Is Mitochondrial Cell Fragility a Cell Weakness?

  • William WangEmail author
  • Jiayuan Hou
  • Zhenghua Zhu
  • Hao FangEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1038)


Mitochondrial dysfunction has historically been linked to the cessation of cell function and ageing. Downstream effects such as reduced calcium buffering capacity, elevated levels of reactive oxygen species, and alterations in adenosine-5′-triphosphate are linked to a wide variety of pathological diseases. The importance of the mitochondria has increasingly been highlighted due to its potential as a therapeutic target for drug intervention and cell elimination in cancer. In addition, due to its origin, drugs targeting bacteria are required to be thoroughly tested prior to administration to prevent toxicity for the mitochondria. In this chapter, we will discuss a variety of factors that could influence mitochondrial dysfunction and highlight potential solutions to these. A comprehensive understanding regarding the mechanisms underlying mitochondrial dysfunction could aid in developing future therapeutic targets in multiple pathologies such as cancer and liver diseases.


Mitochondria Dysfunction Therapy Fragility Cancer 



The work was supported by Zhongshan Distinguished Professor Grant (XDW), National Nature Science Foundation of China (91230204, 81270099, 81320108001, 81270131, 81300010), Shanghai Committee of Science and Technology (12JC1402200, 12431900207, 11410708600, 14431905100), Operation funding of Shanghai Institute of Clinical Bioinformatics, Ministry of Education for Academic Special Science and Research Foundation for PhD Education (20130071110043), and National Key Research and Development Program (2016YFC0902400, 2017YFSF090207).


  1. 1.
    Lane N, Martin W. The energetics of genome complexity. Nature. 2010;467(7318):929–34.CrossRefPubMedGoogle Scholar
  2. 2.
    Shyh-Chang N, Daley GQ, Cantley LC. Stem cell metabolism in tissue development and aging. Development. 2013;140(12):2535–47.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Sahin E, DePinho RA. Linking functional decline of telomeres, mitochondria and stem cells during ageing. Nature. 2010;464(7288):520–8.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Bao L, Diao H, Dong N, Su X, Wang B, Mo Q, Yu H, Wang X, Chen C. Histone deacetylase inhibitor induces cell apoptosis and cycle arrest in lung cancer cells via mitochondrial injury and p53 up-acetylation. Cell Biol Toxicol. 2016;32(6):469–82.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Fallahian F, Aghaei M, Abdolmohammadi MH, Hamzeloo-Moghadam M. Molecular mechanism of apoptosis induction by Gaillardin, a sesquiterpene lactone, in breast cancer cell lines. Cell Biol Toxicol. 2015;31(6):295–305.CrossRefPubMedGoogle Scholar
  6. 6.
    Lippai M, Szatmári Z. Autophagy—from molecular mechanisms to clinical relevance. Cell Biol Toxicol. 2017;33(2):145–68.CrossRefPubMedGoogle Scholar
  7. 7.
    Zhou Y, Zhang S, Dai C, Tang S, Yang X, Li D, Zhao K, Xiao X. Quinocetone triggered ER stress-induced autophagy via ATF6/DAPK1-modulated mAtg9a trafficking. Cell Biol Toxicol. 2016;32(2):141–52.CrossRefPubMedGoogle Scholar
  8. 8.
    Sidor-Kaczmarek J, Cichorek M, Spodnik JH, Wójcik S, Moryś J. Proteasome inhibitors against amelanotic melanoma. Cell Biol Toxicol. 2017;33:1–17.CrossRefGoogle Scholar
  9. 9.
    Mbah NE, Overmeyer JH, Maltese WA. Disruption of endolysosomal trafficking pathways in glioma cells by methuosis-inducing indole-based chalcones. Cell Biol Toxicol. 2017;33(3):263–82.CrossRefPubMedGoogle Scholar
  10. 10.
    Soltani B, Ghaemi N, Sadeghizadeh M, Najafi F. Curcumin confers protection to irradiated THP-1 cells while its nanoformulation sensitizes these cells via apoptosis induction. Cell Biol Toxicol. Dec. 2016;32(6):543–61.CrossRefPubMedGoogle Scholar
  11. 11.
    Divolis G, Mavroeidi P, Mavrofrydi O, Papazafiri P. Differential effects of calcium on PI3K-Akt and HIF-1α survival pathways. Cell Biol Toxicol. 2016;32(5):437–49.CrossRefPubMedGoogle Scholar
  12. 12.
    Chiang H-C, Wang C-H, Yeh S-C, Lin Y-H, Kuo Y-T, Liao C-W, Tsai F-Y, Lin W-Y, Chuang W-H, Tsou T-C. Comparative microarray analyses of mono(2-ethylhexyl)phthalate impacts on fat cell bioenergetics and adipokine network. Cell Biol Toxicol. 2017:1–16.Google Scholar
  13. 13.
    Seo JB, Jung S-R, Hille B, Koh D-S. Extracellular ATP protects pancreatic duct epithelial cells from alcohol-induced damage through P2Y1 receptor-cAMP signal pathway. Cell Biol Toxicol. Jun. 2016;32(3):229–47.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Zerin T, Kim J-S, Gil H-W, Song H-Y, Hong S-Y. Effects of formaldehyde on mitochondrial dysfunction and apoptosis in SK-N-SH neuroblastoma cells. Cell Biol Toxicol. Dec. 2015;31(6):261–72.CrossRefPubMedGoogle Scholar
  15. 15.
    Cristofori P, Sauer AV, Trevisan A. Three common pathways of nephrotoxicity induced by halogenated alkenes. Cell Biol Toxicol. Feb. 2015;31(1):1–13.CrossRefPubMedGoogle Scholar
  16. 16.
    Ganta KK, Mandal A, Chaubey B. Depolarization of mitochondrial membrane potential is the initial event in non-nucleoside reverse transcriptase inhibitor efavirenz induced cytotoxicity. Cell Biol Toxicol. Feb. 2017;33(1):69–82.CrossRefPubMedGoogle Scholar
  17. 17.
    Trifunovic A, Wredenberg A, Falkenberg M, Spelbrink JN, Rovio AT, Bruder CE, Bohlooly-Y M, Gidlöf S, Oldfors A, Wibom R, Törnell J, Jacobs HT, Larsson N-G. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature. 2004;429(6990):417–23.CrossRefPubMedGoogle Scholar
  18. 18.
    Bonawitz ND, Chatenay-Lapointe M, Pan Y, Shadel GS. Reduced TOR signaling extends chronological life span via increased respiration and upregulation of mitochondrial gene expression. Cell Metab. 2007;5(4):265–77.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kang S-J, Lee H-M, Park Y-I, Yi H, Lee H, So B, Song J-Y, Kang H-G. Chemically induced hepatotoxicity in human stem cell-induced hepatocytes compared with primary hepatocytes and HepG2. Cell Biol Toxicol. 2016;32(5):403–17.CrossRefPubMedGoogle Scholar
  20. 20.
    Zhu L, Hou Y, Zhao M, Yang M, Fu X, Sun J, Fu X, Shao L, Zhang H, Fan C, Gao H, Sun B. Caudatin induces caspase-dependent apoptosis in human glioma cells with involvement of mitochondrial dysfunction and reactive oxygen species generation. Cell Biol Toxicol. 2016;32(4):333–45.CrossRefPubMedGoogle Scholar
  21. 21.
    Arumugam P, Samson A, Ki J, Song JM. Knockdown of clusterin alters mitochondrial dynamics, facilitates necrosis in camptothecin-induced cancer stem cells. Cell Biol Toxicol. 2017;33(3):307–21.CrossRefPubMedGoogle Scholar
  22. 22.
    Medvedev R, Hildt E, Ploen D. Look who’s talking—the crosstalk between oxidative stress and autophagy supports exosomal-dependent release of HCV particles. Cell Biol Toxicol. 2017;33(3):211–31.CrossRefPubMedGoogle Scholar
  23. 23.
    Opperman CM, Sishi BJN. Tumor necrosis factor alpha stimulates p62 accumulation and enhances proteasome activity independently of ROS. Cell Biol Toxicol. 2015;31(2):83–94.CrossRefPubMedGoogle Scholar
  24. 24.
    Xu M, Wang X. Critical roles of mucin-1 in sensitivity of lung cancer cells to tumor necrosis factor-alpha and dexamethasone. Cell Biol Toxicol. 2017;33(4):361–71.CrossRefPubMedGoogle Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s) 2018 2017

Authors and Affiliations

  1. 1.Department of Anaesthesiology, Jinshan HospitalFudan UniversityShanghaiChina
  2. 2.Department of Anaesthesiology, Zhongshan HospitalFudan UniversityShanghaiChina
  3. 3.Zhongshan Hospital Institute of Clinical ScienceFudan UniversityShanghaiChina

Personalised recommendations