Skip to main content

LEF/TCF: Its Role in Colon Cancer

  • Chapter
  • First Online:

Abstract

Many advances have been made in understanding the role of transcription factors in different types of cancer. With colorectal cancer being the third most commonly diagnosed cancer, studying critical transcription factors such as the lymphoid enhancer factor/T-cell factor (LEF/TCF) transcription factor family may assist in understanding its growth and progression but also serve as a therapeutic target in hopes for better patient outcomes. This chapter will discuss the pathway LEF/TCF transcription factors are known to be involved in, their regulation, and current studies that have investigated their role and function in colorectal cancer and normal cell maintenance.

The original version of this chapter was revised. The book was inadvertently published without Abstracts and Keywords, which are now included in all the chapters. An erratum to this chapter can be found at https://doi.org/10.1007/978-981-10-6728-0_39

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Barker N (2008) The canonical Wnt/beta-catenin signalling pathway. Methods Mol Biol 468:5–15

    Article  CAS  PubMed  Google Scholar 

  2. Miller JR (2002) The Wnts. Genome Biol 3(1):1–9

    Google Scholar 

  3. Hobmayer B et al (2000) WNT signalling molecules act in axis formation in the diploblastic metazoan hydra. Nature 407(6801):186–189

    Article  CAS  PubMed  Google Scholar 

  4. Grimson MJ et al (2000) Adherens junctions and beta-catenin-mediated cell signalling in a non-metazoan organism. Nature 408(6813):727–731

    Article  CAS  PubMed  Google Scholar 

  5. Miyoshi Y et al (1992) Germ-line mutations of the APC gene in 53 familial adenomatous polyposis patients. Proc Natl Acad Sci 89(10):4452–4456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Clevers H, Nusse R (2012) Wnt/beta-catenin signaling and disease. Cell 149(6):1192–1205

    Article  CAS  PubMed  Google Scholar 

  7. van de Wetering M et al (1993) Sox-4, an Sry-like HMG box protein, is a transcriptional activator in lymphocytes. EMBO J 12(10):3847–3854

    Article  PubMed  PubMed Central  Google Scholar 

  8. Brunner E et al (1997) Pangolin encodes a Lef-1 homologue that acts downstream of armadillo to transduce the wingless signal in drosophila. Nature 385(6619):829–833

    Article  CAS  PubMed  Google Scholar 

  9. van de Wetering M et al (2002) The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 111(2):241–250

    Article  PubMed  Google Scholar 

  10. Lin R, Hill RJ, Priess JR (1998) POP-1 and anterior-posterior fate decisions in C. elegans embryos. Cell 92(2):229–239

    Article  CAS  PubMed  Google Scholar 

  11. van Amerongen R, Berns A (2006) Knockout mouse models to study Wnt signal transduction. Trends Genet 22(12):678–689

    Article  CAS  PubMed  Google Scholar 

  12. Colorectal Cancer Facts & Figures 2014–2016. 2014, American Cancer Society.

    Google Scholar 

  13. Oosterwegel M et al (1991) Cloning of murine TCF-1, a T cell-specific transcription factor interacting with functional motifs in the CD3-epsilon and T cell receptor alpha enhancers. J Exp Med 173(5):1133–1142

    Article  CAS  PubMed  Google Scholar 

  14. van de Wetering M et al (1991) Identification and cloning of TCF-1, a T lymphocyte-specific transcription factor containing a sequence-specific HMG box. EMBO J 10(1):123–132

    Article  PubMed  PubMed Central  Google Scholar 

  15. Travis A et al (1991) LEF-1, a gene encoding a lymphoid-specific protein with an HMG domain, regulates T-cell receptor alpha enhancer function [corrected]. Genes Dev 5(5):880–894

    Article  CAS  PubMed  Google Scholar 

  16. Arce L, Pate KT, Waterman ML (2009) Groucho binds two conserved regions of LEF-1 for HDAC-dependent repression. BMC Cancer 9:159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Maduro MF et al (2005) The Wnt effector POP-1 and the PAL-1/caudal homeoprotein collaborate with SKN-1 to activate C. elegans endoderm development. Dev Biol 285(2):510–523

    Article  CAS  PubMed  Google Scholar 

  18. Shetty P et al (2005) C. elegans TCF protein, POP-1, converts from repressor to activator as a result of Wnt-induced lowering of nuclear levels. Dev Biol 285(2):584–592

    Article  CAS  PubMed  Google Scholar 

  19. El-Tanani M et al (2004) Ets gene PEA3 cooperates with beta-catenin-Lef-1 and c-Jun in regulation of osteopontin transcription. J Biol Chem 279(20):20794–20806

    Article  CAS  PubMed  Google Scholar 

  20. Behrens J et al (1996) Functional interaction of beta-catenin with the transcription factor LEF-1. Nature 382(6592):638–642

    Article  CAS  PubMed  Google Scholar 

  21. Rao TP, Kuhl M (2010) An updated overview on Wnt signaling pathways: a prelude for more. Circ Res 106(12):1798–1806

    Article  CAS  PubMed  Google Scholar 

  22. Shtutman M et al (1999) The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc Natl Acad Sci U S A 96(10):5522–5527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tetsu O, McCormick F (1999) Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398(6726):422–426

    Article  CAS  PubMed  Google Scholar 

  24. He TC et al (1998) Identification of c-MYC as a target of the APC pathway. Science 281(5382):1509–1512

    Article  CAS  PubMed  Google Scholar 

  25. Gradl D, Kuhl M, Wedlich D (1999) The Wnt/Wg signal transducer beta-catenin controls fibronectin expression. Mol Cell Biol 19(8):5576–5587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. ten Berge D et al (2008) Wnt and FGF signals interact to coordinate growth with cell fate specification during limb development. Development 135(19):3247–3257

    Article  CAS  PubMed  Google Scholar 

  27. He TC et al (1999) PPARdelta is an APC-regulated target of nonsteroidal anti-inflammatory drugs. Cell 99(3):335–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mann B et al (1999) Target genes of beta-catenin-T cell-factor/lymphoid-enhancer-factor signaling in human colorectal carcinomas. Proc Natl Acad Sci U S A 96(4):1603–1608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Conacci-Sorrell ME et al (2002) Nr-CAM is a target gene of the beta-catenin/LEF-1 pathway in melanoma and colon cancer and its expression enhances motility and confers tumorigenesis. Genes Dev 16(16):2058–2072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hovanes K et al (2001) Beta-catenin-sensitive isoforms of lymphoid enhancer factor-1 are selectively expressed in colon cancer. Nat Genet 28(1):53–57

    PubMed  CAS  Google Scholar 

  31. Li TW et al (2006) Wnt activation and alternative promoter repression of LEF1 in colon cancer. Mol Cell Biol 26(14):5284–5299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hovanes K, Li TW, Waterman ML (2000) The human LEF-1 gene contains a promoter preferentially active in lymphocytes and encodes multiple isoforms derived from alternative splicing. Nucleic Acids Res 28(9):1994–2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jimenez J et al (2005) An internal ribosome entry site mediates translation of lymphoid enhancer factor-1. RNA 11(9):1385–1399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kikuchi A, Kishida S, Yamamoto H (2006) Regulation of Wnt signaling by protein-protein interaction and post-translational modifications. Exp Mol Med 38(1):1–10

    Article  CAS  PubMed  Google Scholar 

  35. Ishitani T et al (1999) The TAK1-NLK-MAPK-related pathway antagonizes signalling between beta-catenin and transcription factor TCF. Nature 399(6738):798–802

    Article  CAS  PubMed  Google Scholar 

  36. Ishitani T et al (2003) The TAK1-NLK mitogen-activated protein kinase cascade functions in the Wnt-5a/Ca[2+] pathway to antagonize Wnt/beta-catenin signaling. Mol Cell Biol 23(1):131–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Brannon M et al (1997) A beta-catenin/XTcf-3 complex binds to the siamois promoter to regulate dorsal axis specification in Xenopus. Genes Dev 11(18):2359–2370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Daniels DL, Weis WI (2005) Beta-catenin directly displaces Groucho/TLE repressors from Tcf/Lef in Wnt-mediated transcription activation. Nat Struct Mol Biol 12(4):364–371

