Activation of STAT3 in Gastric Cancer Development

  • Kishore Kumar JellaEmail author


The transcription factor STAT3 important for regulating factors that involve in the modulation of gene expression. The factors such as growth factors and cytokines regulate homeostasis of both epithelial and stromal cells. Deregulation of STAT3 activation is important in the initiation of transformation of various cancers that are epithelial in origin. This chapter mainly focuses on STAT3 activation in gastric cancer and its progression with the activation of cytokines; it also discusses how STAT3 associated with progression of gastric cancer. The studies have shown the association of deregulated JAK/STAT in the development of solid cancers especially in gastric cancer. Therapeutic use of STAT3 may prevent the development of gastric cancer. Inhibitors of STAT3 are emerging as a potent drug in treatment options. STAT3 inhibitors are under evaluation in various clinical trials, showing promising results for the treatment.


Gastric cancer STAT3 JAK/STAT H. pylori CagA TLR EGFR 



ADAM metallopeptidase domain 17


Activator protein 1


B cell lymphoma


Cytotoxic-associated gene pathogenicity island


Cytotoxic-associated gene A


Dendritic cells




Epidermal growth factor receptor


Epithelial mesenchymal transition


Mutation of tyrosine to serine


c Terminal Glu-Pro-Ile-Tyr-Ala


Extracellular signal-regulated kinase


5-Fluorouracil, leucovorin, and irinotecan



H. pylori

Helicobacter pylori


Heparin-binding epidermal growth factor


Human epidermal growth factor receptor-2


Hypoxia-inducible factor 1-alpha


Intestinal epithelial cells






Interleukin 1 receptor associated kinase


Janus kinase


Mitogen-activated protein kinase


Matrix metalloproteases


Myeloproliferative leukemia


Myeloid differentiation primary response gene 88


Nuclear factor kappa-light-chain-enhancer of activated B cells


Overall survival


Inhibitor of activated STATS


Protein tyrosine phosphatase


Member of regenerate family




Inhibitor of cytokine signaling


Suppressor of cytokine signaling


Signal transducer and activator protein


T helper cells


Toll-like receptors


Tumor node metastasis


The regulatory T cells


Vascular endothelial growth factor



I would like to acknowledge Dr. Nagaraju P. Ganji for giving me the opportunity to write this book chapter. I appreciate the guidance, support, and encouragement all the time during my writing work. A special thanks to Addie Byrd for helping in scientific corrections.


  1. 1.
    Society AC (2017) Cancer facts & figures. American Cancer Society, AtlantaGoogle Scholar
  2. 2.
    Judd LM et al (2006) STAT3 activation regulates growth, inflammation, and vascularization in a mouse model of gastric tumorigenesis. Gastroenterology 131(4):1073–1085CrossRefPubMedGoogle Scholar
  3. 3.
    Deng JY, Sun D, Liu XY, Pan Y, Liang H (2010) STAT-3 correlates with lymph node metastasis and cell survival in gastric cancer. World J Gastroenterol 16(42):5380–5387PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Li Y et al (2015) Suppression of cancer relapse and metastasis by inhibiting cancer stemness. Proc Natl Acad Sci U S A 112(6):1839–1844PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Lavecchia A, Di Giovanni C, Novellino E (2011) STAT-3 inhibitors: state of the art and new horizons for cancer treatment. Curr Med Chem 18(16):2359–2375PubMedCrossRefGoogle Scholar
  6. 6.
    Darnell JE Jr, Kerr IM, Stark GR (1994) Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264(5164):1415–1421PubMedCrossRefGoogle Scholar
  7. 7.
    Xiong A, Yang Z, Shen Y, Zhou J, Shen Q (2014) Transcription factor STAT3 as a novel molecular target for cancer prevention. Cancers (Basel) 6(2):926–957CrossRefGoogle Scholar
  8. 8.
    Wen Z, Zhong Z, Darnell JE Jr (1995) Maximal activation of transcription by Stat1 and Stat3 requires both tyrosine and serine phosphorylation. Cell 82(2):241–250CrossRefPubMedGoogle Scholar
  9. 9.
    Akira S et al (1994) Molecular cloning of APRF, a novel IFN-stimulated gene factor 3 p91-related transcription factor involved in the gp130-mediated signaling pathway. Cell 77(1):63–71PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Aaronson DS, Horvath CM (2002) A road map for those who don’t know JAK-STAT. Science 296(5573):1653–1655PubMedCrossRefGoogle Scholar
  11. 11.
    Rawlings JS, Rosler KM, Harrison DA (2004) The JAK/STAT signaling pathway. J Cell Sci 117(Pt 8):1281–1283PubMedCrossRefGoogle Scholar
  12. 12.
    Merchant N, Nagaraju GP, Rajitha B, Lammata S, Jella KK, Buchwald ZS, Lakka SS, Ali N (2017) Matrix metalloproteinases: their functional role in lung cancer. Carcinogenesis 38(8):766–780PubMedCrossRefGoogle Scholar
  13. 13.
    Harrison DA (2012) The Jak/STAT pathway. Cold Spring Harb Perspect Biol 4(3)PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Kiu H, Nicholson SE (2012) Biology and significance of the JAK/STAT signalling pathways. Growth Factors 30(2):88–106PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Owen DA (1986) Normal histology of the stomach. Am J Surg Pathol 10(1):48–61PubMedCrossRefGoogle Scholar
  16. 16.
    Valentino L, Pierre J (2006) JAK/STAT signal transduction: regulators and implication in hematological malignancies. Biochem Pharmacol 71(6):713–721PubMedCrossRefGoogle Scholar
  17. 17.
    Espert L, Dusanter-Fourt I, Chelbi-Alix MK (2005) Negative regulation of the JAK/STAT: pathway implication in tumorigenesis. Bull Cancer 92(10):845–857PubMedPubMedCentralGoogle Scholar
  18. 18.
    Kisseleva T, Bhattacharya S, Braunstein J, Schindler CW (2002) Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene 285(1–2):1–24PubMedCrossRefGoogle Scholar
  19. 19.
    Li WX (2008) Canonical and non-canonical JAK-STAT signaling. Trends Cell Biol 18(11):545–551PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Sansone P, Bromberg J (2012) Targeting the interleukin-6/Jak/stat pathway in human malignancies. J Clin Oncol 30(9):1005–1014PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Scott LM (2011) The JAK2 exon 12 mutations: a comprehensive review. Am J Hematol 86(8):668–676PubMedCrossRefGoogle Scholar
  22. 22.
    Kralovics R et al (2005) A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 352(17):1779–1790PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Lee H et al (2010) STAT3-induced S1PR1 expression is crucial for persistent STAT3 activation in tumors. Nat Med 16(12):1421–1428PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Stephanou A, Brar BK, Knight RA, Latchman DS (2000) Opposing actions of STAT-1 and STAT-3 on the Bcl-2 and Bcl-x promoters. Cell Death Differ 7(3):329–330PubMedCrossRefGoogle Scholar
  25. 25.
    Rebouissou S et al (2009) Frequent in-frame somatic deletions activate gp130 in inflammatory hepatocellular tumours. Nature 457(7226):200–204CrossRefPubMedGoogle Scholar
  26. 26.
    O’Connor DS et al (2000) Regulation of apoptosis at cell division by p34cdc2 phosphorylation of survivin. Proc Natl Acad Sci U S A 97(24):13103–13107PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Wendt MK, Balanis N, Carlin CR, Schiemann WP (2014) STAT3 and epithelial-mesenchymal transitions in carcinomas. JAKSTAT 3(1):e28975PubMedPubMedCentralGoogle Scholar
  28. 28.
    Wei D et al (2003) Stat3 activation regulates the expression of vascular endothelial growth factor and human pancreatic cancer angiogenesis and metastasis. Oncogene 22(3):319–329PubMedCrossRefGoogle Scholar
  29. 29.
    Kujawski M et al (2008) Stat3 mediates myeloid cell-dependent tumor angiogenesis in mice. J Clin Invest 118(10):3367–3377PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Gong W et al (2005) Expression of activated signal transducer and activator of transcription 3 predicts expression of vascular endothelial growth factor in and angiogenic phenotype of human gastric cancer. Clin Cancer Res 11(4):1386–1393PubMedCrossRefGoogle Scholar
  31. 31.
    Teng Y, Ross JL, Cowell JK (2014) The involvement of JAK-STAT3 in cell motility, invasion, and metastasis. JAKSTAT 3(1):e28086PubMedPubMedCentralGoogle Scholar
  32. 32.
    Wang Z et al (2013) Activation of STAT3 in human gastric cancer cells via interleukin (IL)-6-type cytokine signaling correlates with clinical implications. PLoS One 8(10):e75788PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Giraud AS, Menheniott TR, Judd LM (2012) Targeting STAT3 in gastric cancer. Expert Opin Ther Targets 16(9):889–901PubMedCrossRefGoogle Scholar
  34. 34.
    Kanda N et al (2004) STAT3 is constitutively activated and supports cell survival in association with survivin expression in gastric cancer cells. Oncogene 23(28):4921–4929PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Kim DY et al (2009) STAT3 expression in gastric cancer indicates a poor prognosis. J Gastroenterol Hepatol 24(4):646–651PubMedCrossRefGoogle Scholar
  36. 36.
    Deng J et al (2013) Lymph node metastasis is mediated by suppressor of cytokine signaling-3 in gastric cancer. Tumour Biol 34(6):3627–3636PubMedCrossRefGoogle Scholar
  37. 37.
    Bollrath J et al (2009) gp130-mediated Stat3 activation in enterocytes regulates cell survival and cell-cycle progression during colitis-associated tumorigenesis. Cancer Cell 15(2):91–102PubMedCrossRefGoogle Scholar
  38. 38.
    Grivennikov S et al (2009) IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell 15(2):103–113PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Rigby RJ, Simmons JG, Greenhalgh CJ, Alexander WS, Lund PK (2007) Suppressor of cytokine signaling 3 (SOCS3) limits damage-induced crypt hyper-proliferation and inflammation-associated tumorigenesis in the colon. Oncogene 26(33):4833–4841PubMedCrossRefGoogle Scholar
  40. 40.
    Ernst M, Putoczki TL (2012) Stat3: linking inflammation to (gastrointestinal) tumourigenesis. Clin Exp Pharmacol Physiol 39(8):711–718PubMedCrossRefGoogle Scholar
  41. 41.
    Howlett M et al (2009) The interleukin-6 family cytokine interleukin-11 regulates homeostatic epithelial cell turnover and promotes gastric tumor development. Gastroenterology 136(3):967–977PubMedCrossRefGoogle Scholar
  42. 42.
    Judd LM et al (2004) Gastric cancer development in mice lacking the SHP2 binding site on the IL-6 family co-receptor gp130. Gastroenterology 126(1):196–207PubMedCrossRefGoogle Scholar
  43. 43.
    Howlett M et al (2005) Differential regulation of gastric tumor growth by cytokines that signal exclusively through the coreceptor gp130. Gastroenterology 129(3):1005–1018PubMedCrossRefGoogle Scholar
  44. 44.
    Jackson CB et al (2007) Augmented gp130-mediated cytokine signalling accompanies human gastric cancer progression. J Pathol 213(2):140–151CrossRefPubMedGoogle Scholar
  45. 45.
    Kawai T, Akira S (2011) Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34(5):637–650PubMedCrossRefGoogle Scholar
  46. 46.
    Shaykhiev R, Behr J, Bals R (2008) Microbial patterns signaling via toll-like receptors 2 and 5 contribute to epithelial repair, growth and survival. PLoS One 3(1):e1393PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Pachathundikandi SK, Tegtmeyer N, Backert S (2013) Signal transduction of helicobacter pylori during interaction with host cell protein receptors of epithelial and immune cells. Gut Microbes 4(6):454–474PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Eyking A et al (2011) Toll-like receptor 4 variant D299G induces features of neoplastic progression in Caco-2 intestinal cells and is associated with advanced human colon cancer. Gastroenterology 141(6):2154–2165PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Tye H et al (2012) STAT3-driven upregulation of TLR2 promotes gastric tumorigenesis independent of tumor inflammation. Cancer Cell 22(4):466–478CrossRefPubMedGoogle Scholar
  50. 50.
    Greenhill CJ et al (2011) IL-6 trans-signaling modulates TLR4-dependent inflammatory responses via STAT3. J Immunol 186(2):1199–1208PubMedCrossRefGoogle Scholar
  51. 51.
    Kao JY et al (2010) Helicobacter pylori immune escape is mediated by dendritic cell-induced Treg skewing and Th17 suppression in mice. Gastroenterology 138(3):1046–1054PubMedCrossRefGoogle Scholar
  52. 52.
    Oertli M, Muller A (2012) Helicobacter pylori targets dendritic cells to induce immune tolerance, promote persistence and confer protection against allergic asthma. Gut Microbes 3(6):566–571PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Arnold IC, Hitzler I, Muller A (2012) The immunomodulatory properties of helicobacter pylori confer protection against allergic and chronic inflammatory disorders. Front Cell Infect Microbiol 2:10PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Hossain DM et al (2013) FoxP3 acts as a cotranscription factor with STAT3 in tumor-induced regulatory T cells. Immunity 39(6):1057–1069PubMedCrossRefGoogle Scholar
  55. 55.
    Chaudhry A et al (2011) Interleukin-10 signaling in regulatory T cells is required for suppression of Th17 cell-mediated inflammation. Immunity 34(4):566–578PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Zhang M, Liu M, Luther J, Kao JY (2010) Helicobacter pylori directs tolerogenic programming of dendritic cells. Gut Microbes 1(5):325–329PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Oertli M et al (2013) Helicobacter pylori gamma-glutamyl transpeptidase and vacuolating cytotoxin promote gastric persistence and immune tolerance. Proc Natl Acad Sci U S A 110(8):3047–3052PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Kaebisch R, Mejias-Luque R, Prinz C, Gerhard M (2014) Helicobacter pylori cytotoxin-associated gene A impairs human dendritic cell maturation and function through IL-10-mediated activation of STAT3. J Immunol 192(1):316–323PubMedCrossRefGoogle Scholar
  59. 59.
    Rizzuti D et al (2015) Helicobacter pylori inhibits dendritic cell maturation via interleukin-10-mediated activation of the signal transducer and activator of transcription 3 pathway. J Innate Immun 7(2):199–211PubMedCrossRefGoogle Scholar
  60. 60.
    Lee KS et al (2012) Helicobacter pylori CagA triggers expression of the bactericidal lectin REG3gamma via gastric STAT3 activation. PLoS One 7(2):e30786PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Roskoski R Jr (2014) The ErbB/HER family of protein-tyrosine kinases and cancer. Pharmacol Res 79:34–74PubMedCrossRefGoogle Scholar
  62. 62.
    Olayioye MA, Beuvink I, Horsch K, Daly JM, Hynes NE (1999) ErbB receptor-induced activation of stat transcription factors is mediated by Src tyrosine kinases. J Biol Chem 274(24):17209–17218PubMedCrossRefGoogle Scholar
  63. 63.
    Jorissen RN et al (2003) Epidermal growth factor receptor: mechanisms of activation and signalling. Exp Cell Res 284(1):31–53PubMedCrossRefGoogle Scholar
  64. 64.
    Tuccillo C et al (2002) Up-regulation of heparin binding epidermal growth factor-like growth factor and amphiregulin expression in helicobacter pylori-infected human gastric mucosa. Dig Liver Dis 34(7):498–505PubMedCrossRefGoogle Scholar
  65. 65.
    Takaishi S, Wang TC (2007) Gene expression profiling in a mouse model of helicobacter-induced gastric cancer. Cancer Sci 98(3):284–293PubMedCrossRefGoogle Scholar
  66. 66.
    Jurkowska G et al (2014) The impact of helicobacter pylori on EGF, EGF receptor, and the c-erb-B2 expression. Adv Med Sci 59(2):221–226PubMedCrossRefGoogle Scholar
  67. 67.
    Yin Y et al (2010) Helicobacter pylori potentiates epithelial:mesenchymal transition in gastric cancer: links to soluble HB-EGF, gastrin and matrix metalloproteinase-7. Gut 59(8):1037–1045PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Yan F et al (2009) Epidermal growth factor receptor activation protects gastric epithelial cells from helicobacter pylori-induced apoptosis. Gastroenterology 136(4):1297–1307. e1291–1293PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Chaturvedi R et al (2014) Activation of EGFR and ERBB2 by helicobacter pylori results in survival of gastric epithelial cells with DNA damage. Gastroenterology 146(7):1739–1751. e1714PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Keates S, Keates AC, Nath S, Peek RM Jr, Kelly CP (2005) Transactivation of the epidermal growth factor receptor by cag+ helicobacter pylori induces upregulation of the early growth response gene Egr-1 in gastric epithelial cells. Gut 54(10):1363–1369PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    McCracken KW et al (2014) Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature 516(7531):400–404PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Hatakeyama M (2004) Oncogenic mechanisms of the helicobacter pylori CagA protein. Nat Rev Cancer 4(9):688–694PubMedCrossRefGoogle Scholar
  73. 73.
    Hatakeyama M (2008) SagA of CagA in helicobacter pylori pathogenesis. Curr Opin Microbiol 11(1):30–37PubMedCrossRefGoogle Scholar
  74. 74.
    Kuipers EJ, Perez-Perez GI, Meuwissen SG, Blaser MJ (1995) Helicobacter pylori and atrophic gastritis: importance of the cagA status. J Natl Cancer Inst 87(23):1777–1780PubMedCrossRefGoogle Scholar
  75. 75.
    Ohnishi N et al (2008) Transgenic expression of helicobacter pylori CagA induces gastrointestinal and hematopoietic neoplasms in mouse. Proc Natl Acad Sci U S A 105(3):1003–1008PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Zhu Y, Zhong X, Zheng S, Du Q, Xu W (2005) Transformed immortalized gastric epithelial cells by virulence factor CagA of helicobacter pylori through Erk mitogen-activated protein kinase pathway. Oncogene 24(24):3886–3895PubMedCrossRefGoogle Scholar
  77. 77.
    Stein M, Rappuoli R, Covacci A (2000) Tyrosine phosphorylation of the helicobacter pylori CagA antigen after cag-driven host cell translocation. Proc Natl Acad Sci U S A 97(3):1263–1268PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Tsutsumi R, Higashi H, Higuchi M, Okada M, Hatakeyama M (2003) Attenuation of helicobacter pylori CagA x SHP-2 signaling by interaction between CagA and C-terminal Src kinase. J Biol Chem 278(6):3664–3670PubMedCrossRefGoogle Scholar
  79. 79.
    Poppe M, Feller SM, Romer G, Wessler S (2007) Phosphorylation of helicobacter pylori CagA by c-Abl leads to cell motility. Oncogene 26(24):3462–3472PubMedCrossRefGoogle Scholar
  80. 80.
    Mimuro H et al (2002) Grb2 is a key mediator of helicobacter pylori CagA protein activities. Mol Cell 10(4):745–755PubMedCrossRefGoogle Scholar
  81. 81.
    Churin Y et al (2003) Helicobacter pylori CagA protein targets the c-Met receptor and enhances the motogenic response. J Cell Biol 161(2):249–255PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Saadat I et al (2007) Helicobacter pylori CagA targets PAR1/MARK kinase to disrupt epithelial cell polarity. Nature 447(7142):330–333PubMedCrossRefGoogle Scholar
  83. 83.
    Murata-Kamiya N et al (2007) Helicobacter pylori CagA interacts with E-cadherin and deregulates the beta-catenin signal that promotes intestinal transdifferentiation in gastric epithelial cells. Oncogene 26(32):4617–4626PubMedCrossRefGoogle Scholar
  84. 84.
    Higashi H et al (2004) Helicobacter pylori CagA induces Ras-independent morphogenetic response through SHP-2 recruitment and activation. J Biol Chem 279(17):17205–17216PubMedCrossRefGoogle Scholar
  85. 85.
    Tebbutt NC et al (2002) Reciprocal regulation of gastrointestinal homeostasis by SHP2 and STAT-mediated trefoil gene activation in gp130 mutant mice. Nat Med 8(10):1089–1097PubMedCrossRefGoogle Scholar
  86. 86.
    Suzuki M et al (2005) Interaction of CagA with Crk plays an important role in helicobacter pylori-induced loss of gastric epithelial cell adhesion. J Exp Med 202(9):1235–1247PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Bronte-Tinkew DM et al (2009) Helicobacter pylori cytotoxin-associated gene A activates the signal transducer and activator of transcription 3 pathway in vitro and in vivo. Cancer Res 69(2):632–639PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Lee IO et al (2010) Helicobacter pylori CagA phosphorylation status determines the gp130-activated SHP2/ERK and JAK/STAT signal transduction pathways in gastric epithelial cells. J Biol Chem 285(21):16042–16050PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Higashi H et al (2005) EPIYA motif is a membrane-targeting signal of helicobacter pylori virulence factor CagA in mammalian cells. J Biol Chem 280(24):23130–23137PubMedCrossRefGoogle Scholar
  90. 90.
    Jella KK, Garcia A, McClean B, Byrne HJ, Lyng FM (2013) Cell death pathways in directly irradiated cells and cells exposed to medium from irradiated cells. Int J Radiat Biol 89(3):182–190PubMedCrossRefGoogle Scholar
  91. 91.
    Jella KK et al (2014) Exosomes are involved in mediating radiation induced bystander signaling in human keratinocyte cells. Radiat Res 181(2):138–145PubMedCrossRefGoogle Scholar
  92. 92.
    Jella KK et al (2016) Exosomal GAPDH from proximal tubule cells regulate ENaC activity. PLoS One 11(11):e0165763PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Lyng FM, Desplanques M, Jella KK, Garcia A, McClean B (2012) The importance of serum serotonin levels in the measurement of radiation-induced bystander cell death in HaCaT cells. Int J Radiat Biol 88(10):770–772PubMedCrossRefGoogle Scholar
  94. 94.
    Li Z et al (2015) Co-culturing with high-charge and energy particle irradiated cells increases mutagenic joining of enzymatically induced DNA double-strand breaks in nonirradiated cells. Radiat Res 184(3):249–258PubMedCrossRefGoogle Scholar
  95. 95.
    Li Z, Wang H, Wang Y, Murnane JP, Dynan WS (2014) Effect of radiation quality on mutagenic joining of enzymatically-induced DNA double-strand breaks in previously irradiated human cells. Radiat Res 182(5):573–579PubMedCrossRefGoogle Scholar
  96. 96.
    Li Z et al (2013) Increased mutagenic joining of enzymatically-induced DNA double-strand breaks in high-charge and energy particle irradiated human cells. Radiat Res 180(1):17–24PubMedCrossRefGoogle Scholar
  97. 97.
    Dang VD, Jella KK, Ragheb RRT, Denslow ND, Alli AA (2017) Lipidomics and proteomic analysis of exosomes from mouse cortical collecting duct cells.
  98. 98.
    Macdonald JS et al (2001) Chemoradiotherapy after surgery compared with surgery alone for adenocarcinoma of the stomach or gastroesophageal junction. N Engl J Med 345(10):725–730PubMedCrossRefGoogle Scholar
  99. 99.
    Cunningham D et al (2006) Perioperative chemotherapy versus surgery alone for resectable gastroesophageal cancer. N Engl J Med 355(1):11–20PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Cunningham D et al (2008) Capecitabine and oxaliplatin for advanced esophagogastric cancer. N Engl J Med 358(1):36–46PubMedCrossRefGoogle Scholar
  101. 101.
    Van Cutsem E et al (2006) Phase III study of docetaxel and cisplatin plus fluorouracil compared with cisplatin and fluorouracil as first-line therapy for advanced gastric cancer: a report of the V325 study group. J Clin Oncol 24(31):4991–4997PubMedCrossRefGoogle Scholar
  102. 102.
    Dikken JL et al (2011) Neo-adjuvant chemotherapy followed by surgery and chemotherapy or by surgery and chemoradiotherapy for patients with resectable gastric cancer (CRITICS). BMC Cancer 11:329PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Van Cutsem E et al (2012) Bevacizumab in combination with chemotherapy as first-line therapy in advanced gastric cancer: a biomarker evaluation from the AVAGAST randomized phase III trial. J Clin Oncol 30(17):2119–2127PubMedCrossRefGoogle Scholar
  104. 104.
    Yi JH et al (2012) Randomised phase II trial of docetaxel and sunitinib in patients with metastatic gastric cancer who were previously treated with fluoropyrimidine and platinum. Br J Cancer 106(9):1469–1474PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Lee KW et al (2013) Phase I study of sunitinib plus capecitabine/cisplatin or capecitabine/oxaliplatin in advanced gastric cancer. Investig New Drugs 31(6):1547–1558CrossRefGoogle Scholar
  106. 106.
    Gomez-Martin C et al (2013) A phase I, dose-finding study of sunitinib combined with cisplatin and 5-fluorouracil in patients with advanced gastric cancer. Investig New Drugs 31(2):390–398CrossRefGoogle Scholar
  107. 107.
    Sarlo C et al (2013) Phase II study of Bortezomib as a single agent in patients with previously untreated or relapsed/refractory acute myeloid leukemia ineligible for intensive therapy. Leuk Res Treatment 2013:705714PubMedPubMedCentralGoogle Scholar
  108. 108.
    Iveson T et al (2014) Rilotumumab in combination with epirubicin, cisplatin, and capecitabine as first-line treatment for gastric or oesophagogastric junction adenocarcinoma: an open-label, dose de-escalation phase 1b study and a double-blind, randomised phase 2 study. Lancet Oncol 15(9):1007–1018PubMedCrossRefGoogle Scholar
  109. 109.
    Hudis CA (2007) Trastuzumab – mechanism of action and use in clinical practice. N Engl J Med 357(1):39–51PubMedCrossRefGoogle Scholar
  110. 110.
    Bang YJ et al (2010) Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet 376(9742):687–697PubMedCrossRefGoogle Scholar
  111. 111.
    Duraes C, Almeida GM, Seruca R, Oliveira C, Carneiro F (2014) Biomarkers for gastric cancer: prognostic, predictive or targets of therapy? Virchows Arch 464(3):367–378PubMedCrossRefGoogle Scholar
  112. 112.
    Fuchs CS et al (2014) Ramucirumab monotherapy for previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (REGARD): an international, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet 383(9911):31–39PubMedCrossRefGoogle Scholar
  113. 113.
    Ohtsu A et al (2011) Bevacizumab in combination with chemotherapy as first-line therapy in advanced gastric cancer: a randomized, double-blind, placebo-controlled phase III study. J Clin Oncol 29(30):3968–3976PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd 2017

Authors and Affiliations

  1. 1.Department of Radiation OncologyEmory UniversityAtlantaUSA

Personalised recommendations