nagaraju
    • 2
  1. 1.Department of Infection, Immunity and InflammationUniversity of LeicesterLeicesterUK
  2. 2.Department of Hematology and Medical OncologyWinship Cancer Institute of Emory UniversityAtlantaUSA

Personalised recommendations