    Article  CAS  PubMed  Google Scholar 

  39. Arce L, Yokoyama NN, Waterman ML (2006) Diversity of LEF/TCF action in development and disease. Oncogene 25(57):7492–7504

    Article  CAS  PubMed  Google Scholar 

  40. Hoppler S, Kavanagh CL (2007) Wnt signalling: variety at the core. J Cell Sci 120(Pt 3):385–393

    Article  CAS  PubMed  Google Scholar 

  41. Ding Y et al. (2014) The S-G2 phase enriched β-catenin/TCF complex ensures cell survival and cell cycle progression. J Cell Sci 127:4834–4840

    Google Scholar 

  42. Morgan DO (1995) Principles of CDK regulation. Nature 374(6518):131–134

    Article  CAS  PubMed  Google Scholar 

  43. Matsushime H, Roussel MF, Sherr CJ (1991) Novel mammalian cyclins [CYL genes] expressed during G1. Cold Spring Harb Symp Quant Biol 56:69–74

    Article  CAS  PubMed  Google Scholar 

  44. Baldin V et al (1993) Cyclin D1 is a nuclear protein required for cell cycle progression in G1. Genes Dev 7(5):812–821

    Article  CAS  PubMed  Google Scholar 

  45. Mermelshtein A et al (2005) Expression of D-type cyclins in colon cancer and in cell lines from colon carcinomas. Br J Cancer 93(3):338–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Arber N et al (1996) Increased expression of cyclin D1 is an early event in multistage colorectal carcinogenesis. Gastroenterology 110(3):669–674

    Article  CAS  PubMed  Google Scholar 

  47. Sutter T et al (1997) Expression of cyclins D1 and E in human colon adenocarcinomas. J Med 28(5–6):285–309

    PubMed  CAS  Google Scholar 

  48. Bukholm IK, Nesland JM (2000) Protein expression of p53, p21 [WAF1/CIP1], bcl-2, Bax, cyclin D1 and pRb in human colon carcinomas. Virchows Arch 436(3):224–228

    Article  CAS  PubMed  Google Scholar 

  49. Arber N et al (1997) Antisense to cyclin D1 inhibits the growth and tumorigenicity of human colon cancer cells. Cancer Res 57(8):1569–1574

    PubMed  CAS  Google Scholar 

  50. Korinek V et al (1998) Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nat Genet 19(4):379–383

    Article  CAS  PubMed  Google Scholar 

  51. Lecuit T, Lenne PF (2007) Cell surface mechanics and the control of cell shape, tissue patterns and morphogenesis. Nat Rev Mol Cell Biol 8(8):633–644

    Article  CAS  PubMed  Google Scholar 

  52. Vlad-Fiegen A et al (2012) The Wnt pathway destabilizes adherens junctions and promotes cell migration via beta-catenin and its target gene cyclin D1. FEBS Open Biol 2:26–31

    Article  CAS  Google Scholar 

  53. Sánchez-Tilló E et al (2011) β-catenin/TCF4 complex induces the epithelial-to-mesenchymal transition [EMT]-activator ZEB1 to regulate tumor invasiveness. Proc Natl Acad Sci 108(48):19204–19209

    Article  PubMed  PubMed Central  Google Scholar 

  54. Planutis K, Planutiene M, Holcombe RF (2010) Abstract LB-367: Wnt-dependent transcription factor LEF-1 controls endothelial cell invasion through changes of MMP-2 expression. Cancer Res 70(8 Supplement):LB-367-LB-367

    Article  Google Scholar 

  55. Medici D, Hay ED, Olsen BR (2008) Snail and slug promote epithelial-mesenchymal transition through β-Catenin–T-Cell Factor-4-dependent expression of transforming growth factor-β3. Mol Biol Cell 19(11):4875–4887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Fidler IJ (1990) Critical factors in the biology of human cancer metastasis: twenty-eighth G.H.A. Clowes memorial award lecture. Cancer Res 50(19):6130–6138

    PubMed  CAS  Google Scholar 

  57. Rothbarth J, van de Velde CJ (2005) Treatment of liver metastases of colorectal cancer. Ann Oncol 16(Suppl 2):ii144–ii149

    PubMed  Google Scholar 

  58. Gallagher DJ, Kemeny N (2010) Metastatic colorectal cancer: from improved survival to potential cure. Oncology 78(3–4):237–248

    Article  PubMed  Google Scholar 

  59. Li Y et al (2011) HEF1, a novel target of Wnt signaling, promotes colonic cell migration and cancer progression. Oncogene 30(23):2633–2643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Dai Y et al (2017) Loss of FOXN3 in colon cancer activates beta-catenin/TCF signaling and promotes the growth and migration of cancer cells. Oncotarget 8(6):9783–9793

    Article  PubMed  Google Scholar 

  61. Ratner M (2004) Genentech discloses safety concerns over Avastin. Nat Biotechnol 22(10):1198

    Article  CAS  PubMed  Google Scholar 

  62. Ellis LM (2004) Epidermal growth factor receptor in tumor angiogenesis. Hematol Oncol Clin North Am 18(5):1007–1021. viii

    Article  PubMed  Google Scholar 

  63. Takahashi Y et al (1995) Expression of vascular endothelial growth factor and its receptor, KDR, correlates with vascularity, metastasis, and proliferation of human colon cancer. Cancer Res 55(18):3964–3968

    PubMed  CAS  Google Scholar 

  64. Mar AC et al (2015) Interleukin-1 receptor type 2 acts with c-Fos to enhance the expression of interleukin-6 and vascular endothelial growth factor A in colon cancer cells and induce angiogenesis. J Biol Chem 290(36):22212–22224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Clifford RL, Deacon K, Knox AJ (2008) Novel regulation of vascular endothelial growth factor-A [VEGF-A] by transforming growth factor [beta]1: requirement for Smads, [beta]-CATENIN, AND GSK3[beta]. J Biol Chem 283(51):35337–35353

    Article  CAS  PubMed  Google Scholar 

  66. Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26(4):239–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wang SH et al (2012) The balance between two isoforms of LEF-1 regulates colon carcinoma growth. BMC Gastroenterol 12:53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Reya T et al (2003) A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 423(6938):409–414

    Article  CAS  PubMed  Google Scholar 

  69. Ng TB, Liu F, Wang ZT (2000) Antioxidative activity of natural products from plants. Life Sci 66(8):709–723

    Article  CAS  PubMed  Google Scholar 

  70. Cai Y et al (2004) Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci 74(17):2157–2184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kaneko T, Tahara S, Takabayashi F (2007) Inhibitory effect of natural coumarin compounds, esculetin and esculin, on oxidative DNA damage and formation of aberrant crypt foci and tumors induced by 1,2-dimethylhydrazine in rat colons. Biol Pharm Bull 30(11):2052–2057

    Article  CAS  PubMed  Google Scholar 

  72. Lepourcelet M et al (2004) Small-molecule antagonists of the oncogenic Tcf/beta-catenin protein complex. Cancer Cell 5(1):91–102

    Article  CAS  PubMed  Google Scholar 

  73. Sommer T, Hirsch C (2005) San1p, checking up on nuclear proteins. Cell 120(6):736–734

    Article  CAS  Google Scholar 

  74. Liu J et al (2006) The third 20 amino acid repeat is the tightest binding site of APC for beta-catenin. J Mol Biol 360(1):133–144

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda Joy Bastien .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bastien, A.J. (2017). LEF/TCF: Its Role in Colon Cancer. In: Nagaraju, G., Bramhachari, P. (eds) Role of Transcription Factors in Gastrointestinal Malignancies. Springer, Singapore. https://doi.org/10.1007/978-981-10-6728-0_22

Download citation

Publish with us

Policies and ethics