Skip to main content

A Review on Immobilisation of Toxic Wastes Using Geopolymer Technique

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 8))

Abstract

Every year, a huge amount of waste materials containing toxic substances are produced throughout the world, which causes serious damage to the environment and poses threats to human health. Among available techniques of immobilization of toxic elements in harmful by-products is geopolymerization which has been considered as an effective approach to deal with many environmental issues. Apart from being utilised as alternatives for Portland cements in construction, geopolymer materials are also used as binders in waste solidification and stabilization systems . This study focuses on the potential application of geopolymeric systems in coping with hazardous wastes regarding the immobilization mechanism and factors influencing the immobilization efficiency, which provides a better understanding of the stabilization of pollutants through geopolymerization in order to stimulate further research on addressing the hazardous waste.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Phair, J.W., van Deventer, J.S.J., Smith, J.D.: Effect of Al source and alkali activation on Pb and Cu immobilisation in fly-ash based geopolymers. Appl. Geochem. 19, 423–434 (2004). doi:10.1016/S0883-2927(03)00151-3

    Article  Google Scholar 

  2. Nwaichi, E.O., Dhankher, O.P.: Heavy metals contaminated environments and the road map with phytoremediation. J. Environ. Prot. 7, 41–51 (2016). doi:10.4236/jep.2016.71004

    Article  Google Scholar 

  3. Adaska, W.S., Tresouthick, S.W., West, P.B.: Solidification and stabilization of wastes using portland cement. Report Number: EB071.02 W, Portland Cement Association (1991)

    Google Scholar 

  4. Glasser, F.P.: Fundamental aspects of cement solidification and stabilisation. J. Hazard. Mater. 52, 151–170 (1997)

    Article  Google Scholar 

  5. Davidovits, J.: Geopolymers-inorganic polymeric new materials. J. Therm. Anal. 37(8), 1633–1656 (1991)

    Article  Google Scholar 

  6. Davidovits, J.: Properties of geopolymer cements. In: Proceedings of the First International Conference on Alkaline Cements and Concretes, pp. 131–49. Kiev State Technical University, Kiev, Ukraine (1994)

    Google Scholar 

  7. Davidovits, J.: Geopolymer chemistry and sustainable development. The Poly(sialate) terminology: a very useful and simple model for the promotion and understanding of green-chemistry. In: Davidovits, J. (ed.) Proceedings of the World Congress Geopolymer, Saint Quentin (2005)

    Google Scholar 

  8. Duxson, P., Fernández-Jiménez, A., Provis, J.L., et al.: Geopolymer technology: the current state of the art. J. Mater. Sci. 42, 2917 (2007b). doi:10.1007/s10853-006-0637-z

  9. Duxson, P., Provis, J.L., Lukey, G.C., van Deventer, J.S.J.: The role of inorganic polymer technology in the development of green concrete. Cem. Concr. Res. 37(12), 1590–1597 (2007a)

    Google Scholar 

  10. Lloyd, N., Rangan, V.: Geopolymer concrete-sustainable cementless concrete. In: Tenth ACI International Conference on Recent Advances in Concrete Technology and Sustainability Issues, pp. 33–53, 12 October 2009

    Google Scholar 

  11. Neupane, K.: Fly ash and GGBFS based powder-activated geopolymer binders: a viable sustainable alternative of portland cement in concrete industry. Mech. Mater. 103, 110–122 (2016). doi:10.1016/j.mechmat.2016.09.012

    Article  Google Scholar 

  12. Palomo, A., de la Fuente, J.I.L.: Alkali-activated cementitous materials: alternative matrices for the immobilisation of hazardous wastes- part I. Stabilisation of boron. Cem. Concr. Res. 33, 281–288 (2003)

    Article  Google Scholar 

  13. Provis, J.L.: Immobilisation of toxic wastes in geopolymers. In: Provis, J.L., van Deventer, J.S.J. (eds.) Geopolymers: Structures, Processing, Properties and Industrial Applications, 1st edn. Woodhead, Cambridge (2009)

    Chapter  Google Scholar 

  14. Glukhovsky, V.D.: Soil Silicates. Gosstroyizdat, Kiev (1959). p. 154

    Google Scholar 

  15. Fernández-Jiménez, A., Palomo, A., Sobrados, I., Sanz, J.: The role played by the reactive alumina content in the alkaline activation of fly ashes. Microporous Mesoporous Mater. 91, 111–119 (2006). doi:10.1016/j.micromeso.2005.11.015

    Article  Google Scholar 

  16. Palomo, A., Krivenko, P., Garcia-Lodeiro, I., et al.: A review on alkaline activation: new analytical perspectives. Mater. Constr. 64(315), e022 (2014). doi:10.3989/mc.2014.00314

    Article  Google Scholar 

  17. Malviya, R., Chaudhary, R.: Factors affecting hazardous waste solidification/stabilization: a review. J. Hazard. Mater. B137, 267–276 (2006). doi:10.1016/j.jhazmat.2006.01.065

    Article  Google Scholar 

  18. EPA/600/R-10/170: Background information for the leaching environmental assessment framework (LEAF) test methods (2010)

    Google Scholar 

  19. Palacios, M., Palomo, A.: Alkali-activated fly ash matrices for lead immobilisation: a comparison of different leaching tests. Adv. Cem. Res. 16, 137–144 (2004). doi:10.1680/adcr.16.4.137.46661

    Article  Google Scholar 

  20. Fernández Pereira, C., Luna, Y., Querol, X., Antenucci, D., Vale, J.: Waste stabilization/solidification of an electric arc furnace dust using fly ash-based geopolymers. Fuel 88, 1185–1193 (2009). doi:10.1016/j.fuel.2008.01.021

    Article  Google Scholar 

  21. Donatello, S., Fernández-Jiménez, A., Palomo, A.: An assessment of Mercury immobilisation in alkali activated fly ash (AAFA) cements. J. Hazard. Mater. 213–214, 207–215 (2012). doi:10.1016/j.jhazmat.2012.01.081

    Article  Google Scholar 

  22. Zheng, L., Wang, W., Shi, Y.: The effects of alkaline dosage and Si/Al ratio on the immobilization of heavy metals in municipal solid waste incineration fly ash-based geopolymer. Chemosphere 79, 665–671 (2010). doi:10.1016/j.chemosphere.2010.02.018

    Article  Google Scholar 

  23. van Jaarsveld, J.G.J., van Deventer, J.S.J., Lorenzen, L.: The potential use of geopolymeric materials to immobilise toxic metals: part I. Theory and applications. Miner. Eng. 10, 659–669 (1997). doi:10.1016/S0892-6875(97)00046-0

    Article  Google Scholar 

  24. van Jaarsveld, J.G.J., van Deventer, J.S.J., Lorenzen, L.: Factors affecting the immobilization of metals in geopolymerized fly ash. Metall. Mater. Trans. B 29, 283 (1998). doi:10.1007/s11663-998-0032-z

    Article  Google Scholar 

  25. Qian, G., Sun, D.D., Tay, H.J.: Characterization of mercury- and zinc-doped alkali-activated slag matrix-part I. Mercury. Cem. Concr. Res. 33, 1251–1256 (2003a). doi:10.1016/S0008-8846(03)00045-0

  26. Phair, J.W., van Deventer, J.S.J.: Effect of silicate activator pH on the leaching and material characteristics of waste-based inorganic polymers. Miner. Eng. 14(3), 289–304 (2001). doi:10.1016/S0892-6875(01)00002-4

    Article  Google Scholar 

  27. Qian, G., Sun, D.D., Tay, H.J.: Characterization of mercury- and zinc-doped alkali-activated slag matrix-part II. Zinc. Cem. Concr. Res. 33, 1251–1256 (2003b). doi:10.1016/S0008-8846(03)00045-0

  28. El-Eswed, B.I., Yousef, R.I., Alshaaer, M., Hamadneh, I., Al-Gharabli, S.I., Khalili, F.: Stabilization/solidification of heavy metals in kaolin/zeolite based geopolymers. Int. J. Miner. Process. 137, 34–42 (2015). doi:10.1016/j.minpro.2015.03.002

    Article  Google Scholar 

  29. Conner, J.R.: Chemical fixation and solidification of hazardous wastes. Van Nostrand Reinhold (1990)

    Google Scholar 

  30. Davis, P.J., Deshpande, R., Smith, D.M., Brinker, C.J., Assink, R.A.: Pore structure evolution in silica gel during aging/drying- IV. Varying pore fluid pH. J. Non-Cryst. Solids 167, 295–306 (1994)

    Article  Google Scholar 

  31. Cheng, T.W., Lee, M.L., Ko, M.S., Ueng, T.H., Yang, S.F.: The heavy metal adsorption characteristics on metakaolin-based geopolymer. Appl. Clay Sci. 56, 90–96 (2012). doi:10.1016/j.clay.2011.11.027

    Article  Google Scholar 

  32. Nikolić, I., Đurović, D., Tadić, M., Blečić, D., Radmilović, V.: Immobilization of zinc from metallurgical waste and water solutions using geopolymerization technology. In: Proceedings of the 16th International Conference on Heavy Metals in the Environment, vol 1 (2013). doi:10.1051/e3sconf/20130141026

  33. Deja, J.: Immobilization of Cr6+, Cd2+, Zn2+ and Pb2+ in alkali-activated slag binders. Cem. Concr. Res. 32, 1971–1979 (2002). doi:10.1016/S0008-8846(02)00904-3

    Article  Google Scholar 

  34. Kriven, W.M., Bell, J.L., Gordon, M.: Microstructure and nanoporosity of as-set geopolymers. Ceram. Eng. Sci. Proc. 27(2), 491–503 (2008). doi:10.1002/9780470291313.ch47

    Google Scholar 

  35. Yunsheng, Z., Wei, S., Qianli, C., Lin, C.: Synthesis and heavy metal immobilization behaviors of slag based geopolymer. J. Hazard. Mater. 143, 206–213 (2007). doi:10.1016/j.jhazmat.2006.09.033

    Article  Google Scholar 

  36. Xu, J.Z., Zhou, Y.L., Chang, Q., Qu, H.Q.: Study on the factors of affecting the immobilization of heavy metals in fly ash-based geopolymers. Mater. Lett. 60, 820–822 (2006). doi:10.1016/j.matlet.2005.10.019

    Article  Google Scholar 

  37. Guo, B., Pan, D., Liu, B., Volinsky, A.A., Fincan, M., Du, J., Zhang, S.: Immobilization mechanism of Pb in fly ash-based geopolymer. Constr. Build. Mater. 134, 123–130 (2017). doi:10.1016/j.conbuildmat.2016.12.139

    Article  Google Scholar 

  38. Zhang, J., Provis, J.L., Feng, D., van Deventer, J.S.J.: The role of sulfide in the immobilization of Cr(VI) in fly ash geopolymers. Cem. Concr. Res. 38, 681–688 (2008b). doi:10.1016/j.cemconres.2008.01.006

  39. Chen, J., Wang, Y., Wang, H., Zhou, S., Wu, H., Lei, X.: Detoxification/immobilization of hexavalent chromium using metakaolin-based geopolymer coupled with ferrous chloride. J. Environ. Chem. Eng. 4, 2084–2089 (2016). doi:10.1016/j.jece.2016.03.038

    Article  Google Scholar 

  40. Katz, S.A., Salem, H.: The Biological and Environmental Chemistry of Chromium. VCH Publications, New York (1994)

    Google Scholar 

  41. Palomo, A., Palacios, M.: Alkali-activated cementitious materials: alternative matrices for the immobilisation of hazardous wastes -part II. Stabilisation of chromium and lead. Cem. Concr. Res. 33, 289–295 (2003)

    Article  Google Scholar 

  42. Zhang, J., Provis, J.L., Feng, D., van Deventer, J.S.J.: Geopolymers for immobilization of Cr6+, Cd2+, and Pb2+. J. Hazard. Mater. 157, 587–598 (2008a). doi:10.1016/j.jhazmat.2008.01.053

  43. Eary, L.E., Ral, D.: Chromate removal from aqueous wastes by reduction with ferrous ion. Environ. Sci. Technol. 22(8), 972–977 (1988). doi:10.1021/es00173a018

    Article  Google Scholar 

  44. Lan, Y., Deng, B., Kim, C., Thornton, E.C.: Influence of soil minerals on chromium (VI) reduction by sulfide under anoxic conditions. Geochem. Trans. 8, 4 (2007). doi:10.1186/1467-4866-1188-1184

    Article  Google Scholar 

  45. Omotoso, O.E., Ivey, D.G., Mikula, R.: Quantitative X-ray diffraction analysis of chromium (III) doped tricalcium silicate pastes. Cem. Concr. Res. 26, 1369–1379 (1996). doi:10.1016/0008-8846(96)00118-4

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tran Huyen Vu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Vu, T.H., Tran, M.V. (2018). A Review on Immobilisation of Toxic Wastes Using Geopolymer Technique. In: Tran-Nguyen, HH., Wong, H., Ragueneau, F., Ha-Minh, C. (eds) Proceedings of the 4th Congrès International de Géotechnique - Ouvrages -Structures. CIGOS 2017. Lecture Notes in Civil Engineering , vol 8. Springer, Singapore. https://doi.org/10.1007/978-981-10-6713-6_29

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6713-6_29

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6712-9

  • Online ISBN: 978-981-10-6713-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics