Skip to main content

Immune Inspired Collaborative Learning Controllers

  • Chapter
  • First Online:
Bio-Inspired Collaborative Intelligent Control and Optimization

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 118))

  • 582 Accesses

Abstract

In this chapter, three collaborative and learning-type controllers inspired by immune system are introduced. Firstly, a novel reinforcement learning intelligent controller (RLIC) based on primary–secondary response mechanism of immune system is presented. Secondly, an iterative learning control method based on the recognition, response, and memory mechanism of immune system (IRRM-ILC) is proposed. Finally, based on the biological immune mechanisms, a design approach for the immune reconfigurable controller (IRC) is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu, B., Ding, Y.S., Ruan, D.: A reinforcement learning intelligent controller based on primary–secondary response mechanism of immune system. Dynam. Cont. Dis. Ser. B. 14(4), 557–574 (2007)

    MATH  MathSciNet  Google Scholar 

  2. Xu, N., Ding, Y.S., Hao, K.R.: Immunological mechanism inspired iterative learning control. Neurocomputing 145(18), 392–401 (2014)

    Article  Google Scholar 

  3. Ding, Y.S., Xu, N., Dai, S.F., Ren, L.H., Hao, K.R., Huang, B.: An immune system-inspired reconfigurable controller. IEEE. T. Contr. Syst. T. (2016)

    Google Scholar 

  4. Ruan, X.E., Paka, K.H., Bien, Z.N.: Retrospective review of some iterative learning control techniques with a comment on prospective long-term learning. Contr. Theor. Appl. 29(8), 966–973 (2012)

    MATH  Google Scholar 

  5. Ding, Y.S.: Computational Intelligence: Theory, Technique, and Application. Scientific Publishing House, Beijing, China (2004)

    Google Scholar 

  6. Kato, T., Ninomiya, Y., Masaki, I.: Preceding vehicle recognition based on learning from sample images. IEEE. T. Intell. Transp. 3(4), 252–260 (2002)

    Article  Google Scholar 

  7. Druet, C., Ernst, D., Wehenkel, L.: Application of reinforcement learning to electrical power system closed-loop emergency control. The 4th European Conference on Principles of Data Mining and Knowledge Discovery: PKDD 2000, Lyon, France. 86–95 (2000)

    Google Scholar 

  8. Hougen, D.F., John, F., Maria, G., James, S.: Fast connectionist learning for trailer backing using a real robot. Paper present at IEEE. Int. Conf. Robot. 1917–1922 (1996)

    Google Scholar 

  9. Alexander, J.S., Baird, L.C., Baker, W.L., Farrell, J.A.: A design and simulation tool for connectionist learning control systems: Application to autonomous underwater vehicles. Paper present at the Society for Computer Simulation Conference, Baltimore, Maryland.771–776 (1991)

    Google Scholar 

  10. Zhou, K.L., Wang, D.W.: Digital repetitive learning controller for three-phase CVCF PWM inverter. IEEE. T. Ind. Electron. 48(4), 820–830 (2001)

    Article  Google Scholar 

  11. Oriolo, G., Panzieri, S., Ulivi, G.: An iterative learning controller for nonholonomic mobile robots. Int. J. Robot. Res. 17(9), 954–970 (1998)

    Article  Google Scholar 

  12. Braga, P.S.: A topological reinforcement learning agent for navigation. Neural. Comput. App. 12, 220–236 (2003)

    Article  Google Scholar 

  13. Leslie, P.K., Michael, L.L., Andrew, W.M.: Reinforcement learning: A survey. J. Artif. Intell. Res. 4, 237–285 (1996)

    Google Scholar 

  14. Gu, D.B., Hu, H.S., Spacek, L.: Learning fuzzy logic controller for reactive robot behaviours. Paper present at IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Kobe, Japan, 20–24 (2003)

    Google Scholar 

  15. Remi, C.: Feedforward neural networks in reinforcement learning applied to high-dimensional motor control. Paper present at Algorithmic Learning Theory: 13th International Conference, ALT 2002, Lubeck, Germany, 24–26 Nov (2002)

    Google Scholar 

  16. Anderson, C., Hittle, D., Katz, A., Kretchmar, R.: Synthesis of reinforcement learning, neural networks, and PI control applied to a simulated heating coil. Artif. Intell. Eng. 11(4), 423–431 (1997)

    Article  Google Scholar 

  17. Norihisa, S., Masaharu, A., Makoto, K.: Control of associative chaotic neural networks using reinforcement learning. Lect. Notes. Comput. Sc. pp. 395–400, Springer, Berlin Heidelberg (2004)

    Google Scholar 

  18. Cang, Y., Y. Nelson, H.C., Wang, D.W.: A fuzzy controller with supervised learning assisted reinforcement learning algorithm for obstacle avoidance, IEEE. T. Syst. Man. Cyb. 33(1), 17–27 (2003)

    Google Scholar 

  19. Esogbue, A.O., Hearnes, W.E., Song, Q.: A reinforcement learning fuzzy controller for set-point regulator problems. Paper present at the 5th IEEE. Int. Conf. Fuzzy, New Orleans, LA, 8–11 Sept (1996)

    Google Scholar 

  20. Arimoto, S., Kawamura, S., Miyazaki, F.: Bettering operation of robots by learning. J. Robot. Syst. 1(2), 123–140 (1984)

    Article  Google Scholar 

  21. Bristow, D.A., Tharayil, M., Alleyne, A.G.: A survey of iterative learning control: a learning-based method for high-performance tracking control. IEEE. Contr. Syst. Mag. 26(3), 96–114 (2006)

    Article  Google Scholar 

  22. Owens, D.H., Hätönen, J.: Iterative learning control—an optimization paradigm. Annu. Rev. Control 29, 57–70 (2005)

    Article  Google Scholar 

  23. Ahn, H.S., Chen, Y.Q., Moore, K.L.: Iterative learning control: survey and categorization. IEEE. T. Syst. Man. Cy. C. 37(6), 1099–1121 (2007)

    Article  Google Scholar 

  24. Wang, Y., Gao, F., Doyle III, F.J.: Survey on iterative learning control, repetitive control and run-to-run control. J. Process. Contr. 19(10), 1589–1600 (2009)

    Article  Google Scholar 

  25. Norrlöf, M.: An adaptive iterative learning control algorithm with experiments on an industrial robot. IEEE. T. Robotic. Autom. 18(2), 245–251 (2002)

    Article  Google Scholar 

  26. Jia, L., Shi, J., Chiu, M.S.: Integrated neuro-fuzzy model and dynamic R-parameter based quadratic criterion-iterative learning control for batch process. Neurocomputing. 98(3), 24–33 (2012)

    Article  Google Scholar 

  27. Havlicsek, H., Alleyne, A.: Nonlinear control of an electrohydraulic injection molding machine via iterative adaptive learning. IEEE/ASME. T. Mechatron. 4(3), 312–323 (1999)

    Article  Google Scholar 

  28. Gao, F., Yang, Y., Shao, C.: Robust iterative learning control with applications to injection molding process. Chem. Eng. Sci. 56(24), 7025–7034 (2001)

    Article  Google Scholar 

  29. Pandit, M., Buchheit, K.H.: Optimizing iterative learning control of cyclic production processes with application to extruders. IEEE. T. Contr. Syst. T. 7(3), 382–390 (1999)

    Article  Google Scholar 

  30. Jiang, P., Unbehauen, R.: Iterative learning neural network control for nonlinear system trajectory tracking. Neurocomputing. 48(1–4), 141–153 (2002)

    Article  MATH  Google Scholar 

  31. Saab, S.A.: A stochastic iterative learning control algorithm with application to an induction motor. Int. J. Control 77(2), 144–163 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  32. Barton, A.D., Lewin, P.L., Brown, D.J.: Practical implementation of a real-time iterative learning position controller. Int. J. Control 73(10), 992–999 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  33. Wang, A., Afshar, P., Wang, H.: Complex stochastic systems modelling and control via iterative machine learning. Neurocomputing. 71(13–15), 2685–2692 (2008)

    Article  Google Scholar 

  34. Li, X., Zhang, W.: Multiple model iterative learning control. Neurocomputing. 73(13–15), 2439–2445 (2010)

    Google Scholar 

  35. Yang, D.R., Lee, K.S., Ahn, H.J., J. H. Lee, J.H.: Experimental application of a quadratic optimal iterative learning control method for control of wafer temperature uniformity in rapid thermal processing. IEEE. T. Semiconduct. M. 16(1), 36–44 (2003)

    Google Scholar 

  36. Gorinevsky, D.: Loop shaping for iterative control of batch processes. IEEE. Contr. Syst. Mag. 22(6), 55–65 (2002)

    Article  Google Scholar 

  37. Mezghani, M., Roux, G., Cabassud, M., Lann, M.V.L., Dahhou, B., Casamatta, G.: Application of iterative learning control to an exothermic semibatch chemical reactor. IEEE. T. Contr. Syst. T. 10(6), 822–834 (2002)

    Article  Google Scholar 

  38. Tousi, M.M., Khorasani, K.: Optimal hybrid fault recovery in a team of unmanned aerial vehicles. Automatica. 48(2), 410–418 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  39. Zhang, Y., Jiang, J.: Bibliographical review on reconfigurablefault-tolerant control systems. Annu. Rev. Control 32(2), 229–252 (2008)

    Article  Google Scholar 

  40. Rothenhagen, K., Fuchs, F.W.: Doubly fed induction generator model-based sensor fault detection and control loop reconfiguration. IEEE. T. Ind. Electron. 56(10), 4229–4238 (2014)

    Article  Google Scholar 

  41. Giovanini, L.: Robust adaptive control using multiple models, switching and tuning. IET. Control. Theory. A. 5(18), 2168–2178 (2011)

    Article  MathSciNet  Google Scholar 

  42. Murphey, Y.L., Abul Masrur, M.: Model-based fault diagnosis inelectric drives using machine learning. IEEE-ASME T. Mech. 11(3), 290–303 (2006)

    Article  Google Scholar 

  43. Nguyen, D., Lehman, B.: An adaptive solar photovoltaic array using model-based reconfiguration algorithm. IEEE. T. Ind. Electron. 55(7), 2644–2654 (2008)

    Article  Google Scholar 

  44. Ma, J., Zheng, Z., Hu, D.: Modular robust reconfigurable flight control systemdesign for an overactuated aircraft. IET. Control. Theory. A. 6(11), 1620–1632 (2012)

    Article  Google Scholar 

  45. Durham, W.C., Cristofaro, A., Johansen, T.A.: Fault tolerant control allocation using unknown input observers. Automatica. 50(7), 1891–1897 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  46. John, A., Petersen, M., Bodson, M.: Constrained quadraticprogramming techniques for control allocation. IEEE. T. Contr. Syst. T. 14(1), 91–98 (2006)

    Article  Google Scholar 

  47. Li, J., Zhou, M.C., Guo, T., Gan, Y.H., Dai, X.Z.: Robust control reconfiguration of resource allocation systems with Petri nets and integer programming. Automatica. 50(3), 915–923 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  48. Vermillion, C., Sun, J., Butts, K.: Predictive control allocation for a termal management system based on an inner loop reference model-design, analysis, and experimental results. IEEE. T. Contr. Syst. T. 19(4), 772–781 (2011)

    Article  Google Scholar 

  49. Chen, W., Saif, M.: Observer-based strategies for actuator fault detection, isolation and estimation for certain class of uncertain nonlinear systems. IET. Control. Theory. A. 1(6), 1672–1680 (2007)

    Article  Google Scholar 

  50. Trujillo Rodriguez, C., Velasco de la Fuente, D., Garcera, G., Figueres, E., Guacaneme Moreno, J.A.: Reconfigurable control scheme for a PV microinverter working in both grid-connected and island modes. IEEE. T. Ind. Electron. 60(4), 1582–1595 (2013)

    Article  Google Scholar 

  51. Khomfoi, S., Tolbert, L.M., Leon, M.: Fault diagnosis and reconfiguration for multilevel inverter drive using AI-based techniques. IEEE. T. Ind. Electron. 54(6), 2954–2968 (2007)

    Article  Google Scholar 

  52. Hamayun, M.T., Edwards, C., Alwi, H.: Design and analysis of an fault-tolerant control scheme. IEEE. T. Automat. Contr. 57(7), 1783–1789 (2012)

    Article  MATH  Google Scholar 

  53. Staroswiecki, M., Zhang, K., Berdjag, D., Abbas-Turki, M.: Reducing the reliability over-cost in reconfiguration-based fault tolerant control under actuator faults. IEEE. T. Automat. Contr. 57(12), 3181–3186 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  54. Pashilkar, A.A., Sundararajan, N., Saratchandran, P.: Adaptive back-stepping neural controllerfor reconfigurable flight control systems. IEEE. T. Contr. Syst. T. 14(3), 553–561 (2006)

    Article  Google Scholar 

  55. Shin, D.H., Kim, Y.D.: Reconfigurable flight control system design using adaptive neural networks. IEEE. T. Contr. Syst. T. 12(1), 87–100 (2004)

    Article  Google Scholar 

  56. Shin, D.H., Kim, Y.D.: Nonlinear discrete-time reconfigurable flight control law using neural networks. IEEE. T. Contr. Syst. T. 14(3), 408–422 (2006)

    Article  Google Scholar 

  57. Leitão, P., Barbosa, J., Trentesaux, D.: Bio-inspired multi-agent systems for reconfigurable manufacturing systems. Eng. Appl. Artif. Intel. 25(5), 934–944 (2012)

    Article  Google Scholar 

  58. Zhang, J.F., Khalgui, M., Li, Z.W., Mosbahi, O., AI-Ahmari, A.M.: R-TNCES: A novel formalism for reconfigurable discrete event control systems, IEEE. T. Syst. Man. Cy. A. 43(4), 757–772 (2013)

    Google Scholar 

  59. Dasgupta, D.: Artificial Immune Systems and Their Applications, Springer-Verlag. Inc. (1993)

    Google Scholar 

  60. N. D. C. Leandro and T. Jonathan, Artificial Immune System: A New Computational Intelligence Approach, Springer-Verlag. Inc. (2002)

    Google Scholar 

  61. Cai, M.-Y.: Medical Immunology. Scientific Publishing House, Beijing, China (2002)

    Google Scholar 

  62. Ahn, H.S., Chen, Y.Q., Moore, K.L.: Iterative learning control: brief survey and categorization. IEEE. T. Syst. Man. Cy. C. 37, 1099–1121 (2007)

    Article  Google Scholar 

  63. Moore, K.L.: Iterative learning control for deterministic systems, Advances in Industrial Control. Springer-Verlag, New York (1993)

    Book  Google Scholar 

  64. Xu, J., Hou, Z.: On learning control: The state of the art and perspective. Acta Automatica Sinica. 31(6), 943–955 (2005)

    Google Scholar 

  65. Elci, H., Longman, R.W., Phan, M.Q., Juang, J.N.: Simple learning control made practical by zero-phase filtering: Applications to robotics. IEEE. T. Circuit. S-I. 49(6), 753–767 (2002)

    Article  Google Scholar 

  66. Cong, S.B., Yuan, P., Sheng, F.: Dynamic Model Simplification of Heat Exchanger. Petrol. Proces. Petrochem. 27(10), 5–9 (1996)

    Google Scholar 

  67. Stewart, J., Coutinho, A.: The affirmation of self: A new perspective on the immune system. Artif. Life. 10(3), 261–276 (2004)

    Article  Google Scholar 

  68. Dasgupta, D.: Advances in artificial immune systems. IEEE. Comput. Intell. M. 1(4), 40–43 (2006)

    Article  Google Scholar 

  69. Hong, Y.Y., Lin, J.K., Wu, C.P., Chuang, C.C.: Multi-objective air-conditioning control considering fuzzy parameters using immune clonal selection programming. IEEE. Trans. Smart. Grid. 3(4), 1603–1610 (2012)

    Article  Google Scholar 

  70. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm:NSGA-II. IEEE. T. Evolut. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  71. Shen, Q.K., Jiang, B., Cocquempot, V.: Fault-tolerant control for T-S fuzzy systems with application to near-space hypersonic vehicle with actuator faults. IEEE. T. Fuzzy. Syst. 20(4), 652–664 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Chen .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ding, Y., Chen, L., Hao, K. (2018). Immune Inspired Collaborative Learning Controllers. In: Bio-Inspired Collaborative Intelligent Control and Optimization. Studies in Systems, Decision and Control, vol 118. Springer, Singapore. https://doi.org/10.1007/978-981-10-6689-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6689-4_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6688-7

  • Online ISBN: 978-981-10-6689-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics