The Role of DNA Repair in Maintaining Mitochondrial DNA Stability

  • Linlin ZhangEmail author
  • Aurelio ReyesEmail author
  • Xiangdong WangEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1038)


Mitochondria are vital double-membrane organelles that act as a “powerhouse” inside the cell and have essential roles to maintain cellular functions, e.g., ATP production, iron-sulfur synthesis metabolism, and steroid synthesis. An important difference with other organelles is that they contain their own mitochondrial DNA (mtDNA). Such powerful organelles are also sensitive to both endogenous and exogenous factors that can cause lesions to their structural components and their mtDNA, resulting in gene mutations and eventually leading to diseases. In this review, we will mainly focus on mammalian mitochondrial DNA repair pathways that safeguard mitochondrial DNA integrity and several important factors involved in the repair process, especially on an essential pathway, base excision repair. We eagerly anticipate to explore more methods to treat related diseases by constantly groping for these complexes and precise repair mechanisms.


Mitochondrial DNA Lesions DNA repair BER Major pathway 



The work was supported by the Zhongshan Distinguished Professor Grant (XDW), the National Natural Science Foundation of China (91230204, 81270099, 81320108001, 81270131, 81300010), the Shanghai Committee of Science and Technology (12JC1402200, 12431900207, 11410708600, 14431905100), the operation funding of the Shanghai Institute of Clinical Bioinformatics, the Ministry of Education for Academic Special Science and Research Foundation for PhD Education (20130071110043), the National Key Research and Development Program (2016YFC0902400, 2017YFSF090207), and the Medical Research Council core funding (2015–2020).


  1. 1.
    Alexeyev M, Shokolenko I, Wilson G, LeDoux S. The maintenance of mitochondrial DNA integrity – critical analysis and update. Cold Spring Harb Perspect Biol. 2013;5:a012641. [PMID: 23637283]CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Kaarniranta K, Tokarz P, Koskela A, Paterno J, Blasiak J. Autophagy regulates death of retinal pigment epithelium cells in age-related macular degeneration. Cell Biol Toxicol. 2017;33:113–28. [PMID: 27900566]CrossRefPubMedGoogle Scholar
  3. 3.
    Tahbaz N, Subedi S, Weinfeld M. Role of polynucleotide kinase/phosphatase in mitochondrial DNA repair. Nucleic Acids Res. 2012;40:3484–95. [PMID: 22210862]CrossRefPubMedGoogle Scholar
  4. 4.
    Zhu LZ, Hou YJ, Zhao M, Yang MF, XT F, Sun JY, XY F, Shao LR, Zhang HF, Fan CD, et al. Caudatin induces caspase-dependent apoptosis in human glioma cells with involvement of mitochondrial dysfunction and reactive oxygen species generation. Cell Biol Toxicol. 2016;32:333–45. [PMID: 27184666]CrossRefPubMedGoogle Scholar
  5. 5.
    Medvedev R, Hildt E, Ploen D. Look who’s talking-the crosstalk between oxidative stress and autophagy supports exosomal-dependent release of HCV particles. Cell Biol Toxicol. 2017;33(3):211–31.CrossRefPubMedGoogle Scholar
  6. 6.
    van den Ouweland JM, Lemkes HH, Ruitenbeek W, Sandkuijl LA, de Vijlder MF, Struyvenberg PA, van de Kamp JJ, Maassen JA. Mutation in mitochondrial tRNA(Leu)(UUR) gene in a large pedigree with maternally transmitted type II diabetes mellitus and deafness. Nat Genet. 1992;1:368–71. [PMID: 1284550]CrossRefPubMedGoogle Scholar
  7. 7.
    Bao L, Diao H, Dong N, Su X, Wang B, Mo Q, Yu H, Wang X, Chen C. Histone deacetylase inhibitor induces cell apoptosis and cycle arrest in lung cancer cells via mitochondrial injury and p53 up-acetylation. Cell Biol Toxicol. 2016;32:469–82. [PMID: 27423454]CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Cormier M, Ghouili F, Roumaud P, Bauer W, Touaibia M, Martin LJ. Influences of flavones on cell viability and cAMP-dependent steroidogenic gene regulation in MA-10 Leydig cells. Cell Biol Toxicol. 2017; [PMID: 28455626]
  9. 9.
    Trifunovic A, Wredenberg A, Falkenberg M, Spelbrink JN, Rovio AT, Bruder CE, Bohlooly YM, Gidlof S, Oldfors A, Wibom R, et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature. 2004;429:417–23. [PMID: 15164064]CrossRefPubMedGoogle Scholar
  10. 10.
    Krokan HE, Bjoras M. Base excision repair. Cold Spring Harb Perspect Biol. 2013;5:a012583. [PMID: 23545420]CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Thomas PD, Kahn M. Kat3 coactivators in somatic stem cells and cancer stem cells: biological roles, evolution, and pharmacologic manipulation. Cell Biol Toxicol. 2016;32:61–81. [PMID: 27008332]CrossRefPubMedGoogle Scholar
  12. 12.
    Akbari M, Keijzers G, Maynard S, Scheibye-Knudsen M, Desler C, Hickson ID, Bohr VA. Overexpression of DNA ligase III in mitochondria protects cells against oxidative stress and improves mitochondrial DNA base excision repair. DNA Repair. 2014;16:44–53. [PMID: 24674627]CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Liu T, Liu WH, Zhao JS, Meng FZ, Wang H. Lutein protects against beta-amyloid peptide-induced oxidative stress in cerebrovascular endothelial cells through modulation of Nrf-2 and NF-kappab. Cell Biol Toxicol. 2017;33:57–67. [PMID: 27878403]CrossRefPubMedGoogle Scholar
  14. 14.
    Soltani B, Ghaemi N, Sadeghizadeh M, Najafi F. Curcumin confers protection to irradiated THP-1 cells while its nanoformulation sensitizes these cells via apoptosis induction. Cell Biol Toxicol. 2016;32:543–61. [PMID: 27473378]CrossRefPubMedGoogle Scholar
  15. 15.
    Lobrich M, Jeggo P. A process of resection-dependent nonhomologous end joining involving the goddess artemis. Trends Biochem Sci. 2017;42:690–701. [PMID: 28739276]CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Zerin T, Kim JS, Gil HW, Song HY, Hong SY. Effects of formaldehyde on mitochondrial dysfunction and apoptosis in SK-N-SH neuroblastoma cells. Cell Biol Toxicol. 2015;31:261–72. [PMID: 26728267]CrossRefPubMedGoogle Scholar
  17. 17.
    Szczesny B, Tann AW, Longley MJ, Copeland WC, Mitra S. Long patch base excision repair in mammalian mitochondrial genomes. J Biol Chem. 2008;283:26349–56. [PMID: 18635552]CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Corra S, Salvadori R, Bee L, Barbieri V, Mognato M. Analysis of DNA-damage response to ionizing radiation in serum-shock synchronized human fibroblasts. Cell Biol Toxicol. 2017;33:373–88. [PMID: 28466226]CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Peng WX, Han X, Zhang CL, Ge L, Du FY, Jin J, Gong AH. FoxM1-mediated RFC5 expression promotes temozolomide resistance. Cell Biol Toxicol. 2017. [PMID: 28185110]Google Scholar
  20. 20.
    Rydberg B, Lindahl T. Nonenzymatic methylation of DNA by the intracellular methyl group donor S-adenosyl-L-methionine is a potentially mutagenic reaction. EMBO J. 1982;1:211–6. [PMID: 7188181]PubMedPubMedCentralGoogle Scholar
  21. 21.
    Keta O, Bulat T, Golic I, Incerti S, Korac A, Petrovic I, Ristic-Fira A. The impact of autophagy on cell death modalities in CRL-5876 lung adenocarcinoma cells after their exposure to gamma-rays and/or erlotinib. Cell Biol Toxicol. 2016;32:83–101. [PMID: 27026538]CrossRefPubMedGoogle Scholar
  22. 22.
    Akbari M, Otterlei M, Pena-Diaz J, Krokan HE. Different organization of base excision repair of uracil in DNA in nuclei and mitochondria and selective upregulation of mitochondrial uracil-DNA glycosylase after oxidative stress. Neuroscience. 2007;145:1201–12. [PMID: 17101234]CrossRefPubMedGoogle Scholar
  23. 23.
    Giromini C, Rebucci R, Fusi E, Rossi L, Saccone F, Baldi A. Cytotoxicity, apoptosis, DNA damage and methylation in mammary and kidney epithelial cell lines exposed to ochratoxin A. Cell Biol Toxicol. 2016;32:249–58. [PMID: 27154019]CrossRefPubMedGoogle Scholar
  24. 24.
    Fang H, Wang W. Could CRISPR be the solution for gene editing’s Gordian knot? Cell Biol Toxicol. 2016;32:465–7. [PMID: 27614448]CrossRefPubMedGoogle Scholar
  25. 25.
    Stepchenkova EI, Tarakhovskaya ER, Siebler HM, Pavlov YI. Defect of Fe-S cluster binding by DNA polymerase delta in yeast suppresses UV-induced mutagenesis, but enhances DNA polymerase zeta – dependent spontaneous mutagenesis. DNA Repair (Amst). 2017;49:60–9. [PMID: 28034630]CrossRefGoogle Scholar
  26. 26.
    Tell G, Crivellato E, Pines A, Paron I, Pucillo C, Manzini G, Bandiera A, Kelley MR, Di Loreto C, Damante G. Mitochondrial localization of APE/Ref-1 in thyroid cells. Mutat Res. 2001;485:143–52. [PMID: 11182545]CrossRefPubMedGoogle Scholar
  27. 27.
    Tlotleng N, Vetten MA, Keter FK, Skepu A, Tshikhudo R, Gulumian M. Cytotoxicity, intracellular localization and exocytosis of citrate capped and PEG functionalized gold nanoparticles in human hepatocyte and kidney cells. Cell Biol Toxicol. 2016;32:305–21. [PMID: 27184667]CrossRefPubMedGoogle Scholar
  28. 28.
    Arumugam P, Samson A, Ki J, Song JM. Knockdown of clusterin alters mitochondrial dynamics, facilitates necrosis in camptothecin-induced cancer stem cells. Cell Biol Toxicol. 2017;33:307–21. [PMID: 28064403]CrossRefPubMedGoogle Scholar
  29. 29.
    Gruz P, Shimizu M, Sugiyama KI, Honma M. Mutagenicity of omega-3 fatty acid peroxidation products in the Ames test. Mutat Res. 2017;819:14–9. [PMID: 28622825]CrossRefPubMedGoogle Scholar
  30. 30.
    Prakash A, Doublie S. Base excision repair in the mitochondria. J Cell Biochem. 2015;116:1490–9. [PMID: 25754732]CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Boesch P, Weber-Lotfi F, Ibrahim N, Tarasenko V, Cosset A, Paulus F, Lightowlers RN, Dietrich A. DNA repair in organelles: pathways, organization, regulation, relevance in disease and aging. Biochim Biophys Acta. 2011;1813:186–200. [PMID: 20950654]CrossRefPubMedGoogle Scholar
  32. 32.
    Manlove AH, McKibbin PL, Doyle EL, Majumdar C, Hamm ML, David SS. Structure-activity relationships reveal key features of 8-oxoguanine: a mismatch detection by the MutY glycosylase. ACS Chem Biol. 2017;12:2335–44. [PMID: 28723094]CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Pournara A, Kippler M, Holmlund T, Ceder R, Grafstrom R, Vahter M, Broberg K, Wallberg AE. Arsenic alters global histone modifications in lymphocytes in vitro and in vivo. Cell Biol Toxicol. 2016;32:275–84. [PMID: 27165195]CrossRefPubMedGoogle Scholar
  34. 34.
    McNally JR, O’Brien PJ. Kinetic analyses of single-strand break repair by human DNA Ligase III isoforms reveals biochemical differences from DNA Ligase I. J Biol Chem. 2017. [PMID: 28751376]Google Scholar
  35. 35.
    Kasparek TR, Humphrey TC. DNA double-strand break repair pathways, chromosomal rearrangements and cancer. Semin Cell Dev Biol. 2011;22:886–97. [PMID: 22027614]CrossRefPubMedGoogle Scholar
  36. 36.
    Fathi H, Ebrahimzadeh MA, Ziar A, Mohammadi H. Oxidative damage induced by retching; antiemetic and neuroprotective role of Sambucus ebulus L. Cell Biol Toxicol. 2015;31:231–9. [PMID: 26493312]CrossRefPubMedGoogle Scholar
  37. 37.
    Ralph SJ, Rodriguez-Enriquez S, Neuzil J, Saavedra E, Moreno-Sanchez R. The causes of cancer revisited: “mitochondrial malignancy” and ROS-induced oncogenic transformation – why mitochondria are targets for cancer therapy. Mol Asp Med. 2010;31:145–70. [PMID: 20206201]CrossRefGoogle Scholar
  38. 38.
    Patenge N. Quantification of DNA damage and repair in mitochondrial, nuclear, and bacterial genomes by real-time PCR. Methods Mol Biol. 2017;1644:159–66. [PMID: 28710762]CrossRefPubMedGoogle Scholar
  39. 39.
    Ke Y, Xu Y, Chen X, Feng S, Liu Z, Sun Y, Yao X, Li F, Zhu W, Gao L, et al. 3D chromatin structures of mature gametes and structural reprogramming during Mammalian Embryogenesis. Cell. 2017;170:367–381 e20. [PMID: 28709003]CrossRefPubMedGoogle Scholar
  40. 40.
    Styllou P, Styllou M, Hickel R, Hogg C, Reichl FX, Scherthan H. NAC ameliorates dental composite-induced DNA double-strand breaks and chromatin condensation. Dent Mater J 2017. [PMID: 28747595]Google Scholar
  41. 41.
    Coey CT, Drohat AC. Kinetic methods for studying DNA glycosylases functioning in base excision repair. Methods Enzymol. 2017;592:357–76. [PMID: 28668127]CrossRefPubMedGoogle Scholar
  42. 42.
    Baehr CA, Huntoon CJ, Hoang SM, Jerde CR, Karnitz LM. Glycogen synthase kinase 3 (GSK-3)-mediated phosphorylation of uracil N-glycosylase 2 (UNG2) facilitates the repair of floxuridine-induced DNA lesions and promotes cell survival. J Biol Chem. 2016;291:26875–85. [PMID: 27875297]CrossRefPubMedGoogle Scholar
  43. 43.
    van Loon B, Samson LD. Alkyladenine DNA glycosylase (AAG) localizes to mitochondria and interacts with mitochondrial single-stranded binding protein (mtSSB). DNA Repair (Amst). 2013;12:177–87. [PMID: 23290262]CrossRefGoogle Scholar
  44. 44.
    Sampath H. Oxidative DNA damage in disease – insights gained from base excision repair glycosylase-deficient mouse models. Environ Mol Mutagen. 2014;55:689–703. [PMID: 25044514]CrossRefPubMedGoogle Scholar
  45. 45.
    Hazra TK, Izumi T, Boldogh I, Imhoff B, Kow YW, Jaruga P, Dizdaroglu M, Mitra S. Identification and characterization of a human DNA glycosylase for repair of modified bases in oxidatively damaged DNA. Proc Natl Acad Sci U S A. 2002;99:3523–8. [PMID: 11904416]CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Brooks SC, Adhikary S, Rubinson EH, Eichman BF. Recent advances in the structural mechanisms of DNA glycosylases. Biochim Biophys Acta. 1834;2013:247–71. [PMID: 23076011]Google Scholar
  47. 47.
    Grodick MA, Segal HM, Zwang TJ, Barton JK. DNA-mediated signaling by proteins with 4Fe-4S clusters is necessary for genomic integrity. J Am Chem Soc. 2014;136:6470–8. [PMID: 24738733]CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Markkanen E, Dorn J, Hubscher UMUTYHDNA. glycosylase: the rationale for removing undamaged bases from the DNA. Front Genet. 2013;4:18. [PMID: 23450852]CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Sjolund AB, Senejani AG, Sweasy JB. MBD4 and TDG: multifaceted DNA glycosylases with ever expanding biological roles. Mutat Res. 2013;743-744:12–25. [PMID: 23195996]CrossRefPubMedGoogle Scholar
  50. 50.
    Mandal SM, Hegde ML, Chatterjee A, Hegde PM, Szczesny B, Banerjee D, Boldogh I, Gao R, Falkenberg M, Gustafsson CM, et al. Role of human DNA glycosylase Nei-like 2 (NEIL2) and single strand break repair protein polynucleotide kinase 3′-phosphatase in maintenance of mitochondrial genome. J Biol Chem. 2012;287:2819–29. [PMID: 22130663]CrossRefPubMedGoogle Scholar
  51. 51.
    Saad-Hussein A, Noshy M, Taha M, El-Shorbagy H, Shahy E, Abdel-Shafy EA. GSTP1 and XRCC1 polymorphisms and DNA damage in agricultural workers exposed to pesticides. Mutat Res. 2017;819:20–5. [PMID: 28622826]CrossRefPubMedGoogle Scholar
  52. 52.
    Bhakat KK, Mantha AK, Mitra S. Transcriptional regulatory functions of mammalian AP-endonuclease (APE1/Ref-1), an essential multifunctional protein. Antioxid Redox Signal. 2009;11:621–38. [PMID: 18715144]CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Li M, Wilson DM 3rd. Human apurinic/apyrimidinic endonuclease 1. Antioxid Redox Signal. 2014;20:678–707. [PMID: 23834463]CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    SL Y, Lee SK, Johnson RE, Prakash L, Prakash S. The stalling of transcription at abasic sites is highly mutagenic. Mol Cell Biol. 2003;23:382–8. [PMID: 12482989]CrossRefGoogle Scholar
  55. 55.
    Roychoudhury S, Nath S, Song H, Hegde ML, Bellot LJ, Mantha AK, Sengupta S, Ray S, Natarajan A, Bhakat KK. Human apurinic/apyrimidinic endonuclease (APE1) is acetylated at DNA damage sites in chromatin, and acetylation modulates its DNA repair activity. Mol Cell Biol. 2017;37:e00401-16. [PMID: 27994014]CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Copeland WC, Kasiviswanathan R, Longley MJ. Analysis of Translesion DNA Synthesis by the Mitochondrial DNA Polymerase gamma. Methods Mol Biol. 2016;1351:19–26. [PMID: 26530671]CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Sykora P, Kanno S, Akbari M, Kulikowicz T, Baptiste BA, Leandro GS, Lu H, Tian J, May A, Becker KA, et al. DNA polymerase beta participates in mitochondrial DNA repair. Mol Cell Biol. 2017;37:e00237-17. [PMID: 28559431]CrossRefGoogle Scholar
  58. 58.
    Simsek D, Furda A, Gao Y, Artus J, Brunet E, Hadjantonakis AK, Van Houten B, Shuman S, McKinnon PJ, Jasin M. Crucial role for DNA ligase III in mitochondria but not in Xrcc1-dependent repair. Nature. 2011;471:245–8. [PMID: 21390132]CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Opperman CM, Sishi BJ. Tumor necrosis factor alpha stimulates p62 accumulation and enhances proteasome activity independently of ROS. Cell Biol Toxicol. 2015;31:83–94. [PMID: 25761618]CrossRefPubMedGoogle Scholar
  60. 60.
    Hoch NC, Hanzlikova H, Rulten SL, Tetreault M, Komulainen E, Ju L, Hornyak P, Zeng Z, Gittens W, Rey SA, et al. XRCC1 mutation is associated with PARP1 hyperactivation and cerebellar ataxia. Nature. 2017;541:87–91. [PMID: 28002403]CrossRefPubMedGoogle Scholar
  61. 61.
    Caldecott KW. DNA single-strand break repair. Exp Cell Res. 2014;329:2–8. [PMID: 25176342]CrossRefPubMedGoogle Scholar
  62. 62.
    London RE. The structural basis of XRCC1-mediated DNA repair. DNA Repair (Amst). 2015;30:90–103. [PMID: 25795425]CrossRefGoogle Scholar
  63. 63.
    Abdou I, Poirier GG, Hendzel MJ, Weinfeld M. DNA Ligase III acts as a DNA strand break sensor in the cellular orchestration of DNA strand break repair. Nucleic Acids Res. 2015;43:875–92. [PMID: 25539916]CrossRefPubMedGoogle Scholar
  64. 64.
    Lakshmipathy U, Campbell C. Mitochondrial DNA ligase III function is independent of Xrcc1. Nucleic Acids Res. 2000;28:3880–6. [PMID: 11024166]CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Gredilla R, Garm C, Holm R, Bohr VA, Stevnsner T. Differential age-related changes in mitochondrial DNA repair activities in mouse brain regions. Neurobiol Aging. 2010;31:993–1002. [PMID: 18701195]CrossRefPubMedGoogle Scholar
  66. 66.
    Fang Q, Inanc B, Schamus S, Wang XH, Wei L, Brown AR, Svilar D, Sugrue KF, Goellner EM, Zeng X, et al. HSP90 regulates DNA repair via the interaction between XRCC1 and DNA polymerase beta. Nat Commun. 2014;5:5513. [PMID: 25423885]CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Anderson CT, Friedberg EC. The presence of nuclear and mitochondrial uracil-DNA glycosylase in extracts of human KB cells. Nucleic Acids Res. 1980;8:875–88. [PMID: 6253928]CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Chiang SC, Meagher M, Kassouf N, Hafezparast M, McKinnon PJ, Haywood R, El-Khamisy SF. Mitochondrial protein-linked DNA breaks perturb mitochondrial gene transcription and trigger free radical-induced DNA damage. Sci Adv. 2017;3:e1602506. [PMID: 28508041]CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Das BB, Dexheimer TS, Maddali K, Pommier Y. Role of tyrosyl-DNA phosphodiesterase (TDP1) in mitochondria. Proc Natl Acad Sci. 2010;107:19790–5. [PMID: 21041670]CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Kazak L, Reyes A, Holt IJ. Minimizing the damage: repair pathways keep mitochondrial DNA intact. Nat Rev Mol Cell Biol. 2012;13:659–71. 22992591CrossRefPubMedGoogle Scholar
  71. 71.
    de Souza-Pinto NC, Eide L, Hogue BA, Thybo T, Stevnsner T, Seeberg E, Klungland A, Bohr VA. Repair of 8-oxodeoxyguanosine lesions in mitochondrial dna depends on the oxoguanine DNA glycosylase (OGG1) gene and 8-oxoguanine accumulates in the mitochondrial DNA of OGG1-defective mice. Cancer Res. 2001;61:5378–81. [PMID: 11454679]PubMedGoogle Scholar
  72. 72.
    Karahalil B, de Souza-Pinto NC, Parsons JL, Elder RH, Bohr VA. Compromised incision of oxidized pyrimidines in liver mitochondria of mice deficient in NTH1 and OGG1 glycosylases. J Biol Chem. 2003;278:33701–7. [PMID: 12819227]CrossRefPubMedGoogle Scholar
  73. 73.
    Hu J, de Souza-Pinto NC, Haraguchi K, Hogue BA, Jaruga P, Greenberg MM, Dizdaroglu M, Bohr VA. Repair of formamidopyrimidines in DNA involves different glycosylases: role of the OGG1, NTH1, and NEIL1 enzymes. J Biol Chem. 2005;280:40544–51. [PMID: 16221681]CrossRefPubMedGoogle Scholar
  74. 74.
    Dodson ML, Lloyd RS. Mechanistic comparisons among base excision repair glycosylases. Free Radic Biol Med. 2002;32:678–82. [PMID: 11937293]CrossRefPubMedGoogle Scholar
  75. 75.
    Svilar D, Goellner EM, Almeida KH, Sobol RW. Base excision repair and lesion-dependent subpathways for repair of oxidative DNA damage. Antioxid Redox Signal. 2011;14:2491–507. [PMID: 20649466]CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Liu P, Qian L, Sung JS, de Souza-Pinto NC, Zheng L, Bogenhagen DF, Bohr VA, Wilson DM 3rd, Shen B, Demple B. Removal of oxidative DNA damage via FEN1-dependent long-patch base excision repair in human cell mitochondria. Mol Cell Biol. 2008;28:4975–87. [PMID: 18541666]CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Kalifa L, Beutner G, Phadnis N, Sheu SS, Sia EA. Evidence for a role of FEN1 in maintaining mitochondrial DNA integrity. DNA Repair. 2009;8:1242–9. [PMID: 19699691]CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Zheng L, Zhou M, Guo Z, Lu H, Qian L, Dai H, Qiu J, Yakubovskaya E, Bogenhagen DF, Demple B, et al. Human DNA2 is a mitochondrial nuclease/helicase for efficient processing of DNA replication and repair intermediates. Mol Cell. 2008;325-36:32. [PMID: 18995831]Google Scholar
  79. 79.
    Tann AW, Boldogh I, Meiss G, Qian W, Van Houten B, Mitra S, Szczesny B. Apoptosis induced by persistent single-strand breaks in mitochondrial genome: critical role of EXOG (5′-EXO/endonuclease) in their repair. J Biol Chem. 2011;286:31975–83. [PMID: 21768646]CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Singh B, Li X, Owens KM, Vanniarajan A, Liang P, Singh KK. Human REV3 DNA Polymerase Zeta Localizes to Mitochondria and Protects the Mitochondrial Genome. PLoS One. 2015;10:e0140409. [PMID: 26462070]CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Yi C, He C. DNA repair by reversal of DNA damage. Cold Spring Harb Perspect Biol. 2013;5:a012575. [PMID: 23284047]CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Takahashi M, Teranishi M, Ishida H, Kawasaki J, Takeuchi A, Yamaya T, Watanabe M, Makino A, Hidema J. Cyclobutane pyrimidine dimer (CPD) photolyase repairs ultraviolet-B-induced CPDs in rice chloroplast and mitochondrial DNA. Plant J. 2011;66:433–42. [PMID: 21251107]CrossRefPubMedGoogle Scholar
  83. 83.
    Ringvoll J, Moen MN, Nordstrand LM, Meira LB, Pang B, Bekkelund A, Dedon PC, Bjelland S, Samson LD, Falnes PO, et al. AlkB homologue 2-mediated repair of ethenoadenine lesions in mammalian DNA. Cancer Res. 2008;68:4142–9. [PMID: 18519673]CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Bohr VA, Stevnsner T, de Souza-Pinto NC. Mitochondrial DNA repair of oxidative damage in mammalian cells. Gene. 2002;286:127–34. [PMID: 11943468]CrossRefPubMedGoogle Scholar
  85. 85.
    Pohjoismaki JL, Boettger T, Liu Z, Goffart S, Szibor M, Braun T. Oxidative stress during mitochondrial biogenesis compromises mtDNA integrity in growing hearts and induces a global DNA repair response. Nucleic Acids Res. 2012;40:6595–607. [PMID: 22508755]CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Martin SA, McCabe N, Mullarkey M, Cummins R, Burgess DJ, Nakabeppu Y, Oka S, Kay E, Lord CJ, Ashworth A. DNA polymerases as potential therapeutic targets for cancers deficient in the DNA mismatch repair proteins MSH2 or MLH1. Cancer Cell. 2010;17:235–48. [PMID: 20227038]CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Kadyrov FA, Genschel J, Fang Y, Penland E, Edelmann W, Modrich P. A possible mechanism for exonuclease 1-independent eukaryotic mismatch repair. Proc Natl Acad Sci U S A. 2009;106:8495–500. [PMID: 19420220]CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Wang W, Wang X. Single-cell CRISPR screening in drug resistance. Cell Biol Toxicol. 2017;33:207–10. [PMID: 28474250]CrossRefPubMedGoogle Scholar
  89. 89.
    Hegde ML, Izumi T, Mitra S. Oxidized base damage and single-strand break repair in mammalian genomes: role of disordered regions and posttranslational modifications in early enzymes. Prog Mol Biol Transl Sci. 2012;110:123–53. [PMID: 22749145]CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Ahel I, Rass U, El-Khamisy SF, Katyal S, Clements PM, McKinnon PJ, Caldecott KW, West SC. The neurodegenerative disease protein aprataxin resolves abortive DNA ligation intermediates. Nature. 2006;443:713–6. [PMID: 16964241]CrossRefPubMedGoogle Scholar
  91. 91.
    Stracker TH, Petrini JH. The MRE11 complex: starting from the ends. Mol Cell Biol. 2011;12:90–103. [PMID: 21252998]Google Scholar
  92. 92.
    Tadi SK, Sebastian R, Dahal S, Babu RK, Choudhary B, Raghavan SC. Microhomology-mediated end joining is the principal mediator of double-strand break repair during mitochondrial DNA lesions. Mol Biol Cell. 2016;27:223–35. [PMID: 26609070]CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Mileshina D, Koulintchenko M, Konstantinov Y, Dietrich A. Transfection of plant mitochondria and in organello gene integration. Nucleic Acids Res. 2011;39:e115. [PMID: 21715377]CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Davila JI, Arrieta-Montiel MP, Wamboldt Y, Cao J, Hagmann J, Shedge V, YZ X, Weigel D, Mackenzie SA. Double-strand break repair processes drive evolution of the mitochondrial genome in Arabidopsis. BMC Biol. 2011;9:64. [PMID: 21951689]CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Pohjoismaki JL, Goffart S, Tyynismaa H, Willcox S, Ide T, Kang D, Suomalainen A, Karhunen PJ, Griffith JD, Holt IJ, et al. Human heart mitochondrial DNA is organized in complex catenated networks containing abundant four-way junctions and replication forks. J Biol Chem. 2009;284:21446–57. [PMID: 19525233]CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Chapman JR, Taylor MR, Boulton SJ. Playing the end game: DNA double-strand break repair pathway choice. Mol Cell. 2012;47:497–510. [PMID: 22920291]CrossRefPubMedGoogle Scholar
  97. 97.
    Coffey G, Campbell C. An alternate form of Ku80 is required for DNA end-binding activity in mammalian mitochondria. Nucleic Acids Res. 2000;28:3793–800. [PMID: 11000272]CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Dmitrieva NI, Malide D, Burg MB. Mre11 is expressed in mammalian mitochondria where it binds to mitochondrial DNA. Am J Physiol Regul Integr Comp Physiol. 2011;301:R632–40. [PMID: 21677273]CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Mita S, Rizzuto R, Moraes CT, Shanske S, Arnaudo E, Fabrizi GM, Koga Y, DiMauro S, Schon EA. Recombination via flanking direct repeats is a major cause of large-scale deletions of human mitochondrial DNA. Nucleic Acids Res. 1990;18:561–7. [PMID: 2308845]CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Yuzefovych LV, Kahn AG, Schuler MA, Eide L, Arora R, Wilson GL, Tan M, Rachek LI. Mitochondrial DNA Repair through OGG1 Activity Attenuates Breast Cancer Progression and Metastasis. Cancer Res. 2016;76:30–4. [PMID: 26586787]CrossRefPubMedGoogle Scholar
  101. 101.
    Akbari M, Skjelbred C, Folling I, Sagen J, Krokan HE. A gel electrophoresis method for detection of mitochondrial DNA mutation (3243 tRNA(Leu (UUR))) applied to a Norwegian family with diabetes mellitus and hearing loss. Scand J Clin Lab Invest. 2004;64:86–92. [PMID: 15115244]CrossRefPubMedGoogle Scholar
  102. 102.
    Fang EF, Scheibye-Knudsen M, Chua KF, Mattson MP, Croteau DL, Bohr VA. Nuclear DNA damage signalling to mitochondria in ageing. Nat Rev Mol Cell Biol. 2016;17:308–21. [PMID:26956196]CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Saki M, Prakash A. DNA damage related crosstalk between the nucleus and mitochondria. Free Radic Biol Med. 2017;107:216–27. [PMID: 27915046]CrossRefPubMedGoogle Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s) 2018 2017

Authors and Affiliations

  1. 1.Zhongshan Hospital Institute of Clinical ScienceFudan University, Shanghai Medical CollegeShanghaiChina
  2. 2.MRC Mitochondrial Biology UnitUniversity of CambridgeCambridgeUK

Personalised recommendations