Advertisement

Role of Hypoxia-Inducible Factor (HIF) in the Initiation of Cancer and Its Therapeutic Inhibitors

  • Sasidhar Eda
  • Ramakrishna Vadde
  • Rajeswari Jinka
Chapter

Abstract

The inadequate oxygen (O2) supply to a large extent alters the cellular microenvironment and results in hypoxia or even anoxia. Hypoxia-inducible factor (HIF) facilitates the cellular response to hypoxia. HIF, a heterodimer composed of two subunits, the subunit α and subunit β, is involved in several signaling pathways which involves both survival and death pathways, their activation and regulation. HIF is believed to be the best molecular target in the treatment of cancer, and also numerous inhibitors for HIF-1α are available today. This chapter explains the HIF-1α role in cancer and its therapeutic applications that potentially target HIF pathway.

Keywords

Cancer Hypoxia Hypoxia-inducible factor (HIF) HIF-1α inhibitors Angiogenesis Small molecule inhibitors 

References

  1. 1.
    Abd-Aziz N, Stanbridge EJ, Shafee N (2015) Bortezomib attenuates HIF-1- but not HIF-2-mediated transcriptional activation. Oncol Lett 10:2192–2196PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Agarwal S, Loder S, Brownley C, Cholok D, Mangiavini L, Li J, Breuler C, Sung HH, Li S, Ranganathan K et al (2016) Inhibition of Hif1α prevents both trauma-induced and genetic heterotopic ossification. Proc Natl Acad Sci 113:E338–E347PubMedCrossRefGoogle Scholar
  3. 3.
    Aoyagi Y, Fujita N, Tsuruo T (2005) Stabilization of integrin-linked kinase by binding to Hsp90. Biochem Biophys Res Commun 331:1061–1068PubMedCrossRefGoogle Scholar
  4. 4.
    Aquino-Gálvez A, González-Ávila G, Delgado-Tello J, Castillejos-López M, Mendoza-Milla C, Zúñiga J, Checa M, Maldonado-Martínez HA, Trinidad-López A, Cisneros J (2016) Effects of 2-methoxyestradiol on apoptosis and HIF-1α and HIF-2α expression in lung cancer cells under normoxia and hypoxia. Oncol Rep 35:577–583PubMedCrossRefGoogle Scholar
  5. 5.
    Baker AF, Adab KN, Raghunand N, Chow HH, Stratton SP, Squire SW, Boice M, Pestano LA, Kirkpatrick DL, Dragovich T (2013) A phase IB trial of 24-hour intravenous PX-12, a thioredoxin-1 inhibitor, in patients with advanced gastrointestinal cancers. Investig New Drugs 31:631–641CrossRefGoogle Scholar
  6. 6.
    Baker AF, Dragovich T, Tate WR, Ramanathan RK, Roe D, Hsu CH, Kirkpatrick DL, Powis G (2006) The antitumor thioredoxin-1 inhibitor PX-12 (1-methylpropyl 2-imidazolyl disulfide) decreases thioredoxin-1 and VEGF levels in cancer patient plasma. J Lab Clin Med 147:83–90PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Balamurugan K (2016) HIF-1 at the crossroads of hypoxia, inflammation, and cancer. Int J Cancer 138:1058–1066PubMedCrossRefGoogle Scholar
  8. 8.
    Becker CM, Rohwer N, Funakoshi T, Cramer T, Bernhardt W, Birsner A, Folkman J, D’Amato RJ (n.d.) 2-methoxyestradiol inhibits hypoxia-inducible factor-1α and suppresses growth of lesions in a mouse model of endometriosis. Am J Pathol 172:534–544PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Befani CD, Vlachostergios PJ, Hatzidaki E, Patrikidou A, Bonanou S, Simos G, Papandreou CN, Liakos P (2012) Bortezomib represses HIF-1alpha protein expression and nuclear accumulation by inhibiting both PI3K/Akt/TOR and MAPK pathways in prostate cancer cells. J Mol Med (Berlin, Germany) 90:45–54CrossRefGoogle Scholar
  10. 10.
    Bielawski K, Winnicka K, Bielawska A (2006) Inhibition of DNA topoisomerases I and II, and growth inhibition of breast cancer MCF-7 cells by Ouabain, digoxin and Proscillaridin a. Biol Pharm Bull 29:1493–1497PubMedCrossRefGoogle Scholar
  11. 11.
    Bridgeman BB, Wang P, Ye B, Pelling JC, Volpert OV, Tong X (2016) Inhibition of mTOR by apigenin in UVB-irradiated keratinocytes: a new implication of skin cancer prevention. Cell Signal 28:460–468PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Broekgaarden M, Weijer R, Krekorian M, van den IJssel B, Kos M, Alles LK, van Wijk AC, Bikadi Z, Hazai E, van Gulik TM et al (2016) Inhibition of hypoxia-inducible factor 1 with acriflavine sensitizes hypoxic tumor cells to photodynamic therapy with zinc phthalocyanine-encapsulating cationic liposomes. Nano Res 9:1639–1662CrossRefGoogle Scholar
  13. 13.
    Cao D, Hou M, Guan YS, Jiang M, Yang Y, Gou HF (2009) Expression of HIF-1alpha and VEGF in colorectal cancer: association with clinical outcomes and prognostic implications. BMC Cancer 9:432PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Cao J, He L, Lin G, Hu C, Dong R, Zhang J, Zhu H, Hu Y, Wagner CR, He Q et al (2014) Cap-dependent translation initiation factor, eIF4E, is the target for Ouabain-mediated inhibition of HIF-1alpha. Biochem Pharmacol 89:20–30PubMedCrossRefGoogle Scholar
  15. 15.
    Carmeliet P, Dor Y, Herbert J-M, Fukumura D, Brusselmans K, Dewerchin M, Neeman M, Bono F, Abramovitch R, Maxwell P (1998) Role of HIF-1α in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 394:485–490PubMedCrossRefGoogle Scholar
  16. 16.
    Chang H, Shyu KG, Lee CC, Tsai SC, Wang BW, Hsien Lee Y, Lin S (2003) GL331 inhibits HIF-1alpha expression in a lung cancer model. Biochem Biophys Res Commun 302:95–100PubMedCrossRefGoogle Scholar
  17. 17.
    Chen R, Dioum EM, Hogg RT, Gerard RD, Garcia JA (2011) Hypoxia increases sirtuin 1 expression in a hypoxia-inducible factor-dependent manner. J Biol Chem 286:13869–13878PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Chen S, Sang N (2016) Hypoxia-inducible factor-1: a critical player in the survival strategy of stressed cells. J Cell Biochem 117:267–278PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Chen Y-C, Chien L-H, Huang B-M, Chia Y-C, Chiu H-F (2016) Aqueous extracts of Toona sinensis leaves inhibit renal carcinoma cell growth and migration through JAK2/stat3, Akt, MEK/ERK, and mTOR/HIF-2α pathways. Nutr Cancer 68:654–666PubMedCrossRefGoogle Scholar
  20. 20.
    Chen Y, Lin TY, Chen JC, Yang HZ, Tseng SH (2006) GL331, a topoisomerase II inhibitor, induces radiosensitization of human glioma cells. Anticancer Res 26:2149–2156PubMedPubMedCentralGoogle Scholar
  21. 21.
    Chun Y-S, Yeo E-J, Choi E, Teng C-M, Bae J-M, Kim M-S, Park J-W (2001) Inhibitory effect of YC-1 on the hypoxic induction of erythropoietin and vascular endothelial growth factor in Hep3B cells1. Biochem Pharmacol 61:947–954PubMedCrossRefGoogle Scholar
  22. 22.
    Cummins EP, Seeballuck F, Keely SJ, Mangan NE, Callanan JJ, Fallon PG, Taylor CT (2008) The hydroxylase inhibitor dimethyloxalylglycine is protective in a murine model of colitis. Gastroenterology 134:156–165PubMedCrossRefGoogle Scholar
  23. 23.
    Dahut WL, Lakhani NJ, Gulley JL, Arlen PM, Kohn EC, Kotz H, McNally D, Parr A, Parr A, Nguyen D et al (2006) Phase I clinical trial of oral 2-methoxyestradiol, an antiangiogenic and apoptotic agent, in patients with solid tumors. Cancer Biol Ther 5:22–27PubMedCrossRefGoogle Scholar
  24. 24.
    Dang CV, Le A, Gao P (2009) MYC-induced cancer cell energy metabolism and therapeutic opportunities. Clin Cancer Res Off J Am Assoc Cancer Res 15:6479–6483CrossRefGoogle Scholar
  25. 25.
    DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB (2008) The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7:11–20PubMedCrossRefGoogle Scholar
  26. 26.
    Dehne N, Brune B (2009) HIF-1 in the inflammatory microenvironment. Exp Cell Res 315:1791–1797PubMedCrossRefGoogle Scholar
  27. 27.
    Demetri G, Le Cesne A, Von Mehren M, Chmielowski B, Bauer S, Chow W, Rodenas E, McKee K, Grayzel D, Kang Y (2010) Final results from a phase III study of IPI-504 (retaspimycin hydrochloride) versus placebo in patients (pts) with gastrointestinal stromal tumors (GIST) following failure of kinase inhibitor therapies. Paper presented at: Gastrointestinal Cancers SymposiumGoogle Scholar
  28. 28.
    Diaz-Ruiz R, Rigoulet M, Devin A (2011) The Warburg and Crabtree effects: on the origin of cancer cell energy metabolism and of yeast glucose repression. Biochim Biophys Acta 1807:568–576PubMedCrossRefGoogle Scholar
  29. 29.
    Ding X, Zhou X, Jiang B, Zhao Q, Zhou G (2015) Triptolide suppresses proliferation, hypoxia-inducible factor-1alpha and c-myc expression in pancreatic cancer cells. Mol Med Rep 12:4508–4513PubMedCrossRefGoogle Scholar
  30. 30.
    Einbond LS, Wu H-A, Sandu C, Ford M, Mighty J, Antonetti V, Redenti S, Ma H (2016) Digitoxin enhances the growth inhibitory effects of thapsigargin and simvastatin on ER negative human breast cancer cells. Fitoterapia 109:146–154PubMedCrossRefGoogle Scholar
  31. 31.
    Ellis L, Bots M, Lindemann RK, Bolden JE, Newbold A, Cluse LA, Scott CL, Strasser A, Atadja P, Lowe SW et al (2009) The histone deacetylase inhibitors LAQ824 and LBH589 do not require death receptor signaling or a functional apoptosome to mediate tumor cell death or therapeutic efficacy. Blood 114:380–393PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Ferreira LM (2010) Cancer metabolism: the Warburg effect today. Exp Mol Pathol 89:372–380PubMedCrossRefGoogle Scholar
  33. 33.
    Fu L, Chen L, Yang J, Ye T, Chen Y, Fang J (2012) HIF-1α-induced histone demethylase JMJD2B contributes to the malignant phenotype of colorectal cancer cells via an epigenetic mechanism. Carcinogenesis 33:1664–1673PubMedCrossRefGoogle Scholar
  34. 34.
    Galanis A, Pappa A, Giannakakis A, Lanitis E, Dangaj D, Sandaltzopoulos R (2008) Reactive oxygen species and HIF-1 signalling in cancer. Cancer Lett 266:12–20PubMedCrossRefGoogle Scholar
  35. 35.
    Ganji PN, Park W, Wen J, Mahaseth H, Landry J, Farris AB, Willingham F, Sullivan PS, Proia DA, El-Hariry I et al (2013) Antiangiogenic effects of ganetespib in colorectal cancer mediated through inhibition of HIF-1α and STAT-3. Angiogenesis 16:903–917PubMedCrossRefGoogle Scholar
  36. 36.
    Garber K (2004) Energy boost: the Warburg effect returns in a new theory of cancer. J Natl Cancer Inst 96:1805–1806PubMedCrossRefGoogle Scholar
  37. 37.
    Garst J (2007) Topotecan: an evolving option in the treatment of relapsed small cell lung cancer. Ther Clin Risk Manag 3:1087–1095PubMedPubMedCentralGoogle Scholar
  38. 38.
    Ge X, Liu X, Lin F, Li P, Liu K, Geng R, Dai C, Lin Y, Tang W, Wu Z (2016) MicroRNA-421 regulated by HIF-1α promotes metastasis, inhibits apoptosis, and induces cisplatin resistance by targeting E-cadherin and caspase-3 in gastric cancer. Oncotarget 7:24466PubMedPubMedCentralGoogle Scholar
  39. 39.
    Giaccia A, Siim BG, Johnson RS (2003) HIF-1 as a target for drug development. Nat Rev Drug Discov 2:803–811PubMedCrossRefGoogle Scholar
  40. 40.
    Giatromanolaki A, Sivridis E, Maltezos E, Papazoglou D, Simopoulos C, Gatter KC, Harris AL, Koukourakis MI (2003) Hypoxia inducible factor 1alpha and 2alpha overexpression in inflammatory bowel disease. J Clin Pathol 56:209–213PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Glover LE, Bowers BE, Saeedi B, Ehrentraut SF, Campbell EL, Bayless AJ, Dobrinskikh E, Kendrick AA, Kelly CJ, Burgess A et al (2013) Control of creatine metabolism by HIF is an endogenous mechanism of barrier regulation in colitis. Proc Natl Acad Sci U S A 110:19820–19825PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Goda N, Dozier SJ, Johnson RS (2003) HIF-1 in cell cycle regulation, apoptosis, and tumor progression. Antioxid Redox Signal 5:467–473PubMedCrossRefGoogle Scholar
  43. 43.
    Goda N, Ryan HE, Khadivi B, McNulty W, Rickert RC, Johnson RS (2003) Hypoxia-inducible factor 1α is essential for cell cycle arrest during hypoxia. Mol Cell Biol 23:359–369PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Gogvadze V, Zhivotovsky B, Orrenius S (2010) The Warburg effect and mitochondrial stability in cancer cells. Mol Asp Med 31:60–74CrossRefGoogle Scholar
  45. 45.
    Goscinski MA, Nesland JM, Giercksky K-E, Dhakal HP (2013) Primary tumor vascularity in esophagus cancer. CD34 and HIFI-a expression correlate with tumor progression. Histol Histopathol 28:1361–1368PubMedPubMedCentralGoogle Scholar
  46. 46.
    Greijer AE, van der Wall E (2004) The role of hypoxia inducible factor 1 (HIF-1) in hypoxia induced apoptosis. J Clin Pathol 57:1009–1014PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Hamanaka RB, Chandel NS (2011) Cell biology. Warburg effect and redox balance. Science 334:1219–1220PubMedCrossRefGoogle Scholar
  48. 48.
    Han J-Y, Oh SH, Morgillo F, Myers JN, Kim E, Hong WK, Lee H-Y (2005) Hypoxia-inducible factor 1α and antiangiogenic activity of farnesyltransferase inhibitor SCH66336 in human aerodigestive tract cancer. J Natl Cancer Inst 97:1272–1286PubMedCrossRefGoogle Scholar
  49. 49.
    Hanson BE, Vesole DH (2009) Retaspimycin hydrochloride (IPI-504): a novel heat shock protein inhibitor as an anticancer agent. Expert Opin Investig Drugs 18:1375–1383PubMedCrossRefGoogle Scholar
  50. 50.
    Harada H (2016) Hypoxia-inducible factor 1–mediated characteristic features of cancer cells for tumor radioresistance. J Radiat Res 57:i99PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    He X, Wang J, Wei W, Shi M, Xin B, Zhang T, Shen X (2016) Hypoxia regulates ABCG2 activity through the activation of ERK1/2/HIF-1α and contributes to chemoresistance in pancreatic cancer cells. Cancer Biol Ther 17:188–198PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Imamura T, Kikuchi H, Herraiz MT, Park DY, Mizukami Y, Mino-Kenduson M, Lynch MP, Rueda BR, Benita Y, Xavier RJ (2009) HIF-1α and HIF-2α have divergent roles in colon cancer. Int J Cancer 124:763–771PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    James J, Murry DJ, Treston AM, Storniolo AM, Sledge GW, Sidor C, Miller KD (2007) Phase I safety, pharmacokinetic and pharmacodynamic studies of 2-methoxyestradiol alone or in combination with docetaxel in patients with locally recurrent or metastatic breast cancer. Investig New Drugs 25:41–48CrossRefGoogle Scholar
  54. 54.
    Jang B, Kim L-H, Lee S-Y, Lee K-E, Shin J-A, Cho S-D (2016) Trichostatin A induces apoptosis in oral squamous cell carcinoma cell lines independent of hyperacetylation of histonesGoogle Scholar
  55. 55.
    Jeong W, Rapisarda A, Park SR, Kinders RJ, Chen A, Melillo G, Turkbey B, Steinberg SM, Choyke P, Doroshow JH et al (2014) Pilot trial of EZN-2968, an antisense oligonucleotide inhibitor of hypoxia-inducible factor-1 alpha (HIF-1alpha), in patients with refractory solid tumors. Cancer Chemother Pharmacol 73:343–348PubMedCrossRefGoogle Scholar
  56. 56.
    Jinka R, Kapoor R, Sistla PG, Raj TA, Pande G (2012) Alterations in cell-extracellular matrix interactions during progression of cancers. Int J Cell Biol 2012:219196PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Jones DT, Pugh CW, Wigfield S, Stevens MF, Harris AL (2006) Novel thioredoxin inhibitors paradoxically increase hypoxia-inducible factor-alpha expression but decrease functional transcriptional activity, DNA binding, and degradation. Clin Cancer Res Off J Am Assoc Cancer Res 12:5384–5394CrossRefGoogle Scholar
  58. 58.
    Joo HY, Yun M, Jeong J, Park ER, Shin HJ, Woo SR, Jung JK, Kim YM, Park JJ, Kim J et al (2015) SIRT1 deacetylates and stabilizes hypoxia-inducible factor-1alpha (HIF-1alpha) via direct interactions during hypoxia. Biochem Biophys Res Commun 462:294–300PubMedCrossRefGoogle Scholar
  59. 59.
    Ju C, Colgan SP, Eltzschig HK (2016) Hypoxia-inducible factors as molecular targets for liver diseases. J Mol Med (Berl). 94(6):613–627PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Kaelin WG Jr, Thompson CB (2010) Q&A: cancer: clues from cell metabolism. Nature 465:562–564PubMedCrossRefGoogle Scholar
  61. 61.
    Keely S, Campbell EL, Baird AW, Hansbro PM, Shalwitz RA, Kotsakis A, McNamee EN, Eltzschig HK, Kominsky DJ, Colgan SP (2014) Contribution of epithelial innate immunity to systemic protection afforded by prolyl hydroxylase inhibition in murine colitis. Mucosal Immunol 7:114–123PubMedCrossRefGoogle Scholar
  62. 62.
    Keith B, Simon MC (2007) Hypoxia-inducible factors, stem cells, and cancer. Cell 129:465–472PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Kelly CJ, Glover LE, Campbell EL, Kominsky DJ, Ehrentraut SF, Bowers BE, Bayless AJ, Saeedi BJ, Colgan SP (2013) Fundamental role for HIF-1alpha in constitutive expression of human beta defensin-1. Mucosal Immunol 6:1110–1118PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Kim BS, Lee K, Jung HJ, Bhattarai D, Kwon HJ (2015) HIF-1alpha suppressing small molecule, LW6, inhibits cancer cell growth by binding to calcineurin b homologous protein 1. Biochem Biophys Res Commun 458:14–20PubMedCrossRefGoogle Scholar
  65. 65.
    Kim MS, Kwon HJ, Lee YM, Baek JH, Jang JE, Lee SW, Moon EJ, Kim HS, Lee SK, Chung HY et al (2001) Histone deacetylases induce angiogenesis by negative regulation of tumor suppressor genes. Nat Med 7:437–443PubMedCrossRefGoogle Scholar
  66. 66.
    Kim YH, Coon A, Baker AF, Powis G (2011) Antitumor agent PX-12 inhibits HIF-1alpha protein levels through an Nrf2/PMF-1-mediated increase in spermidine/spermine acetyl transferase. Cancer Chemother Pharmacol 68:405–413PubMedCrossRefGoogle Scholar
  67. 67.
    Kizaka-Kondoh S, Tanaka S, Harada H, Hiraoka M (2009) The HIF-1-active microenvironment: an environmental target for cancer therapy. Adv Drug Deliv Rev 61:623–632PubMedCrossRefGoogle Scholar
  68. 68.
    Klausmeyer P, Zhou Q, Scudiero DA, Uranchimeg B, Melillo G, Cardellina JH, Shoemaker RH, Chang CJ, McCloud TG (2009) Cytotoxic and HIF-1alpha inhibitory compounds from Crossosoma bigelovii. J Nat Prod 72:805–812PubMedCrossRefGoogle Scholar
  69. 69.
    Koh MY, Spivak-Kroizman T, Venturini S, Welsh S, Williams RR, Kirkpatrick DL, Powis G (2008) Molecular mechanisms for the activity of PX-478, an antitumor inhibitor of the hypoxia-inducible factor-1α. Mol Cancer Ther 7:90–100PubMedCrossRefGoogle Scholar
  70. 70.
    Koh MY, Spivak-Kroizman TR, Powis G (2008) HIF-1 regulation: not so easy come, easy go. Trends Biochem Sci 33:526–534CrossRefGoogle Scholar
  71. 71.
    Komarova NL, Wodarz D (2005) Drug resistance in cancer: principles of emergence and prevention. Proc Natl Acad Sci U S A 102:9714–9719PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Kong D, Park EJ, Stephen AG, Calvani M, Cardellina JH, Monks A, Fisher RJ, Shoemaker RH, Melillo G (2005) Echinomycin, a small-molecule inhibitor of hypoxia-inducible factor-1 DNA-binding activity. Cancer Res 65:9047–9055PubMedCrossRefGoogle Scholar
  73. 73.
    Kubo H, Kitajima Y, Kai K, Nakamura J, Miyake S, Yanagihara K, Morito K, Tanaka T, Shida M, Noshiro H (2016) Regulation and clinical significance of the hypoxia-induced expression of ANGPTL4 in gastric cancer. Oncol Lett 11:1026–1034PubMedCrossRefGoogle Scholar
  74. 74.
    Kurebayashi J, Otsuki T, Kurosumi M, Soga S, Akinaga S, Sonoo H (2001) A radicicol derivative, KF58333, inhibits expression of hypoxia-inducible factor-1α and vascular endothelial growth factor, angiogenesis and growth of human breast cancer xenografts. Jpn J Cancer Res 92:1342–1351PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Kuwai T, Kitadai Y, Tanaka S, Onogawa S, Matsutani N, Kaio E, Ito M, Chayama K (2003) Expression of hypoxia-inducible factor-1α is associated with tumor vascularization in human colorectal carcinoma. Int J Cancer 105:176–181PubMedCrossRefGoogle Scholar
  76. 76.
    LaVallee TM, Burke PA, Swartz GM, Hamel E, Agoston GE, Shah J, Suwandi L, Hanson AD, Fogler WE, Sidor CF et al (2008) Significant antitumor activity in vivo following treatment with the microtubule agent ENMD-1198. Mol Cancer Ther 7:1472–1482PubMedCrossRefGoogle Scholar
  77. 77.
    Lee JW, Bae SH, Jeong JW, Kim SH, Kim KW (2004) Hypoxia-inducible factor (HIF-1)alpha: its protein stability and biological functions. Exp Mol Med 36:1–12PubMedCrossRefGoogle Scholar
  78. 78.
    Lee K, Kang JE, Park SK, Jin Y, Chung KS, Kim HM, Lee K, Kang MR, Lee MK, Song KB et al (2010) LW6, a novel HIF-1 inhibitor, promotes proteasomal degradation of HIF-1alpha via upregulation of VHL in a colon cancer cell line. Biochem Pharmacol 80:982–989PubMedCrossRefGoogle Scholar
  79. 79.
    Lee K, Qian DZ, Rey S, Wei H, Liu JO, Semenza GL (2009) Anthracycline chemotherapy inhibits HIF-1 transcriptional activity and tumor-induced mobilization of circulating angiogenic cells. Proc Natl Acad Sci U S A 106:2353–2358PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Lee K, Zhang H, Qian DZ, Rey S, Liu JO, Semenza GL (2009) Acriflavine inhibits HIF-1 dimerization, tumor growth, and vascularization. Proc Natl Acad Sci U S A 106:17910–17915PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Lee SH, Jee JG, Bae JS, Liu KH, Lee YM (2015) A group of novel HIF-1alpha inhibitors, glyceollins, blocks HIF-1alpha synthesis and decreases its stability via inhibition of the PI3K/AKT/mTOR pathway and Hsp90 binding. J Cell Physiol 230:853–862PubMedCrossRefGoogle Scholar
  82. 82.
    Li L, Fan B, Zhang L-H, Xing X-F, Cheng X-J, Wang X-H, Guo T, Du H, Wen X-Z, Ji J-F (2016) Trichostatin A potentiates TRAIL-induced antitumor effects via inhibition of ERK/FOXM1 pathway in gastric cancer. Tumour Biol. 37(8):10269–10278PubMedCrossRefGoogle Scholar
  83. 83.
    Li SH, Shin DH, Chun Y-S, Lee MK, Kim M-S, Park J-W (2008) A novel mode of action of YC-1 in HIF inhibition: stimulation of FIH-dependent p300 dissociation from HIF-1α. Mol Cancer Ther 7:3729–3738PubMedCrossRefGoogle Scholar
  84. 84.
    Li Z, Wang J, Zhou T, Ye X (2016b) Establishment of a colorectal cancer nude mouse visualization model of HIF-1α overexpression. Oncol Lett 11:2725–2732PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Lim JH, Lee YM, Chun YS, Chen J, Kim JE, Park JW (2010) Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1alpha. Mol Cell 38:864–878PubMedCrossRefGoogle Scholar
  86. 86.
    Liu L, Wang Y, Bai R, Yang K, Tian Z (2016) MiR-186 inhibited aerobic glycolysis in gastric cancer via HIF-1[alpha] regulation. Oncogene 5:e224CrossRefGoogle Scholar
  87. 87.
    Liu M, Bryant MS, Chen J, Lee S, Yaremko B, Lipari P, Malkowski M, Ferrari E, Nielsen L, Prioli N et al (1998) Antitumor activity of SCH 66336, an orally bioavailable tricyclic inhibitor of farnesyl protein transferase, in human tumor xenograft models and wap-ras transgenic mice. Cancer Res 58:4947–4956PubMedPubMedCentralGoogle Scholar
  88. 88.
    Liu X, Chen S, Tu J, Cai W, Xu Q (2016) HSP90 inhibits apoptosis and promotes growth by regulating HIF-1α abundance in hepatocellular carcinoma. Int J Mol Med 37:825–835PubMedCrossRefGoogle Scholar
  89. 89.
    Liu Y-F, Zhong J-J, Lin L, Liu J-J, Wang Y-G, He W-Q, Yang Z-Y (2016) New C-19-modified geldanamycin derivatives: synthesis, antitumor activities, and physical properties study. J Asian Nat Prod Res. 18(8):752–764PubMedCrossRefGoogle Scholar
  90. 90.
    Lokich J (2001) Phase I clinical trial of weekly combined topotecan and irinotecan. Am J Clin Oncol 24:336–340PubMedCrossRefGoogle Scholar
  91. 91.
    Lopez-Lazaro M (2008) The warburg effect: why and how do cancer cells activate glycolysis in the presence of oxygen? Anti Cancer Agents Med Chem 8:305–312CrossRefGoogle Scholar
  92. 92.
    Louis NA, Hamilton KE, Canny G, Shekels LL, Ho SB, Colgan SP (2006) Selective induction of mucin-3 by hypoxia in intestinal epithelia. J Cell Biochem 99:1616–1627PubMedCrossRefGoogle Scholar
  93. 93.
    Luo Y, Ji X, Liu J, Li Z, Wang W, Chen W, Wang J, Liu Q, Zhang X (2016) Moderate intensity static magnetic fields affect mitotic spindles and increase the antitumor efficacy of 5-FU and Taxol. Bioelectrochemistry 109:31–40PubMedCrossRefGoogle Scholar
  94. 94.
    Luqmani YA (2005) Mechanisms of drug resistance in cancer chemotherapy. Med Princ Pract Int J Kuwait Univ Health Sci Cent 14(Suppl 1):35–48Google Scholar
  95. 95.
    Masoud GN, Li W (2015) HIF-1α pathway: role, regulation and intervention for cancer therapy. Acta Pharm Sin B 5:378–389PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Matsuyama T, Nakanishi K, Hayashi T, Yoshizumi Y, Aiko S, Sugiura Y, Tanimoto T, Uenoyama M, Ozeki Y, Maehara T (2005) Expression of hypoxia-inducible factor-1α in esophageal squamous cell carcinoma. Cancer Sci 96:176–182PubMedCrossRefGoogle Scholar
  97. 97.
    Maxwell PH (2005) The HIF pathway in cancer. Paper presented at: Seminars in cell & developmental biology (Elsevier)CrossRefGoogle Scholar
  98. 98.
    Maxwell PH, Pugh CW, Ratcliffe PJ (2001) Activation of the HIF pathway in cancer. Curr Opin Genet Dev 11:293–299PubMedCrossRefGoogle Scholar
  99. 99.
    Melstrom LG, Salabat MR, Ding XZ, Strouch MJ, Grippo PJ, Mirzoeva S, Pelling JC, Bentrem DJ (2011) Apigenin down-regulates the hypoxia response genes: HIF-1alpha, GLUT-1, and VEGF in human pancreatic cancer cells. J Surg Res 167:173–181PubMedCrossRefGoogle Scholar
  100. 100.
    Milutinovic S, Heynen-Genel S, Chao E, Dewing A, Solano R, Milan L, Barron N, He M, Diaz PW, Matsuzawa S-I et al (2016) Cardiac glycosides activate the tumor suppressor and viral restriction factor Promyelocytic leukemia protein (PML). PLoS One 11:e0152692PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Miyata Y (2005) Hsp90 inhibitor geldanamycin and its derivatives as novel cancer chemotherapeutic agents. Curr Pharm Des 11:1131–1138PubMedCrossRefGoogle Scholar
  102. 102.
    Mooberry SL (2003) New insights into 2-methoxyestradiol, a promising antiangiogenic and antitumor agent. Curr Opin Oncol 15:425–430PubMedCrossRefGoogle Scholar
  103. 103.
    Moreno-Manzano V, Rodriguez-Jimenez FJ, Acena-Bonilla JL, Fustero-Lardies S, Erceg S, Dopazo J, Montaner D, Stojkovic M, Sanchez-Puelles JM (2010) FM19G11, a new hypoxia-inducible factor (HIF) modulator, affects stem cell differentiation status. J Biol Chem 285:1333–1342PubMedCrossRefGoogle Scholar
  104. 104.
    Nayak BK, Shanmugasundaram K, Friedrichs WE, Cavaglierii RC, Patel M, Barnes J, Block K (2016) HIF-1 mediates renal fibrosis in OVE26 type 1 diabetic mice. Diabetes 65:1387–1397PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Nunoi K, Yasuda K, Tanaka H, Kubota A, Okamoto Y, Adachi T, Shihara N, Uno M, Xu LM, Kagimoto S et al (2000) Wortmannin, a PI3-kinase inhibitor: promoting effect on insulin secretion from pancreatic beta cells through a cAMP-dependent pathway. Biochem Biophys Res Commun 270:798–805PubMedCrossRefGoogle Scholar
  106. 106.
    Ogawa K, Chiba I, Morioka T, Shimoji H, Tamaki W, Takamatsu R, Nishimaki T, Yoshimi N, Murayama S (2011) Clinical significance of HIF-1α expression in patients with esophageal cancer treated with concurrent chemoradiotherapy. Anticancer Res 31:2351–2359PubMedPubMedCentralGoogle Scholar
  107. 107.
    Onnis B, Rapisarda A, Melillo G (2009) Development of HIF-1 inhibitors for cancer therapy. J Cell Mol Med 13:2780–2786PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Osada M, Imaoka S, Funae Y (2004) Apigenin suppresses the expression of VEGF, an important factor for angiogenesis, in endothelial cells via degradation of HIF-1α protein. FEBS Lett 575:59–63PubMedCrossRefGoogle Scholar
  109. 109.
    Pasquier E, Sinnappan S, Munoz MA, Kavallaris M (2010) ENMD-1198, a new analogue of 2-methoxyestradiol, displays both antiangiogenic and vascular-disrupting properties. Mol Cancer Ther 9:1408–1418PubMedCrossRefGoogle Scholar
  110. 110.
    Powis G, Kirkpatrick L (2004) Hypoxia inducible factor-1α as a cancer drug target. Mol Cancer Ther 3:647–654PubMedPubMedCentralGoogle Scholar
  111. 111.
    Quintero M, Mackenzie N, Brennan PA (2004) Hypoxia-inducible factor 1 (HIF-1) in cancer. Eur J Surg Oncol 30:465–468PubMedCrossRefGoogle Scholar
  112. 112.
    Ramanathan RK, Stephenson JJ, Weiss GJ, Pestano LA, Lowe A, Hiscox A, Leos RA, Martin JC, Kirkpatrick L, Richards DA (2012) A phase I trial of PX-12, a small-molecule inhibitor of thioredoxin-1, administered as a 72-hour infusion every 21 days in patients with advanced cancers refractory to standard therapy. Investig New Drugs 30:1591–1596CrossRefGoogle Scholar
  113. 113.
    Rini BI (2008) Temsirolimus, an inhibitor of mammalian target of rapamycin. Clin Cancer Res Off J Am Assoc Cancer Res 14:1286–1290CrossRefGoogle Scholar
  114. 114.
    Robinson A, Keely S, Karhausen J, Gerich ME, Furuta GT, Colgan SP (2008) Mucosal protection by hypoxia-inducible factor prolyl hydroxylase inhibition. Gastroenterology 134:145–155PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Rohwer N, Lobitz S, Daskalow K, Jöns T, Vieth M, Schlag P, Kemmner W, Wiedenmann B, Cramer T, Höcker M (2009) HIF-1α determines the metastatic potential of gastric cancer cells. Br J Cancer 100:772–781PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Roncuzzi L, Pancotti F, Baldini N (2014) Involvement of HIF-1alpha activation in the doxorubicin resistance of human osteosarcoma cells. Oncol Rep 32:389–394PubMedCrossRefGoogle Scholar
  117. 117.
    Schoner W, Scheiner-Bobis G (2007) Endogenous and exogenous cardiac glycosides: their roles in hypertension, salt metabolism, and cell growth. Am J Phys Cell Phys 293:C509–C536CrossRefGoogle Scholar
  118. 118.
    Semenza GL (2000) HIF-1: mediator of physiological and pathophysiological responses to hypoxia. J Appl Physiol. (1985 88:1474–1480CrossRefPubMedGoogle Scholar
  119. 119.
    Semenza GL (2001) Hypoxia-inducible factor 1: oxygen homeostasis and disease pathophysiology. Trends Mol Med 7:345–350PubMedCrossRefGoogle Scholar
  120. 120.
    Semenza GL (2002) HIF-1 and tumor progression: pathophysiology and therapeutics. Trends Mol Med 8:S62–S67PubMedCrossRefGoogle Scholar
  121. 121.
    Semenza GL (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3:721–732CrossRefGoogle Scholar
  122. 122.
    Semenza GL (2004) Hydroxylation of HIF-1: oxygen sensing at the molecular level. Physiology 19:176–182PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Semenza GL (2010) Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene 29:625–634PubMedCrossRefGoogle Scholar
  124. 124.
    Semenza GL (2012) Hypoxia-inducible factors in physiology and medicine. Cell 148:399–408PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Semenza GL (2012) Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends Pharmacol Sci 33:207–214PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Shah NN, Merchant MS, Cole DE, Jayaprakash N, Bernstein D, Delbrook C, Richards K, Widemann BC, Wayne AS (2016) Vincristine sulfate liposomes injection (VSLI, Marqibo®): results from a phase I study in children, adolescents, and young adults with refractory solid tumors or Leukemias. Pediatr Blood Cancer 63:997–1005PubMedCrossRefGoogle Scholar
  127. 127.
    Shida M, Kitajima Y, Nakamura J, Yanagihara K, Baba K, Wakiyama K, Noshiro H (2016) Impaired mitophagy activates mtROS/HIF-1α interplay and increases cancer aggressiveness in gastric cancer cells under hypoxia. Int J Oncol 48:1379–1390PubMedCrossRefGoogle Scholar
  128. 128.
    Snoeks TJ, Mol IM, Que I, Kaijzel EL, Lowik CW (2011) 2-methoxyestradiol analogue ENMD-1198 reduces breast cancer-induced osteolysis and tumor burden both in vitro and in vivo. Mol Cancer Ther 10:874–882PubMedCrossRefGoogle Scholar
  129. 129.
    Song X, Zhao Z, Qi X, Tang S, Wang Q, Zhu T, Gu Q, Liu M, Li J (2015) Identification of epipolythiodioxopiperazines HDN-1 and chaetocin as novel inhibitor of heat shock protein 90Google Scholar
  130. 130.
    Staab A, Loeffler J, Said HM, Diehlmann D, Katzer A, Beyer M, Fleischer M, Schwab F, Baier K, Einsele H et al (2007) Effects of HIF-1 inhibition by chetomin on hypoxia-related transcription and radiosensitivity in HT 1080 human fibrosarcoma cells. BMC Cancer 7:213PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Stoeltzing O, McCarty MF, Wey JS, Fan F, Liu W, Belcheva A, Bucana CD, Semenza GL, Ellis LM (2004) Role of hypoxia-inducible factor 1α in gastric cancer cell growth, angiogenesis, and vessel maturation. J Natl Cancer Inst 96:946–956PubMedCrossRefGoogle Scholar
  132. 132.
    Synnestvedt K, Furuta GT, Comerford KM, Louis N, Karhausen J, Eltzschig HK, Hansen KR, Thompson LF, Colgan SP (2002) Ecto-5′-nucleotidase (CD73) regulation by hypoxia-inducible factor-1 mediates permeability changes in intestinal epithelia. J Clin Invest 110:993–1002PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Tahervand A, Mahmoudi M, Roushandeh AM (2016) Digoxin effectively decreased proliferation of liver cancer cell line. Focus Sci 2Google Scholar
  134. 134.
    Takeuchi S, Fukuda K, Arai S, Nanjo S, Kita K, Yamada T, Hara E, Nishihara H, Uehara H, Yano S (2016) Organ-specific efficacy of HSP90 inhibitor in multiple-organ metastasis model of chemorefractory small cell lung cancer. Int J Cancer 138:1281–1289PubMedCrossRefGoogle Scholar
  135. 135.
    Tan Z, Huang Q, Zang J, Teng S, Chen T, Wei H, Song D, Liu T, Yang X, Fu C (2016) HIF-1α activates hypoxia-induced BCL-9 expression in human colorectal cancer cells. Oncotarget 8(16):25885–25896Google Scholar
  136. 136.
    Tanaka T, Yamaguchi J, Shoji K, Nangaku M (2012) Anthracycline inhibits recruitment of hypoxia-inducible transcription factors and suppresses tumor cell migration and cardiac angiogenic response in the host. J Biol Chem 287:34866–34882PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Terzuoli E, Puppo M, Rapisarda A, Uranchimeg B, Cao L, Burger AM, Ziche M, Melillo G (2010) Aminoflavone, a ligand of the aryl hydrocarbon receptor, inhibits HIF-1alpha expression in an AhR-independent fashion. Cancer Res 70:6837–6848PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Tong W-W, Tong G-H, Kong H, Liu Y (2016) The tumor promoting roles of HSP60 and HIF2α in gastric cancer cells. Tumor Biol:1–6Google Scholar
  139. 139.
    Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Vaupel P (2004) The role of hypoxia-induced factors in tumor progression. Oncologist 9(Suppl 5):10–17PubMedCrossRefGoogle Scholar
  141. 141.
    Vigushin DM, Ali S, Pace PE, Mirsaidi N, Ito K, Adcock I, Coombes RC (2001) Trichostatin A is a histone deacetylase inhibitor with potent antitumor activity against breast cancer in vivo. Clin Cancer Res Off J Am Assoc Cancer Res 7:971–976Google Scholar
  142. 142.
    Viziteu E, Grandmougin C, Goldschmidt H, Seckinger A, Hose D, Klein B, Moreaux J (2016) Chetomin, targeting HIF-1[alpha]/p300 complex, exhibits antitumour activity in multiple myeloma. Br J Cancer 114:519–523PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Vlaminck B, Toffoli S, Ghislain B, Demazy C, Raes M, Michiels C (2007) Dual effect of echinomycin on hypoxia-inducible factor-1 activity under normoxic and hypoxic conditions. FEBS J 274:5533–5542PubMedCrossRefGoogle Scholar
  144. 144.
    Wallace EM, Cao Z, Cheng T, Czerwinski R, Dixon DD, Du X, Goggin B, Grina J, Halfmann M, Han G (2015) Abstract DDT01-01: PT2385: first-in-class HIF-2α antagonist for the treatment of renal cell carcinoma. Cancer Res 75, DDT01-01-DDT01-01Google Scholar
  145. 145.
    Wang J, Ni Z, Duan Z, Wang G, Li F (2014) Altered expression of hypoxia-inducible factor-1α (HIF-1α) and its regulatory genes in gastric cancer tissues. PLoS One 9:e99835PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Wang M, Shen A, Zhang C, Song Z, Ai J, Liu H, Sun L, Ding J, Geng M, Zhang A (2016) Development of Heat Shock Protein (Hsp90) Inhibitors To Combat Resistance to Tyrosine Kinase Inhibitors through Hsp90–Kinase Interactions. J Med Chem 59:5563PubMedCrossRefGoogle Scholar
  147. 147.
    Wang W, Liu Y, Zhao Z, Xie C, Xu Y, Hu Y, Quan H, Lou L (2016) Y-632 inhibits heat shock protein 90 (Hsp90) function by disrupting the interaction between Hsp90 and Hsp70/Hsp90 organizing protein, and exerts antitumor activity in vitro and in vivo. Cancer Sci 107:782–790PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Weidemann A, Johnson R (2008) Biology of HIF-1α. Cell Death Differ 15:621–627PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Welsh S, Williams R, Kirkpatrick L, Paine-Murrieta G, Powis G (2004) Antitumor activity and pharmacodynamic properties of PX-478, an inhibitor of hypoxia-inducible factor-1α. Mol Cancer Ther 3:233–244PubMedCrossRefGoogle Scholar
  150. 150.
    Welsh SJ, Williams RR, Birmingham A, Newman DJ, Kirkpatrick DL, Powis G (2003) The thioredoxin redox inhibitors 1-methylpropyl 2-imidazolyl disulfide and pleurotin inhibit hypoxia-induced factor 1α and vascular endothelial growth factor formation 1. Mol Cancer Ther 2:235–243PubMedPubMedCentralGoogle Scholar
  151. 151.
    Winnicka K, Bielawski K, Bielawska A, Miltyk W (2010) Dual effects of ouabain, digoxin and proscillaridin A on the regulation of apoptosis in human fibroblasts. Nat Prod Res 24:274–285PubMedCrossRefGoogle Scholar
  152. 152.
    Wu YG, Jin M, Xu HB, Zhang SM, He SB, Wang LA, Zhang YY (2010) Clinicopathologic significance of HIF-1 alpha, CXCR4, and VEGF expression in colon cancer. Clin Dev Immunol 2010Google Scholar
  153. 153.
    Xia Y, Choi HK, Lee K (2012) Recent advances in hypoxia-inducible factor (HIF)-1 inhibitors. Eur J Med Chem 49:24–40PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Xie L, Xue X, Taylor M, Ramakrishnan SK, Nagaoka K, Hao C, Gonzalez FJ, Shah YM (2014) Hypoxia-inducible factor/MAZ-dependent induction of caveolin-1 regulates colon permeability through suppression of occludin, leading to hypoxia-induced inflammation. Mol Cell Biol 34:3013–3023PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Xu Q-R, Liu X, Yao Y-M, Liu Q-G (2014) Expression of HSP90 and HIF-1α in human colorectal cancer tissue and its significance. Asian Pac J Trop Med 7:720–724CrossRefGoogle Scholar
  156. 156.
    Xu Y, Jin X, Huang Y, Dong J, Wang H, Wang X, Cao X (2016) Inhibition of peritoneal metastasis of human gastric cancer cells by dextran sulphate through the reduction in HIF-1α and ITGβ1 expression. Oncol Rep 35:2624–2634PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Xue X, Ramakrishnan S, Anderson E, Taylor M, Zimmermann EM, Spence JR, Huang S, Greenson JK, Shah YM (2013) Endothelial PAS domain protein 1 activates the inflammatory response in the intestinal epithelium to promote colitis in mice. Gastroenterology 145:831–841PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Xue X, Ramakrishnan SK, Shah YM (2014) Activation of HIF-1alpha does not increase intestinal tumorigenesis. Am J Physiol Gastrointest Liver Physiol 307:G187–G195PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Yang J, Zhang X, Zhang Y, Zhu D, Zhang L, Li Y, Zhu Y, Li D, Zhou J (2016) HIF-2α promotes epithelial-mesenchymal transition through regulating Twist2 binding to the promoter of E-cadherin in pancreatic cancer. J Exp Clin Cancer Res 35:1–10PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Yeo E-J, Chun Y-S, Cho Y-S, Kim J, Lee J-C, Kim M-S, Park J-W (2003) YC-1: a potential anticancer drug targeting hypoxia-inducible factor 1. J Natl Cancer Inst 95:516–525PubMedCrossRefGoogle Scholar
  161. 161.
    Yeo EJ, Chun YS, Park JW (2004) New anticancer strategies targeting HIF-1. Biochem Pharmacol 68:1061–1069PubMedCrossRefGoogle Scholar
  162. 162.
    Yeo EJ, Ryu JH, Cho YS, Chun YS, Huang LE, Kim MS, Park JW (2006) Amphotericin B blunts erythropoietin response to hypoxia by reinforcing FIH-mediated repression of HIF-1. Blood 107:916–923PubMedCrossRefGoogle Scholar
  163. 163.
    Yin F, Giuliano AE, Law RE, Van Herle AJ (2001) Apigenin inhibits growth and induces G2/M arrest by modulating cyclin-CDK regulators and ERK MAP kinase activation in breast carcinoma cells. Anticancer Res 21:413–420PubMedPubMedCentralGoogle Scholar
  164. 164.
    Yonekura S, Itoh M, Okuhashi Y, Takahashi Y, Ono A, Nara N, Tohda S (2013) Effects of the HIF1 inhibitor, echinomycin, on growth and NOTCH signalling in leukaemia cells. Anticancer Res 33:3099–3103PubMedPubMedCentralGoogle Scholar
  165. 165.
    Yoon H, Shin SH, Shin DH, Chun YS, Park JW (2014) Differential roles of Sirt1 in HIF-1alpha and HIF-2alpha mediated hypoxic responses. Biochem Biophys Res Commun 444:36–43PubMedCrossRefGoogle Scholar
  166. 166.
    Zhang H, Qian DZ, Tan YS, Lee K, Gao P, Ren YR, Rey S, Hammers H, Chang D, Pili R et al (2008) Digoxin and other cardiac glycosides inhibit HIF-1α synthesis and block tumor growth. Proc Natl Acad Sci 105:19579–19586PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Zhang J, Zhu L, Fang J, Ge Z, Li X (2016) LRG1 modulates epithelial-mesenchymal transition and angiogenesis in colorectal cancer via HIF-1α activation. J Exp Clin Cancer Res 35:1CrossRefGoogle Scholar
  168. 168.
    Zhang W-J, Chen C, Zhou Z-H, Gao S-T, Tee TJ, Yang L-Q, Xu Y-Y, Pang T-H, Xu X-Y, Sun Q (2017) Hypoxia-inducible factor-1 alpha correlates with tumor-associated macrophages infiltration, influences survival of gastric cancer patients. J Cancer 8:1818–1825PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Zhang W, Shi X, Peng Y, Wu M, Zhang P, Xie R, Wu Y, Yan Q, Liu S, Wang J (2015) HIF-1α promotes epithelial-mesenchymal transition and metastasis through direct regulation of ZEB1 in colorectal cancer. PLoS One 10:e0129603PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Zhang YZ, Chen X, Fan XX, He JX, Huang J, Xiao DK, Zhou YL, Zheng SY, Xu JH, Yao XJ et al (2016) Compound library screening identified cardiac glycoside digitoxin as an effective growth inhibitor of gefitinib-resistant non-small cell lung cancer via downregulation of alpha-tubulin and inhibition of microtubule formation. Molecules (Basel, Switzerland) 21:374CrossRefGoogle Scholar
  171. 171.
    Zhao T, Zhu Y, Morinibu A, Kobayashi M, Shinomiya K, Itasaka S, Yoshimura M, Guo G, Hiraoka M, Harada H (2014) HIF-1-mediated metabolic reprogramming reduces ROS levels and facilitates the metastatic colonization of cancers in lungs. Sci Rep 4:3793PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Zhe N, Chen S, Zhou Z, Liu P, Lin X, Yu M, Cheng B, Zhang Y, Wang J (2016) HIF-1α inhibition by 2-methoxyestradiol induces cell death via activation of the mitochondrial apoptotic pathway in acute myeloid leukemia. Cancer Biol Ther:1–10Google Scholar
  173. 173.
    Zhou ZL, Luo ZG, Yu B, Jiang Y, Chen Y, Feng JM, Dai M, Tong LJ, Li Z, Li YC et al (2010) Increased accumulation of hypoxia-inducible factor-1alpha with reduced transcriptional activity mediates the antitumor effect of triptolide. Mol Cancer 9:268PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd 2017

Authors and Affiliations

  • Sasidhar Eda
    • 1
  • Ramakrishna Vadde
    • 2
  • Rajeswari Jinka
    • 1
  1. 1.Department of BiochemistryAcharya Nagarjuna UniversityGunturIndia
  2. 2.Department of Biotechnology & BioinformaticsYogi Vemana UniversityKadapaIndia

Personalised recommendations