Skip to main content

Bio-Network Inspired Cooperative Intelligent Controllers

  • Chapter
  • First Online:
Bio-Inspired Collaborative Intelligent Control and Optimization

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 118))

Abstract

It is not easy to control most of the complicated nonlinear processes with satisfactory control effectiveness by using conventional control strategies. In this chapter, some bio-network inspired cooperative intelligent controllers and strategies are proposed. Firstly, we propose a novel nonlinear guided intelligent controller (NGIC) inspired by the bi-cooperative regulation mechanism and the regulation characteristics of glucose in human body. Secondly, based on the modulation mechanism of neuroendocrine-immune system , we present a novel nonlinear optimized intelligent controller (NOIC) and provide a method to optimize and adjust its control parameters dynamically. Finally, a new control strategy based on the bi-direction hormone regulating mechanism of neuroendocrine-immune (NEI) network is proposed, and applied to single-phase photovoltaic grid-connected inverter .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu, B., Ding, Y., Gao, N., et al.: A bio-system inspired nonlinear intelligent controller with application to bio-reactor system. Neurocomputing. 168(C), 1065–1075(2015)

    Google Scholar 

  2. Liu, B., Ding, Y.: An intelligent controller inspired from neuroendocrine-immune system. Dynam. Cont. Dis. Ser. B. 13(b), 31–35(2006)

    Google Scholar 

  3. Wang, L., Ding, Y., Liang X., Hao K.R., Sun Y.Z.: A neuroendocrine-immune network based control strategy for single-phase photovoltaic grid-connected inverter. In: The 23rd Chinese Control and Decision Conference (2011 CCDC), Mianyang, China, pp. 2492–2497, 23–25 May (2011)

    Google Scholar 

  4. Vrabie, D., Lewis, F.: Neural network approach to continuous-time direct adaptive optimal control for partially unknown nonlinear systems. Neural Networks. 22(3), 237–246 (2009)

    Article  MATH  Google Scholar 

  5. Fu, L.J., Cao, J.G., Liao, C.R., et al.: Study on neural networks control algorithms for automotive adaptive suspension systems. In: International Conference on Neural Networks and Brain, 2005. Icnn&b. 1795–1799(2005)

    Google Scholar 

  6. Chen, P., Qin, H., Sun, M., et al.: Global adaptive neural network control for a class of uncertain non-linear systems. Iet. Control. Theory. A. 5(5), 655–662 (2011)

    Article  MathSciNet  Google Scholar 

  7. Hu, H., Woo, P.Y.: Fuzzy supervisory sliding-mode and neural-network control for robotic manipulators. IEEE. T. Ind. Electron. 53(3), 929–940 (2006)

    Article  Google Scholar 

  8. Shaocheng, T., Changying, L., Yongming, L.: Fuzzy adaptive observer back stepping control for MIMO nonlinear systems. Fuzzy. Set. Syst. 160(19), 2755–2775 (2009)

    Article  MATH  Google Scholar 

  9. Hwang, C.: Decentralized fuzzy control of nonlinear interconnected dynamic delay systems via mixed h. IEEE. T. Fuzzy. Syst. 19(2), 276–290 (2011)

    Article  Google Scholar 

  10. Wang, S.C., Liu, Y.H.: A modified pi-like fuzzy logic controller for switched reluctance motor drives. IEEE. T. Ind. Electron. 58(5), 1812–1825 (2011)

    Article  Google Scholar 

  11. Tao, C.W., Taur, J., Chuang, C.C., et al.: An approximation of interval type-2 fuzzy controllers using fuzzy ratio switching type-1 fuzzy controllers. IEEE. T. Syst. Man. Cy. B. 41(3), 828–839 (2011)

    Article  Google Scholar 

  12. Etik, N., Allahverdi, N., Sert, I.U., et al.: Fuzzy expert system design for operating room air-condition control systems. Expert Syst. Appl. 36(6), 9753–9758 (2007)

    Article  Google Scholar 

  13. Chee, F., Fernando, T.L., Savkin, A.V., et al.: Expert PID control system for blood glucose control in critically ill patients. IEEE. T. Inf. Technol. B. A Publication of the IEEE. Eng. Med. Biol. 7(4), 419–425 (2003)

    Google Scholar 

  14. Valenzuela, L.M.A., Bentley, J.M., Lorenz, R.D.: Expert system for integrated control and supervision of dry-end sections of paper machines. IEEE. Pulp. P. 40(2), 145–156(2003)

    Google Scholar 

  15. Park, Y.M., Lee, K.H.: Application of expert system to power system restoration in sub-control center. IEEE. T. Power. Syst. 17(6), 407–415 (1995)

    Google Scholar 

  16. Liang, X., Ding, Y.S., Ren, L.H., et al.: A bioinspired multilayered intelligent cooperative controller for stretching process of fiber production. IEEE. T. Syst. Man. Cy. C. 42(3), 367–377 (2012)

    Article  Google Scholar 

  17. Liang, X., Ding, Y., Ren, L., et al.: Data-Driven cooperative intelligent con troller based on the endocrine regulation mechanism. IEEE. T. Contr. Syst. T. 22(1), 94–101 (2014)

    Article  Google Scholar 

  18. Lei, G., Atakelty, Hailu.: Comprehensive learning particle swarm optimizer for constrained mixed-variable optimization problems. Int. J. Comput. Int. Sys. 3(6), 832–842(2012)

    Google Scholar 

  19. Farhy, L.S.: Modeling of oscillations in endocrine networks with feedback. Method. Enzymol. 384(12), 54–81 (2004)

    Article  Google Scholar 

  20. Brazzini, B., Ghersetich, I., Hercogova, J., et al.: The neuro-immuno-cutaneous-endocrine network: Relationship between mind and skin. Dermatol. Ther. 16(2), 123–131 (2003)

    Article  Google Scholar 

  21. Payne, J.K.: A neuroendocrine-based regulatory fatigue model. Biol. Res. Nurs. 6(2), 141–150 (2004)

    Article  Google Scholar 

  22. Yao, X., Liu, Y.: Making use of population information in evolutionary artificial neural networks. IEEE. T. Syst. Man. Cy. B. A Publication of the IEEE. Syst. Man. Cyb. 28(3), 417–25(1998)

    Google Scholar 

  23. Tay, J.C., Jhavar, A.: CAFISS: a complex adaptive framework for immune system simulation. ACM Symposium on Applied Computing. pp. 158–164(2005)

    Google Scholar 

  24. Stepney, S., Clark, J.A., Johnson, C.G., et al.: Artificial immune systems and the grand challenge for non-classical computation, pp. 204–216. Artificial Immune Systems. Springer, Berlin, Heidelberg (2003)

    Book  Google Scholar 

  25. Vargas, P., Moioli, R., Castro, L.N.D., et al.: Artificial homeostatic system: a novel approach, pp. 754–764. Advances in Artificial Life. Springer, Berlin, Heidelberg (2005)

    Google Scholar 

  26. Wommack J.C., Salinas, A., Jr, M.R., et al.: Behavioural and neuroendocrine adaptations to repeated stress during puberty in male golden hamsters. J. Neuroendocrinol. 16(9), 767–775(2004)

    Google Scholar 

  27. Haake, P., Schedlowski, M., Exton, M.S., et al.: Acute neuroendocrine response to sexual stimulation in sexual offenders. Can. J. Psychiat. 48(4), 265–271 (2003)

    Article  Google Scholar 

  28. Liu, B., Ding, Y.S.: An Intelligent controller based on primary–secondary responding mechanism of immune system. In: Proceeding of 7th International Conference on Computational Intelligence and Natural Computing, pp. 467–470. Salt Lake City, USA, June (2005)

    Google Scholar 

  29. Dong, H.K.: PID controller tuning of a boiler control system using immune algorithm typed neural network. In: Computational Science - Iccs 2004, International Conference, pp. 695–698. Kraków, Poland, 6–9 June (2004)

    Google Scholar 

  30. Liu, B., Ren, L., Ding, Y.: A novel intelligent controller based on modulation of neuroendocrine system. Computer Simulation. 23(2), 129–132 (2006)

    MATH  Google Scholar 

  31. Shen W.M., Salemi, B., Will, P.: Hormones for self-reconfigurable robots. In: Proceedings of the International conference on Intelligent Autonomous Systems (IAS-6), pp. 918–925. Venice, Italy(2000)

    Google Scholar 

  32. Ajlouni, N., Alhamouz, S.: Genetic design of fuzzy mapped pid controllers for non-linear plants. Inform. Technol. J. 3(1), 2004

    Google Scholar 

  33. Ferrari, S., Stengel, R.F.: Smooth function approximation using neural net works. IEEE. T. Neural. Networ. 16(1), 24–38 (2005)

    Article  Google Scholar 

  34. Fournier, R.L.: Basic transport phenomena in biomedical engineering. CRC Press, Taylor & Francis Group (2012)

    Google Scholar 

  35. Sturis, J., Polonsky, K.S., Mosekilde, E., et al.: Computer model for mechanisms underlying ultradian oscillations of insulin and glucose. Am. J. Physio. 260(1), 801–809 (1991)

    Google Scholar 

  36. Duncan, G.A.: Digital control system design for a unique nonlinear MIMO process using QFT technique. Iee. P-Contr. Theor. Ap. 142(5), 466–474 (1995)

    Article  Google Scholar 

  37. Chao, W., Yao, Z.: Approach on nonlinear control theory for designing STATCOM controller. Paper presented at IEEE International Conference on Grey Systems and Intelligent Services. pp. 871–875(2007)

    Google Scholar 

  38. Ljung, L.: System Identification. Theory for the user. Epfl. 16(1), 9–11 (2002)

    Google Scholar 

  39. W.C. Shaoyuan Li, Industry process identification and control, in, Chemical industry press, Beijing (2010)

    Google Scholar 

  40. Doi, M., Mori, Y.: A Study on robust asymptotic tracking property for generalized minimum variance control. Amer. Contr. Conf. 1472–1477(2002)

    Google Scholar 

  41. Shevitz, D., Paden, B.: Lyapunov stability theory of nonsmooth systems. IEEE. T. Automat. Contr. 39(9), 1910–1914 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  42. Man, Z., Wu, H.R., Liu, S., et al.: A new adaptive backpropagation algorithm based on Lyapunov stability theory for neural networks. IEEE. T. Neural. Networ. 17(6), 1580–1591 (2006)

    Article  Google Scholar 

  43. Nagy, Z.K.: Model based control of a yeast fermentation bioreactor using optimally designed artificial neural networks. Chem. Eng. J. 127(1), 95–109 (2007)

    Article  Google Scholar 

  44. Aiba, S., Shoda, M., Nagatani, M.: Kinetics of product inhibition in alcohol fermentation. Reprinted from Biotech. Bioeng. X (6), 845–864 (1968); Wiley, New York (2000)

    Google Scholar 

  45. Yu, W., Li, X.O.: Fuzzy Identification Using Fuzzy Neural Networks With Stable Learning Algorithms. IEEE. T. Fuzzy. Sys. 12(3), 411–420 (2004)

    Article  Google Scholar 

  46. Shibata, T., Tashima, T., Tanie, K.: Emergence of emotional behavior through physical interaction between human and robot. 4, 2868–2873 (1999)

    Google Scholar 

  47. Buso, S., Fasolo, S., Mattavelli, P.: Uninterruptible power supply multi-loop control employing digital predictive voltage and current regulators. IEEE. T. Ind. Appl. 37(6), 1846–1854 (2001)

    Article  Google Scholar 

  48. Zhang, L.W., Liu, J.: A novel algorithm of SVPWM inverter in the over-modulation Region based on fundamental voltage amplitude linear output control. In: Proceedings of Chinese Society for Electrical Engineering (CSEE), vol. 25, no. 19, pp. 12–18. IEEE(2005)

    Google Scholar 

  49. Premrudeepreechacharn, S., Poapornsawan, T.: Fuzzy logic control of predictive current control for grid-connected single phase inverter. In: Record of the 28th IEEE Photovoltaic Specialists Conference, pp. 1715–1718. IEEE, Anchorage, AK, USA. Piscataway, NJ, USA, 15–22 September(2000)

    Google Scholar 

  50. Kjaer, S.B., Pedersen, J.K., Blaabjerg, F.A.: Review of single-phase grid-connected inverters for photovoltaic modules. IEEE. T. Ind. Appl. 41(5), 1292–1306 (2005)

    Article  Google Scholar 

  51. Sakhare, A., Davari, A., Feliachi, A.: Fuzzy logic control of fuel cell for stand-alone and grid connection. J. Power Sources 135(1–2), 165–176 (2004)

    Article  Google Scholar 

  52. He, S.F., Yi, L.Z, Tan, P., et al.: Research of space vector PWM inverter based on the neural network. In: Proceedings of the 11th International Conference on Electrical Machines and Systems, vol. 4, pp. 1802–1805(2008)

    Google Scholar 

  53. El-Tamaly, H.H., Mohammed, A.A.E.: Optimal operation of photovoltaic/utility grid interconnected electrical power system using neural network. Power Systems Conference, 2006. MEPCON 2006. Eleventh International Middle East. IEEE. 1–6 (2006)

    Google Scholar 

  54. Robert, W., Erickson, Dragan, Maksimovic.: Fundamentals of power electronics (second edition). Kluwer Academic Publishers, New York(2001)

    Google Scholar 

  55. Zheng, S.C., Ming, D., Su, J.H., et al.: Simulation and experiment research of photovoltaic generation system and its islanding. Acta Simulata Systematica Sinica(2005)

    Google Scholar 

  56. Ding, Y.S., Liu, B.: An intelligent bi-cooperative decoupling control approach based on modulation mechanism of internal environment in body. IEEE. T. Contr. Syst. T. 19(3), 692–698 (2011)

    Article  Google Scholar 

  57. Walsh, G.C., Ye, H., Bushnell, L.: Stability analysis of networked control systems. IEEE. T. Contr. Syst. T. 10(3), 438–446 (2002)

    Article  Google Scholar 

  58. Narendra, K.S., Parthasarathy, K.: Identification and control of dynamical systems using neural networks. IEEE. T. Neural. Networ. 1(1), 4–27 (1990)

    Article  Google Scholar 

  59. Farmer, J.D., Packard, N.H., Perelson, A.S.: The immune system, adaptation, and machine learning. The Organization of information systems for government and public administration. Unesco, 187–204(1979)

    Google Scholar 

  60. Castro, L.N.D., Timmis, J.: An artificial immune network for multimodal function optimization. Evolutionary Computation, 2002. CEC ‘02. Proceedings of the 2002 Congress on. 699–704(2002)

    Google Scholar 

  61. Liang, J., Green, T.C., Weiss, G., et al.: Repetitive control of power conversion system from a distributed generator to the utility grid. International Conference on Control Applications. vol.1, pp. 13–18. IEEE(2002)

    Google Scholar 

  62. Weiss, G., Zhong, Q.C., Green, T.C., et al.: H ∞, repetitive control of DC-AC converters in microgrids. IEEE. T. Power. Electr. 19(1), 219–230 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongsheng Ding .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ding, Y., Chen, L., Hao, K. (2018). Bio-Network Inspired Cooperative Intelligent Controllers. In: Bio-Inspired Collaborative Intelligent Control and Optimization. Studies in Systems, Decision and Control, vol 118. Springer, Singapore. https://doi.org/10.1007/978-981-10-6689-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6689-4_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6688-7

  • Online ISBN: 978-981-10-6689-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics