Role of Sp1 Transcriptional Factor in Gastrointestinal Carcinogenesis

  • A. M. V. N. Prathyusha
  • Renuka Nawadkar
  • Pallaval Veera Bramhachari
Chapter

Abstract

Sp1 protein binds to GC/GT-rich promoter elements through zinc finger motifs present at their C-terminal domains and regulates expression of multiple genes in normal tissues and tumors. Sp1 protein plays a critical role in the growth and metastasis of gastrointestinal cancers by regulating expression of cell cycle genes and VEGF. However, Sp1 is involved much in growth-related signal transduction pathways, and its overexpression has both positive and negative effects on proliferation of cells. In addition to growth control, Sp1 is intricate in apoptosis and angiogenesis; therefore, Sp1 is involved in several aspects of tumorigenesis. Consistent with a role of Sp1 in cancer, it interacts with oncogenes and tumor suppressors and alters their expression. Effects of changes in Sp1 factor are context-dependent and are paradoxical. Sp1 proteins have been recognized as an essential cancer drug target.

Keywords

Sp/KLF transcriptional factors Signal transduction Tumorigenesis Apoptosis and angiogenesis 

References

  1. 1.
    Asanuma K, Tsuji N, Endoh T, Yagihashi A, Watanabe N (2004) Surviving enhances Fas ligand expression via up-regulation of specificity protein 1- mediated gene transcription in colon cancer cells. J Immunol 172:3922–3929CrossRefPubMedGoogle Scholar
  2. 2.
    Aziz F, Wang X, Liu J, Yan Q (2016) Ginsenoside Rg3 induces FUT4-mediated apoptosis in h. Pylori CAGA-treated gastric cancer cells by regulating SP1 and HSF1 expressions. Toxicol In Vitro 31:158–166CrossRefPubMedGoogle Scholar
  3. 3.
    Beishline K, Azizkhan-Clifford J (2015) Sp1 and the ‘hallmarks of cancer’. FEBS J 282(2):224–258CrossRefPubMedGoogle Scholar
  4. 4.
    Black AR, Black JD, Azizkhan-Clifford J (2001) Sp1 and kruppel-like factor family of transcription factors in cell growth regulation and cancer. J Cell Physiol 188:143–160CrossRefPubMedGoogle Scholar
  5. 5.
    Bond GL, Hu W, Bond EE, Robins H, Lutzker SG, Arva NC, Bargonetti J, Bartel F, Taubert H, Wuerl P et al (2004) A single nucleotide polymorphism in the MDM2 promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formation in humans. Cell 119:591–602CrossRefPubMedGoogle Scholar
  6. 6.
    Chen Y, Huang Y, Huang Y, Xia X, Zhang J, Zhou Y, …, Re OD (2013) JWA suppresses tumor angiogenesis via Sp1-activated matrix metalloproteinase-2 and its prognostic significance in human gastric cancer. Carcinogenesis bgt311Google Scholar
  7. 7.
    Cheng Q, Ling X, Haller A, Nakahara T, Yamanaka K, Kita A, Koutoku H, Takeuchi M, Brattain MG, Li F (2012) Suppression of surviving promoter activity by YM155 involves disruption of Sp1-DNA interaction in the surviving core promoter. Int J Biochem Mol Biol 3:179–197PubMedPubMedCentralGoogle Scholar
  8. 8.
    Chiefari E, Brunetti A, Arturi F, Bidart JM, Russo D, Schlumberger M, Filetti S (2002) Increased expression of AP2 and Sp1 transcription factors in human thyroid tumors: a role in NIS expression regulation? BMC Cancer 2:35CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Chitnis MM, Yuen JS, Protheroe AS, Pollak M, Macaulay VM (2008) The type 1 insulin-like growth factor receptor pathway. Clin Cancer Res 14:6364–6370CrossRefPubMedGoogle Scholar
  10. 10.
    Dennig J, Beato M, Suske G (1996) An inhibitor domain in Sp3 regulates its glutamine-rich activation domains. EMBO J 15:5659–5667PubMedPubMedCentralGoogle Scholar
  11. 11.
    Duan H, Heckman CA, Boxer LM (2005) Histone deacetylase inhibitors down-regulate bcl-2 expression and induce apoptosis in t(14;18) lymphomas. Mol Cell Biol 25:1608–1619CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Haley J, Whittle N, Bennet P, Kinchington D, Ullrich A, Waterfield M (1987) The human EGF receptor gene: structure of the 110 kb locus and identification of sequences regulating its transcription. Oncogene Res 1:375–396PubMedGoogle Scholar
  13. 13.
    Han I, Kudlow JE (1997) Reduced O-glycosylation of Sp1 is associated with increased proteasome susceptibility. Mol Cell Biol 17:2550–2558CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70CrossRefPubMedGoogle Scholar
  15. 15.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674CrossRefPubMedGoogle Scholar
  16. 16.
    Ito T, Azumano M, Uwatoko C, Itoh K, Kuwahara J (2009) Role of zinc finger structure in nuclear localization of transcription factor Sp1. Biochem Biophys Res Commun 380:28–32CrossRefPubMedGoogle Scholar
  17. 17.
    Jia Z, Zhang J, Wei D, Wang L, Yuan P, Le X, Li Q, Yao J, Xie K (2007) Molecular basis of the synergistic antiangiogenic activity of bevacizumab and mithramycin A. Cancer Res 67:4878–4885CrossRefPubMedGoogle Scholar
  18. 18.
    Kageyama R, Merlino GT, Pastan I (1988) Epidermal growth factor (EGF) receptor gene transcription. Requirement for Sp1 and an EGF receptor-specific factor. J Biol Chem 263:6329–6336PubMedGoogle Scholar
  19. 19.
    Kitadai Y, Yasui W, Yokozaki H, Kuniyasu H, Haruma K, Kajiyama G, Tahara E (1992) The level of a transcription factor Sp1 is correlated with the expression of EGF receptor in human gastric carcinomas. Biochem Biophys Res Commun 189:1342–1348CrossRefPubMedGoogle Scholar
  20. 20.
    Li AY, Lin HH, Kuo CY, Shih HM, Wang CC, Yen Y, Ann DK (2011) High-mobility group A2 protein modulates hTERT transcription to promote tumorigenesis. Mol Cell Biol 31:2605–2617CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Li Z, Guo Y, Jiang H, Zhang T, Jin C, Young CY, Yuan H (2014) Differential regulation of MMPs by E2F1, Sp1 and NF-kappa B controls the small cell lung cancer invasive phenotype. BMC Cancer 14(1):276CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Maor S, Yosepovich A, Papa MZ, Yarden RI, Mayer D, Friedman E, Werner H (2007) Elevated insulin like growth factor-I receptor (IGF-IR) levels in primary breast tumors associated with BRCA1 mutations. Cancer Lett 257:236–243CrossRefPubMedGoogle Scholar
  23. 23.
    Maor SB, Abramovitch S, Erdos MR, Brody LC, bWerner H (2000) BRCA1 suppresses insulin-like growth factor-I receptor promoter activity: potential interaction between BRCA1 and Sp1. Mol Genet Metab 69:130–136CrossRefPubMedGoogle Scholar
  24. 24.
    Nam EH, Lee Y, Park YK, Lee JW, Kim S (2012) ZEB2 upregulates integrin α5 expression through cooperation with Sp1 to induce invasion during epithelial–mesenchymal transition of human cancer cells. Carcinogenesis bgs005Google Scholar
  25. 25.
    Nam, E. H., Lee, Y., Zhao, X. F., Park, Y. K., Lee, J. W., & Kim, S. (2013). ZEB2-Sp1 cooperation induces invasion by upregulating cadherin-11 and integrin α5 expression. Carcinogenesis, bgt340Google Scholar
  26. 26.
    Normanno, N., De Luca, A., Bianco, C., Strizzi, L., Mancino, M., Maiello, M. R., ...& Salomon, D. S. (2006). Epidermal growth factor receptor (EGFR) signaling in cancer. Gene, 366(1), 2-16Google Scholar
  27. 27.
    Pollak M (2012) The insulin and insulin-like growth factor receptor family in neoplasia: an update. Nat Rev Cancer 12:159–169CrossRefPubMedGoogle Scholar
  28. 28.
    Previdi S, Malek A, Albertini V, Riva C, Capella C, Broggini M et al (2010) Inhibition of Sp1-dependent transcription and antitumor activity of the new aureolic acid analogues mithramycin SDK and SK in human ovarian cancer xenografts. Gynecol Oncol 118:182–188CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Seznec J, Silkenstedt B, Naumann U (2011) Therapeutic effects of the Sp1 inhibitor mithramycin A in glioblastoma. J Neuro-Oncol 101:365–377CrossRefGoogle Scholar
  30. 30.
    Siegel R, DeSantis C, Jemal A (2014) Colorectal cancer statistics, 2014. CA Cancer J Clin 64(2):104–117CrossRefPubMedGoogle Scholar
  31. 31.
    Su K, Roos MD, Yang X, Han I, Paterson AJ, Kudlow JE (1999) An N-terminal region of Sp1 targets its proteasome-dependent degradation in vitro. J Biol Chem 274:15194–15202CrossRefPubMedGoogle Scholar
  32. 32.
    Suske G (1999) The Sp-family of transcription factors. Gene 238(2):291–300CrossRefPubMedGoogle Scholar
  33. 33.
    Tan F, Mbunkui F, Ofori-Acquah SF (2012) Cloning of the human activated leukocyte cell adhesion molecule promoter and identification of its tissue-independent transcriptional activation by Sp1. Cell Mol Biol Lett 17(4):571–585CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Vallian S, Chin KV, Chang KS (1998) The promyelocytic leukemia protein interacts with Sp1 and inhibits its transactivation of the epidermal growth factor receptor promoter. Mol Cell Biol 18:7147–7156CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Vizcaíno C, Mansilla S, Portugal J (2015) Sp1 transcription factor: a long-standing target in cancer chemotherapy. Pharmacol Ther 152:111–124CrossRefPubMedGoogle Scholar
  36. 36.
    Wang X, Pan L, Feng Y, Wang Y, Han Q, Han L, Han S, Guo J, Huang B, Lu J (2008a) P300 plays a role in p16(INK4a) expression and cell cycle arrest. Oncogene 27:1894–1904CrossRefPubMedGoogle Scholar
  37. 37.
    Wang XB, Peng WQ, Yi ZJ, Zhu SL, Gan QH (2007b) Expression and prognostic value of transcriptional factor Sp1 in breast cancer. Ai Zheng 26:996–1000PubMedGoogle Scholar
  38. 38.
    Wang L, Guan X, Zhang J, Jia Z, Wei D, Li Q, …, Xie K (2008b) Targeted inhibition of Sp1-mediated transcription for antiangiogenic therapy of metastatic human gastric cancer in orthotopic nude mouse models. Int J Oncol 33(1):161–167Google Scholar
  39. 39.
    Wang L, Wei D, Huang S, Peng Z, Le X, Wu TT, …, Xie K (2003) Transcription factor Sp1 expression is a significant predictor of survival in human gastric cancer. Clin Cancer Res 9(17):6371–6380Google Scholar
  40. 40.
    Wei S, Chuang HC, Tsai WC, Yang HC, Ho SR, Paterson AJ, Kulp SK, Chen CS (2009) Thiazolidinediones mimic glucose starvation in facilitating Sp1 degradation through the up-regulation of beta-transducin repeat-containing protein. Mol Pharmacol 76:47–57CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Wei D, Wang L, He Y, Xiong HQ, Abbruzzese JL, Xie K (2004) Celecoxib inhibits vascular endothelial growth factor expression in and reduces angiogenesis and metastasis of human pancreatic cancer via suppression of Sp1 transcription factor activity. Cancer Res 64(6):2030–2038CrossRefPubMedGoogle Scholar
  42. 42.
    Xie, K., & Huang, S. (2003). Regulation of cancer metastasis by stress pathways. Clinical and Experimental Metastasis, 20(1), 31-43Google Scholar
  43. 43.
    Yan X, Lin Y, Liu S, Yan Q (2015) Fucosyltransferase IV (FUT4) as an effective biomarker for the diagnosis of breast cancer. Biomed Pharmacother 70:299–304CrossRefPubMedGoogle Scholar
  44. 44.
    Yao JC, Wang L, Wei D, Gong W, Hassan M, Wu TT, Mansfield P, Ajani J, Xie K (2004) Association between expression of transcription factor Sp1 and increased vascular endothelial growth factor expression, advanced stage, and poor survival in patients with resected gastric cancer. Clin Cancer Res 10(12):4109–4117Google Scholar
  45. 45.
    Yen WH, Ke WS, Hung JJ, Chen TM, Chen JS, Sun HS (2016) Sp1-mediated ectopic expression of T-cell lymphoma invasion and metastasis 2 in hepatocellular carcinoma. Cancer Med 5(3):465–477Google Scholar
  46. 46.
    Zhang JP, Zhang H, Wang HB, Li YX, Liu GH, Xing S, …, Zeng MS (2014) Down-regulation of Sp1 suppresses cell proliferation, clonogenicity and the expressions of stem cell markers in nasopharyngeal carcinoma. J Transl Med 12(1):222Google Scholar
  47. 47.
    Zhou C, Ji J, Cai Q, Shi M, Chen X, Yu Y, …, Zhang J (2013) MTA2 promotes gastric cancer cells invasion and is transcriptionally regulated by Sp1. Mol Cancer 12(1):102Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd 2017

Authors and Affiliations

  • A. M. V. N. Prathyusha
    • 1
  • Renuka Nawadkar
    • 2
    • 3
  • Pallaval Veera Bramhachari
    • 1
  1. 1.Department of BiotechnologyKrishna UniversityMachilipatnamIndia
  2. 2.Yashwnatrao Chavan College of ScienceKaradIndia
  3. 3.Yashwnatrao Chavan Law CollegePuneIndia

Personalised recommendations