Skip to main content

Monitoring of Operating Condition and Process Dynamics with Slow Feature Analysis

  • Chapter
  • First Online:
Dynamic Modeling of Complex Industrial Processes: Data-driven Methods and Application Research

Part of the book series: Springer Theses ((Springer Theses))

  • 827 Accesses

Abstract

Latent variable (LV) models have been widely used in multivariate statistical process monitoring. However, whatever deviation from nominal operating condition is detected, an alarm is triggered based on classical monitoring methods. Consequently, they cannot distinguish real faults incurring dynamics anomalies from normal deviations in operating conditions. In this chapter, a new process monitoring strategy based on slow feature analysis (SFA) is proposed for the concurrent monitoring of operating point deviations and process dynamics anomalies. Slow features as LVs are developed to describe slowly varying dynamics, yielding improved physical interpretation. In addition to classical statistics for monitoring deviation from design conditions, two novel indices are proposed to detect anomalies in process dynamics through the slowness of LVs. The proposed approach can distinguish whether normal changes in operating conditions or real faults occur. Two case studies show the validity of the SFA-based process monitoring approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Available at http://web.mit.edu/braatzgroup/TE_process.zip.

References

  1. MacGregor JF, Cinar A (2012) Monitoring, fault diagnosis, fault-tolerant control and optimization: data driven methods. Comput Chem Eng 47:111–120

    Article  Google Scholar 

  2. Jackson JE (1980) Principal components and factor analysis: part I-principal components. J Qual Technol 12:201–213

    Google Scholar 

  3. Jackson JE, Mudholkar GS (1979) Control procedures for residuals associated with principal component analysis. Technometrics 21:341–349

    Article  MATH  Google Scholar 

  4. Kano M, Tanaka S, Hasebe S et al (2003) Monitoring independent components for fault detection. AIChE J 49:969–976

    Article  Google Scholar 

  5. Lee JM, Yoo C, Lee IB (2004) Statistical process monitoring with independent component analysis. J Process Control 14:467–485

    Article  Google Scholar 

  6. Lee JM, Qin SJ, Lee IB (2006) Fault detection and diagnosis based on modified independent component analysis. AIChE J 52:3501–3514

    Article  Google Scholar 

  7. Qin SJ, Zheng Y (2013) Quality-relevant and process-relevant fault monitoring with concurrent projection to latent structures. AIChE J 59:496–504

    Article  Google Scholar 

  8. Ku W, Storer RH, Georgakis C (1995) Disturbance detection and isolation by dynamic principal component analysis. Chemometr Intell Lab Syst 30:179–196

    Article  Google Scholar 

  9. Chen J, Liu KC (2002) On-line batch process monitoring using dynamic PCA and dynamic PLS models. Chem Eng Sci 57:63–75

    Article  Google Scholar 

  10. Shang C, Huang X, Suykens JAK et al (2015) Enhancing dynamic soft sensors based on DPLS: a temporal smoothness regularization approach. J Process Control 28:17–26

    Article  Google Scholar 

  11. Lee JM, Yoo C, Lee IB (2004) Statistical monitoring of dynamic processes based on dynamic independent component analysis. Chem Eng Sci 59:2995–3006

    Article  Google Scholar 

  12. Negiz A, Cinar A (1997) PLS, balanced, and canonical variate realization techniques for identifying VARMA models in state space. Chemometr Intell Lab Syst 38:209–221

    Article  Google Scholar 

  13. Dunia R, Qin SJ (1998) Subspace approach to multidimensional fault identification and reconstruction. AIChE J 44:1813–1831

    Article  Google Scholar 

  14. Negiz A, Cinar A (1997) Statistical monitoring of multivariable dynamic processes with state-space models. AIChE J 43:2002–2020

    Article  Google Scholar 

  15. Russell EL, Chiang LH, Braatz RD (2000) Fault detection in industrial processes using canonical variate analysis and dynamic principal component analysis. Chemometr Intell Lab Syst 51:81–93

    Article  Google Scholar 

  16. Wiskott L, Sejnowski TJ (2002) Slow feature analysis: unsupervised learning of invariances. Neural Comput 14:715–770

    Article  MATH  Google Scholar 

  17. Berkes P, Wiskott L (2005) Slow feature analysis yields a rich repertoire of complex cell properties. J Vis 5:9–9

    Article  MATH  Google Scholar 

  18. Körding KP, Kayser C, Einhäuser W et al (2004) How are complex cell properties adapted to the statistics of natural stimuli? J Neurophysiol 91:206–212

    Article  Google Scholar 

  19. Blaschke T, Zito T, Wiskott L (2007) Independent slow feature analysis and nonlinear blind source separation. Neural Comput 19:994–1021

    Article  MathSciNet  MATH  Google Scholar 

  20. Sprekeler H, Zito T, Wiskott L (2014) An extension of slow feature analysis for nonlinear blind source separation. J Mach Learn Res 15:921–947

    MathSciNet  MATH  Google Scholar 

  21. Zhang Z, Tao D (2012) Slow feature analysis for human action recognition. IEEE Trans Pattern Anal Mach Intell 34:436–450

    Article  Google Scholar 

  22. Wu C, Du B, Zhang L (2014) Slow feature analysis for change detection in multispectral imagery. IEEE Trans Geosci Remote Sens 52:2858–2874

    Article  Google Scholar 

  23. Zhang L, Wu C, Du B (2014) Automatic radiometric normalization for multitemporal remote sensing imagery with iterative slow feature analysis. IEEE Trans Geosci Remote Sens 52:6141–6155

    Google Scholar 

  24. Casella G, Berger RL (2002) Statistical inference, vol 2. Duxbury, Pacific Grove

    MATH  Google Scholar 

  25. Golub GH, Van Loan CF (2012) Matrix computations, vol 3. JHU Press, Baltimore

    Google Scholar 

  26. Hyvärinen A, Oja E (2000) Independent component analysis: algorithms and applications. Neural Netw 13:411–430

    Article  Google Scholar 

  27. Turner R, Sahani M (2007) A maximum-likelihood interpretation for slow feature analysis. Neural Comput 19:1022–1038

    Article  MathSciNet  MATH  Google Scholar 

  28. Blaschke T, Berkes P, Wiskott L What is the relation between slow feature analysis and independent component analysis? Neural Comput 18:2495–2508

    Google Scholar 

  29. Li G, Qin SJ, Ji Y et al (2010) Reconstruction based fault prognosis for continuous processes. Control Eng Pract 18:1211–1219

    Article  Google Scholar 

  30. Yoon S, MacGregor JF (2001) Fault diagnosis with multivariate statistical models. Part I: using steady state fault signatures. J Process Control 11:387–400

    Article  Google Scholar 

  31. Downs JJ, Vogel EF (1993) A plant-wide industrial process control problem. Comput Chem Eng 17:245–255

    Article  Google Scholar 

  32. Chiang LH, Braatz RD, Russell EL (2001) Fault detection and diagnosis in industrial systems. Springer, New York

    Google Scholar 

  33. Yin S, Ding SX, Haghani A et al (2012) A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process. J Process Control 22:1567–1581

    Article  Google Scholar 

  34. Lyman PR, Georgakis C (1995) Plant-wide control of the Tennessee Eastman problem. Comput Chem Eng 19:321–331

    Article  Google Scholar 

  35. Shang C, Yang F, Gao X et al (2015) Concurrent monitoring of operating condition deviations and process dynamics anomalies with slow feature analysis. AIChE J 61:3666–3682

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Shang .

Appendices

Appendix A: Proof of Theorem 2.1

In order to calculate the value of \(\varDelta (\cdot )\), we need to first normalize \(x_{ {j}}\) to unit variance:

$$\begin{aligned} x_{ {j}}^\mathrm{norm} \doteq \frac{x_{ {j}}}{\sqrt{\langle x_{ {j}}^2 \rangle _t}} = \frac{\mathbf {r}^\mathrm{T}_{ {j}}\mathbf {s}}{||\mathbf {r}_{ {j}}||_2}. \end{aligned}$$
(2.47)

Then the its value of \(\varDelta \) can be calculated as:

$$\begin{aligned} \varDelta (x_{ {j}}) \doteq \langle (\dot{x}_{ {j}}^\mathrm{norm})^2 \rangle _t = \frac{\mathbf {r}_{ {j}}^\mathrm{T}\langle \dot{\mathbf {s}}\dot{\mathbf {s}}^\mathrm{T} \rangle _t\mathbf {r}_{ {j}}}{\mathbf {r}_{ {j}}^\mathrm{T}\mathbf {r}_{ {j}}} = \frac{\mathbf {r}_{ {j}}^\mathrm{T}\varvec{\varOmega }\mathbf {r}_{ {j}}}{\mathbf {r}_{ {j}}^\mathrm{T}\mathbf {r}_{ {j}}}. \end{aligned}$$
(2.48)

Notice that \(\varvec{\varOmega }=\text {diag}\left\{ \omega _1, \ldots , \omega _{m(d+1)} \right\} = \text {diag}\left\{ \varDelta (s_1), \ldots , \varDelta (s_{m(d+1)}) \right\} \). Therefore (2.48) can be further decomposed as:

$$\begin{aligned} \varDelta (x_{ {j}}) = \frac{\sum _i r_{ji}^2\varDelta (s_i)}{\sum _i r_{ji}^2} = \sum _i \frac{r_{ji}^2}{\sum _i r_{ji}^2}\varDelta (s_i) \doteq \sum _i \alpha _i \varDelta (s_i). \end{aligned}$$
(2.49)

where \(\alpha _i=r_{ji}^2 / \sum _i r_{ji}^2\) and \(\sum _i \alpha _i=1\). This completes the proof.

Appendix B: Proof of Theorem 2.2

If k satisfy \(\varDelta (s_k) > \varDelta (x_{ {j}})\), then we have:

$$\begin{aligned}&\qquad \qquad \qquad \qquad \qquad \varDelta (s_k)> \frac{\sum _i r_{ji}^2\varDelta (s_i)}{\sum _i r_{ji}^2} \\&\qquad \qquad \qquad \Rightarrow \sum _i r_{ji}^2\varDelta (s_k)> \sum _i r_{ji}^2\varDelta (s_i) \\&\Rightarrow \sum _{i \ne k} r_{ji}^2\varDelta (s_k) + r_{jk}^2\varDelta (s_k)> \sum _{i \ne k} r_{ji}^2\varDelta (s_i) + r_{jk}^2\varDelta (s_k) \\&\qquad \qquad \qquad \Rightarrow \varDelta (s_k)\sum _{i \ne k} r_{ji}^2> \sum _{i \ne k} r_{ji}^2\varDelta (s_i) \\&\qquad \qquad \quad \Rightarrow r_{jk}^2\varDelta (s_k)\sum _{i \ne k} r_{ji}^2> r_{jk}^2 \sum _{i \ne k} r_{ji}^2\varDelta (s_i) \\&\qquad \qquad \qquad \Rightarrow \frac{r_{jk}^2\varDelta (s_k)}{\sum _{i \ne k} r_{ji}^2\varDelta (s_i)}> \frac{r_{jk}^2}{\sum _{i \ne k} r_{ji}^2} \\&\qquad \qquad \Rightarrow 1+\frac{r_{jk}^2\varDelta (s_k)}{\sum _{i \ne k} r_{ji}^2\varDelta (s_i)}> 1+\frac{r_{jk}^2}{\sum _{i \ne k} r_{ji}^2} \\&\qquad \qquad \Rightarrow \frac{\sum _i r_{jk}^2\varDelta (s_k)}{\sum _{i \ne k} r_{ji}^2\varDelta (s_i)}> \frac{\sum _i r_{jk}^2}{\sum _{i \ne k} r_{ji}^2} \\&\qquad \qquad \Rightarrow \frac{\sum _i r_{jk}^2\varDelta (s_k)}{\sum _i r_{jk}^2}> \frac{\sum _{i \ne k} r_{ji}^2\varDelta (s_i)}{\sum _{i \ne k} r_{ji}^2} \\&\qquad \qquad \Rightarrow \varDelta (x_{ {j}}) > \varDelta (x_{ {j}}^\mathrm{rec}). \end{aligned}$$

This completes the proof.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shang, C. (2018). Monitoring of Operating Condition and Process Dynamics with Slow Feature Analysis. In: Dynamic Modeling of Complex Industrial Processes: Data-driven Methods and Application Research. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-6677-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6677-1_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6676-4

  • Online ISBN: 978-981-10-6677-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics