Skip to main content

Perceptual Deadzone

  • Chapter
  • First Online:
Kinesthetic Perception

Part of the book series: Studies in Computational Intelligence ((SCI,volume 748))

Abstract

In this chapter, we first review the current literature related to the haptic data compression techniques. Subsequently, we review the concept of using perceptual deadzone for data compression. We review perceptually adaptive sampling strategies and their corresponding deadzones for multidimensional haptic signals. After that the literature related to the effect of rate of change of a stimuli on the Weber fraction is reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acharya T, Ray AK (2005) Image processing: principles and applications. Wiley

    Google Scholar 

  • Anderson RJ, Spong MW (1989b) Bilateral control of teleoperators with time delay. IEEE Trans Automatic Control 34(5):494–501

    Article  MathSciNet  Google Scholar 

  • Awad S, Guerin B (1984) An optimisation of formant synthesis parameter coding. Speech Commun 3(4):335–346

    Article  Google Scholar 

  • Barbagli F, Salisbury K, Ho C, Spence C, Tan HZ (2006) Haptic discrimination of force direction and the influence of visual information. ACM Trans Appl Percept (TAP) 3(2):125–135

    Article  Google Scholar 

  • Bhardwaj A, Dabeer O, Chaudhuri S (2013) Can we improve over weber sampling of haptic signals? In: Information Theory and Applications Workshop. San Diego CA, pp 1–6

    Google Scholar 

  • Borst C (2005) Predictive coding for efficient host-device communication in a pneumatic force-feedback display. First Joint Eurohaptics Conf Symp Haptic Interfaces Virtual Environ Teleoperator Syst 2005:596–599. doi:10.1109/WHC.2005.108

    Article  Google Scholar 

  • Brandi F, Steinbach E (2013) Prediction techniques for haptic communication and their vulnerability to packet losses. In: IEEE International Symposium on Haptic Audio Visual Environments and Games (HAVE), IEEE, pp 63–68

    Google Scholar 

  • Brill MH (1983a) Weber’s law and perceptual categories: another teleological view. Bull Math Biol 45(1):139–142

    Article  MathSciNet  Google Scholar 

  • Cho HC, Park JH (2005) Impedance control with variable damping for bilateral teleoperation under time delay. JSME Int J Ser C Mech Syst Mac Elements Manuf 48(4):695–703

    Article  Google Scholar 

  • Clarke S, Schillhuber G, Zaeh M, Ulbrich H (2006) Telepresence across delayed networks: a combined prediction and compression approach. IEEE Int Workshop Haptic Audio Vis Environ Appl 2006:171–175. doi:10.1109/HAVE.2006.283795

    Google Scholar 

  • Dabeer O, Chaudhuri S (2011) Analysis of an adaptive sampler based on weber’s law. IEEE Trans Signal Process 59(4):1868–1878. doi:10.1109/TSP.2010.2101071

    Article  MathSciNet  Google Scholar 

  • Drake C, Botte MC, Baruch C (1992) Tempo sensitivity in auditory sequences. J Acoust So Am 92(4):2318–2318

    Article  Google Scholar 

  • Drösler J (2000) An n dimensional weber law and the corresponding fechner law. J Math Psychol 44(2):330–335

    Article  MATH  MathSciNet  Google Scholar 

  • Elhajj I, Weerasinghe H, Dika A, Hansen R (2006) Human perception of haptic force direction. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, pp 989–993

    Google Scholar 

  • Ellis MC (1991) Research note. thresholds for detecting tempo change. Psychol Music 19(2):164–169

    Article  Google Scholar 

  • Flanagan JL (1957) Estimates of the maximum precision necessary in quantizing certain dimensions of vowel sounds. J Acoust Soc Am 29(4):533–534

    Article  Google Scholar 

  • Gokhale V, Nair J, Chaudhuri S (2016b) Opportunistic adaptive haptic sampling on forward channel in telehaptic communication. In: 2016 IEEE Haptics Symposium (HAPTICS), IEEE, pp 217–222

    Google Scholar 

  • Hashtrudi-Zaad K, Salcudean SE (2001) Analysis of control architectures for teleoperation systems with impedance/admittance master and slave manipulators. Int J Robot Res 20(6):419–445

    Article  Google Scholar 

  • Hikichi K, Morino H, Fukuda I, Matsumoto S, Yasuda Y, Arimoto I, Iijima M, Sezaki K (2001) Architecture of haptics communication system for adaptation to network environments. IEEE Int Conf Multimed Expo 2001:563–566. doi:10.1109/ICME.2001.1237782

    Google Scholar 

  • Hinterseer P, Hirche S, Chaudhuri S, Steinbach E, Buss M (2008) Perception-based data reduction and transmission of haptic data in telepresence and teleaction systems. IEEE Trans Signal Process 56(2):588–597. doi:10.1109/TSP.2007.906746

    Article  MathSciNet  Google Scholar 

  • Hinterseer P, Steinbach E (2006) A psychophysically motivated compression approach for 3d haptic data. In: 14th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pp 35–41. doi:10.1109/HAPTIC.2006.1627068

  • Hinterseer P, Steinbach E, Chaudhuri S (2006a) Model based data compression for 3d virtual haptic teleinteraction. In: Proceedings of the IEEE International Conference on Consumer Electronics, pp 23–24

    Google Scholar 

  • Hinterseer R, Steinbach E, Chaudhuri S (2006b) Perception-based compression of haptic data streams using kalman filters. In: IEEE International Conference on Acoustics, Speech and Signal Processing, vol 5, p V. doi:10.1109/ICASSP.2006.1661315

  • Hinterseer P, Steinbach E, Hirche S, Buss M (2005) A novel, psychophysically motivated transmission approach for haptic data streams in telepresence and teleaction systems. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, vol 2, pp ii/1097–ii/1100. doi:10.1109/ICASSP.2005.1415600

  • Hirche S, Hinterseer P, Steinbach EG, Buss M (2007) Transparent data reduction in networked telepresence and teleaction systems. Part i: Communication without time delay. Presence 16(5): 523–531

    Google Scholar 

  • Jayant N, Johnston J, Safranek R (1993) Signal compression based on models of human perception. Proc IEEE 81(10):1385–1422

    Article  Google Scholar 

  • Kenshalo DR, Holmes CE, Wood PB (1968) Warm and cool thresholds as a function of rate of stimulus temperature change. Percept Psychophys 3(2):81–84

    Article  Google Scholar 

  • Kron A, Schmidt G, Petzold B, Zah M, Hinterseer P, Steinbach E (2004) Disposal of explosive ordnances by use of a bimanual haptic telepresence system. In: IEEE International Conference on Robotics and Automation. vol 2, pp 1968–1973. doi:10.1109/ROBOT.2004.1308112

  • Kuschel M, Kremer P, Hirche S, Buss M (2006) Lossy data reduction methods for haptic telepresence systems. In: IEEE International Conference on Robotics and Automation, ICRA 2006. IEEE, pp 2933–2938

    Google Scholar 

  • Lee BG (1984) A new algorithm to compute the discrete cosine transform. IEEE Signal Processing Society

    Google Scholar 

  • Lee JY, Payandeh S (2011) Performance evaluation of haptic data compression methods in teleoperation systems. IEEE World Haptics Conf (WHC) 2011:137–142. doi:10.1109/WHC.2011.5945475

    Google Scholar 

  • Lennie P, D’Zmura M (1987) Mechanisms of color vision. Crit Rev Neurobiol 3(4):333–400

    Google Scholar 

  • Levitin DJ, Cook PR (1996) Memory for musical tempo: additional evidence that auditory memory is absolute. Percept Psychophys 58(6):927–935

    Article  Google Scholar 

  • Madden J (1998) Detection of differences in rate of frequency change in gliding tones. J Acoust Soc Am 103:2848

    Article  Google Scholar 

  • Malo J, Ferri F, Albert J, Soret J, Artigas J (2000) The role of perceptual contrast non-linearities in image transform quantization. Image Vis Comput 18(3):233–246

    Article  Google Scholar 

  • Massie TH, Salisbury JK (1994) The phantom haptic interface: a device for probing virtual objects. Proc ASME Winter Ann Meet Symp Haptic Interfaces Virtual Enviro Teleoperator Syst, Chicago, IL 55:295–300

    Google Scholar 

  • McLaughlin ML, Hespanha JP, Sukhatme GS (2002) Introduction to haptics

    Google Scholar 

  • Moore BC (2007b) Cochlear hearing loss: physiological, psychological and technical issues. Wiley

    Google Scholar 

  • Niemeyer G, Slotine JJE (1991) Stable adaptive teleoperation. IEEE J Ocean Eng 16(1):152–162

    Article  Google Scholar 

  • Painter T, Spanias A (1997) A review of algorithms for perceptual coding of digital audio signals. In: 1997 13th International Conference on Digital Signal Processing Proceedings, DSP 97, IEEE, vol 1, pp 179–208

    Google Scholar 

  • Pongrac H, Hinterseer P, Kammerl J, Steinbach E, Färber B, Muenchen U, Muenchen T (2006) Limitations of human 3d force discrimination. Proceedings of Human-Centered Robotics Systems

    Google Scholar 

  • Quené H (2004) What is the just noticeable difference for tempo in speech? LOT Occasional Ser 2:149–158

    Google Scholar 

  • Richard JP (2003) Time-delay systems: an overview of some recent advances and open problems. Automatica 39(10):1667–1694

    Article  MATH  MathSciNet  Google Scholar 

  • Sakr N, Zhou J, Georganas N, Zhao J (2009a) Prediction-based haptic data reduction and transmission in telementoring systems. IEEE Trans Instrum Measurement 58(5):1727–1736. doi:10.1109/TIM.2008.2009146

  • Sakr N, Zhou J, Georganas N, Zhao J, Petriu E (2009b) Robust perception-based data reduction and transmission in telehaptic systems. Third Joint World Haptics Conf Haptic Interfaces Virtual Environ Teleoperator Syst 2009:214–219. doi:10.1109/WHC.2009.4810839

  • Schuwerk C, Freund W, Steinbach E (2016) Low-delay compression of polygon mesh deformation data for remote haptic interaction with simulated deformable objects. In: 2016 IEEE Haptics Symposium (HAPTICS), IEEE, pp 229–234

    Google Scholar 

  • Shahabi C, Ortega A, Kolahdouzan M (2002) A comparison of different haptic compression techniques. In: IEEE International Conference on Multimedia and Expo, vol 1, pp 657–660. doi:10.1109/ICME.2002.1035867

  • Sikora T (2005) Trends and perspectives in image and video coding. Proc IEEE 93(1):6–17

    Article  Google Scholar 

  • Steinbach E, Hirche S, Kammerl J, Vittorias I (2011) Haptic data compression and communication. IEEE Signal Process Mag 28(1):87–96. doi:10.1109/MSP.2010.938753

    Article  Google Scholar 

  • Tan HZ, Barbagli F, Salisbury K, Ho C, Spence C (2006) Force-direction discrimination is not influenced by reference force direction. Haptics-e 4(1):1–6

    Google Scholar 

  • Tanaka H, Ohnishi K (2010) Lossy data compression using fdct for haptic communication. In: 11th IEEE International Workshop on Advanced Motion Control, pp 756–761. doi:10.1109/AMC.2010.5464034

  • Thomas K (2007) Just noticeable difference and tempo change. J Sci Psychol 2:14–20

    Google Scholar 

  • Tirmizi A, Pacchierotti C, Hussain I, Alberico G, Prattichizzo D (2016) A perceptually-motivated deadband compression approach for cutaneous haptic feedback. In: 2016 IEEE Haptics Symposium (HAPTICS), IEEE, pp 223–228

    Google Scholar 

  • Vittorias I, Kammerl J, Hirche S, Steinbach E (2009) Perceptual coding of haptic data in time-delayed teleoperation. Third Joint World Haptics Conf Haptic Interfaces Virtual Environ Teleoperator Syst 2009:208–213. doi:10.1109/WHC.2009.4810811

    Google Scholar 

  • Zadeh MH, Wang D, Kubica E (2008) Perception-based lossy haptic compression considerations for velocity-based interactions. Multimed Syst 13(4):275–282

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhasis Chaudhuri .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Chaudhuri, S., Bhardwaj, A. (2018). Perceptual Deadzone. In: Kinesthetic Perception. Studies in Computational Intelligence, vol 748. Springer, Singapore. https://doi.org/10.1007/978-981-10-6692-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6692-4_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6691-7

  • Online ISBN: 978-981-10-6692-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics