Skip to main content

Mitochondrial DNA in Telocytes

  • Chapter
  • First Online:
Mitochondrial DNA and Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1038))

Abstract

Telocyte (TC) is a new identified interstitial cell type with a small nuclear and one or several long and thin prolongations with enlargements on them. They were found in many mammals including humans, mouse, rats, dogs, and monkeys and play vital roles in many physiological and pathological conditions. The ultrastructure of mitochondria was observed in TCs, and the alterations were found in TCs from inflammatory ureter tissue. MtDNA is associated with mitochondria normal functions and involved in physiological and pathological processes. However, mitochondria and mtDNA in TCs were not investigated deeply. This review will introduce the origin, distribution, morphology, and functions of TCs and the distribution and functions of TC mitochondria in order to improve a better understanding of the potential functions of mtDNA in TCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang J, Jin M, Ma WH, Zhu Z, Wang X. The history of Telocyte discovery and understanding. Adv Exp Med Biol. 2016;913:1–21. [Pubmed:27796877]

    Article  PubMed  Google Scholar 

  2. Popescu LM, Faussone-Pellegrini MS. TELOCYTES - a case of serendipity: the winding way from interstitial cells of Cajal (ICC), via interstitial Cajal-like cells (ICLC) to TELOCYTES. J Cell Mol Med. 2010;14:729–40. [Pubmed:20367664]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Faussone Pellegrini MS. C Cortesini and P Romagnoli. [Ultrastructure of the tunica muscularis of the cardial portion of the human esophagus and stomach, with special reference to the so-called Cajal’s interstitial cells]. Arch Ital Anat Embriol. 1977;82:157–77. [Pubmed:613989]

    CAS  PubMed  Google Scholar 

  4. Thuneberg L. Interstitial cells of Cajal: intestinal pacemaker cells? Adv Anat Embryol Cell Biol. 1982;71:1–130. [Pubmed:7090872]

    Article  CAS  PubMed  Google Scholar 

  5. Popescu LM, Ciontea SM, Cretoiu D, Hinescu ME, Radu E, Ionescu N, Ceausu M, Gherghiceanu M, Braga RI, Vasilescu F, Zagrean L, Ardeleanu C. Novel type of interstitial cell (Cajal-like) in human fallopian tube. J Cell Mol Med. 2005;9:479–523. [Pubmed:15963270]

    Article  CAS  PubMed  Google Scholar 

  6. van der Scheer HT, Doelman A. Synapse fits neuron: joint reduction by model inversion. Biol Cybern. 2017;111:309–34. [Pubmed:28689352]

    Article  PubMed  PubMed Central  Google Scholar 

  7. Vandecasteele T, Cornillie P, Vandevelde K, Logothetidou A, Couck L, van Loon G, Van den Broeck W. Presence of ganglia and telocytes in proximity to myocardial sleeve tissue in the porcine pulmonary Veins Wall. Anat Histol Embryol. 2017;46:325–33. [Pubmed:28421621]

    Article  CAS  PubMed  Google Scholar 

  8. Kucybala I, Janas P, Ciuk S, Cholopiak W, Klimek-Piotrowska W, Holda MK. A comprehensive guide to telocytes and their great potential in cardiovascular system. Bratisl Lek Listy. 2017;118:302–9. [Pubmed:28516795]

    CAS  PubMed  Google Scholar 

  9. Song D, Cretoiu D, Cretoiu SM, Wang X. Telocytes and lung disease. Histol Histopathol. 2016;31:1303–14. [Pubmed:27463150]

    PubMed  Google Scholar 

  10. Ibba-Manneschi L, Rosa I, Manetti M. Telocyte implications in human pathology: an overview. Semin Cell Dev Biol. 2016;55:62–9. [Pubmed:26805444]

    Article  CAS  PubMed  Google Scholar 

  11. Faussone-Pellegrini MS, Bani D. Relationships between telocytes and cardiomyocytes during pre- and post-natal life. J Cell Mol Med. 2010;14:1061–3. [Pubmed:20455994]

    PubMed  PubMed Central  Google Scholar 

  12. Zheng Y, Wang X. Roles of Telocytes in the development of angiogenesis. Adv Exp Med Biol. 2016;913:253–61. [Pubmed:27796893]

    Article  PubMed  Google Scholar 

  13. Popescu LM, Manole CG, Gherghiceanu M, Ardelean A, Nicolescu MI, Hinescu ME, Kostin S. Telocytes in human epicardium. J Cell Mol Med. 2010;14:2085–93. [Pubmed:20629996]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Popescu LM, Gherghiceanu M, Suciu LC, Manole CG, Hinescu ME. Telocytes and putative stem cells in the lungs: electron microscopy, electron tomography and laser scanning microscopy. Cell Tissue Res. 2011;345:391–403. [Pubmed:21858462]

    Article  PubMed  PubMed Central  Google Scholar 

  15. Song D, Cretoiu D, Zheng M, Qian M, Zhang M, Cretoiu SM, Chen L, Fang H, Popescu LM, Wang X. Comparison of chromosome 4 gene expression profile between lung telocytes and other local cell types. J Cell Mol Med. 2016;20:71–80. [Pubmed:26678350]

    Article  CAS  PubMed  Google Scholar 

  16. Zheng Y, Cretoiu D, Yan G, Cretoiu SM, Popescu LM, Fang H, Wang X. Protein profiling of human lung telocytes and microvascular endothelial cells using iTRAQ quantitative proteomics. J Cell Mol Med. 2014;18:1035–59. [Pubmed:25059386]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zheng Y, Cretoiu D, Yan G, Cretoiu SM, Popescu LM, Wang X. Comparative proteomic analysis of human lung telocytes with fibroblasts. J Cell Mol Med. 2014;18:568–89. [Pubmed:24674459]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zheng Y, Zhang M, Qian M, Wang L, Cismasiu VB, Bai C, Popescu LM, Wang X. Genetic comparison of mouse lung telocytes with mesenchymal stem cells and fibroblasts. J Cell Mol Med. 2013;17:567–77. [Pubmed:23621815]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang DC, Wang X. Systems heterogeneity: an integrative way to understand cancer heterogeneity. Semin Cell Dev Biol. 2017;64:1–4. [Pubmed:27552921]

    Article  PubMed  Google Scholar 

  20. Ye L, D Song, M Jin, X Wang. Therapeutic roles of telocytes in OVA-induced acute asthma in mice. J Cell Mol Med. 2017. [Pubmed:28524369]

    Google Scholar 

  21. Zhaofu L, Dongqing C. Cardiac telocytes in regeneration of myocardium after myocardial infarction. Adv Exp Med Biol. 2016;913:229–39. [Pubmed:27796891]

    Article  PubMed  Google Scholar 

  22. Radu BM, Banciu A, Banciu DD, Radu M, Cretoiu D, Cretoiu SM. Calcium signaling in interstitial cells: focus on telocytes. Int J Mol Sci. 2017;18(2):E397. [Pubmed:28208829]

    Article  PubMed  Google Scholar 

  23. Diaz-Flores L, Gutierrez R, Garcia MP, Gonzalez M, Saez FJ, Aparicio F, Diaz-Flores L Jr, Madrid JF. Human resident CD34+ stromal cells/telocytes have progenitor capacity and are a source of alphaSMA+ cells during repair. Histol Histopathol. 2015;30:615–27. [Pubmed:25500909]

    CAS  PubMed  Google Scholar 

  24. Manetti M, Guiducci S, Ruffo M, Rosa I, Faussone-Pellegrini MS, Matucci-Cerinic M, Ibba-Manneschi L. Evidence for progressive reduction and loss of telocytes in the dermal cellular network of systemic sclerosis. J Cell Mol Med. 2013;17:482–96. [Pubmed:23444845]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Salin K, Villasevil EM, Auer SK, Anderson GJ, Selman C, Metcalfe NB, Chinopoulos C. Simultaneous measurement of mitochondrial respiration and ATP production in tissue homogenates and calculation of effective P/O ratios. Physiol Rep. 2016;4(20):pii: e13007. [Pubmed:27798358]

    Google Scholar 

  26. Layec G, Bringard A, Le Fur Y, Micallef JP, Vilmen C, Perrey S, Cozzone PJ, Bendahan D. Opposite effects of hyperoxia on mitochondrial and contractile efficiency in human quadriceps muscles. Am J Physiol Regul Integr Comp Physiol. 2015;308:R724–33. [Pubmed:25695290]

    Article  CAS  PubMed  Google Scholar 

  27. Pham T, Loiselle D, Power A, Hickey AJ. Mitochondrial inefficiencies and anoxic ATP hydrolysis capacities in diabetic rat heart. Am J Physiol Cell Physiol. 2014;307:C499–507. [Pubmed:24920675]

    Article  CAS  PubMed  Google Scholar 

  28. Conley KE. Mitochondria to motion: optimizing oxidative phosphorylation to improve exercise performance. J Exp Biol. 2016;219:243–9. [Pubmed:26792336]

    Article  PubMed  Google Scholar 

  29. Ghanizadeh Kazerouni E, Franklin CE, Seebacher F. UV-B exposure reduces locomotor performance by impairing muscle function but not mitochondrial ATP production. J Exp Biol. 2016;219:96–102. [Pubmed:26567351]

    Article  PubMed  Google Scholar 

  30. Iorio R, Castellucci A, Rossi G, Cinque B, Cifone MG, Macchiarelli G, Cecconi S. Mancozeb affects mitochondrial activity, redox status and ATP production in mouse granulosa cells. Toxicol In Vitro. 2015;30:438–45. [Pubmed:26407525]

    Article  CAS  PubMed  Google Scholar 

  31. Morgan DJ, Poolman TM, Williamson AJ, Wang Z, Clark NR, Ma’ayan A, Whetton AD, Brass A, Matthews LC, Ray DW. Glucocorticoid receptor isoforms direct distinct mitochondrial programs to regulate ATP production. Sci Rep. 2016;6:26419. [Pubmed:27226058]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang K, Zhou LY, Wang JX, Wang Y, Sun T, Zhao B, Yang YJ, An T, Long B, Li N, Liu CY, Gong Y, Gao JN, Dong YH, Zhang J, Li PF. E2F1-dependent miR-421 regulates mitochondrial fragmentation and myocardial infarction by targeting Pink1. Nat Commun. 2015;6:7619. [Pubmed:26184432]

    Article  CAS  PubMed  Google Scholar 

  33. Chevalier A, Alam MP, Khdour OM, Schmierer M, Arce PM, Cripe CD, Hecht SM. Optimization of pyrimidinol antioxidants as mitochondrial protective agents: ATP production and metabolic stability. Bioorg Med Chem. 2016;24:5206–20. [Pubmed:27624526]

    Article  CAS  PubMed  Google Scholar 

  34. Xue Y, Schmollinger S, Attar N, Campos OA, Vogelauer M, Carey MF, Merchant SS, Kurdistani SK. Endoplasmic reticulum-mitochondria junction is required for iron homeostasis. J Biol Chem. 2017;292:13197–204. [Pubmed:28637866]

    Article  CAS  PubMed  Google Scholar 

  35. Filadi R, Theurey P, Pizzo P. The endoplasmic reticulum-mitochondria coupling in health and disease: molecules, functions and significance. Cell Calcium. 2017;62:1–15. [Pubmed:28108029]

    Article  CAS  PubMed  Google Scholar 

  36. Zhao L, Lu T, L Gao XF, Zhu S, Hou Y. Enriched endoplasmic reticulum-mitochondria interactions result in mitochondrial dysfunction and apoptosis in oocytes from obese mice. J Anim Sci Biotechnol. 2017;8:62. [Pubmed:28781772]

    Article  PubMed  PubMed Central  Google Scholar 

  37. Yang F, Yu X, Li T, Wu J, Zhao Y, Liu J, Sun A, Dong S, Wu J, Zhong X, Xu C, Lu F, Zhang W. Exogenous H2S regulates endoplasmic reticulum-mitochondria cross-talk to inhibit apoptotic pathways in STZ-induced type I diabetes. Am J Physiol Endocrinol Metab. 2017;312:E190–203. [Pubmed:27998959]

    Article  PubMed  Google Scholar 

  38. Missiroli S, Danese A, Iannitti T, Patergnani S, Perrone M, Previati M, Giorgi C, Pinton P. Endoplasmic reticulum-mitochondria Ca2+ crosstalk in the control of the tumor cell fate. Biochim Biophys Acta. 2017;1864:858–64. [Pubmed:28064002]

    Article  CAS  PubMed  Google Scholar 

  39. Tao L, Wang H, Wang X, Kong X, Li X. Cardiac Telocytes. Curr Stem Cell Res Ther. 2016;11:404–9. [Pubmed:25584905]

    Article  CAS  PubMed  Google Scholar 

  40. Ha TK, Jung I, Kim ME, Bae SK, Lee JS. Anti-cancer activity of myricetin against human papillary thyroid cancer cells involves mitochondrial dysfunction-mediated apoptosis. Biomed Pharmacother. 2017;91:378–84. [Pubmed:28463801]

    Article  CAS  PubMed  Google Scholar 

  41. Jo S, Ha TK, Han SH, Kim ME, Jung I, Lee HW, Bae SK, Lee JS. Myricetin induces apoptosis of human anaplastic thyroid cancer cells via mitochondria dysfunction. Anticancer Res. 2017;37:1705–10. [Pubmed:28373432

    Article  PubMed  Google Scholar 

  42. Zhang YX, Yu PF, Gao ZM, Yuan J, Zhang Z. Caffeic acid n-butyl ester-triggered necrosis-like cell death in lung cancer cell line A549 is prompted by ROS mediated alterations in mitochondrial membrane potential. Eur Rev Med Pharmacol Sci. 2017;21:1665–71. [Pubmed:28429338]

    PubMed  Google Scholar 

  43. Zekri A, Mesbahi Y, Ghanizadeh-Vesali S, Alimoghaddam K, Ghavamzadeh A, Ghaffari SH. Reactive oxygen species generation and increase in mitochondrial copy number: new insight into the potential mechanism of cytotoxicity induced by aurora kinase inhibitor, AZD1152-HQPA. Anticancer Drugs. 2017;28(8):841–51. [Pubmed:28639950]

    Article  CAS  PubMed  Google Scholar 

  44. Matsuura TR, Bartos JA, Tsangaris A, Shekar KC, Olson MD, Riess ML, Bienengraeber M, Aufderheide TP, Neumar RW, Rees JN, McKnite SH, Dikalova AE, Dikalov SI, Douglas HF, Yannopoulos D. Early effects of prolonged cardiac arrest and ischemic postconditioning during cardiopulmonary resuscitation on cardiac and brain mitochondrial function in pigs. Resuscitation. 2017;116:8–15. [Pubmed:28408349]

    Article  PubMed  Google Scholar 

  45. Cretoiu SM. Immunohistochemistry of telocytes in the uterus and fallopian tubes. Adv Exp Med Biol. 2016;913:335–57. [Pubmed:27796898]

    Article  PubMed  Google Scholar 

  46. Black GE, Sokol KK, Moe DM, Simmons J, Muscat D, Pastukh V, Capley G, Gorodnya O, Ruchko M, Roth MB, Gillespie M, Martin MJ. Impact of a novel PI3-KINASE inhibitor in preventing mitochondrial DNA damage and damage associated molecular pattern accumulation: results from the biochronicity project. J Trauma Acute Care Surg. 2017. [Pubmed:28538623]

    Google Scholar 

  47. Kirches E. MtDNA as a cancer marker: a finally closed chapter? Curr Genomics. 2017;18:255–67. [Pubmed:28659721].

    Article  CAS  PubMed  Google Scholar 

  48. Zheng Y, Bai C, Wang X. Potential significance of telocytes in the pathogenesis of lung diseases. Expert Rev Respir Med. 2012;6:45–9. [Pubmed:22283578]

    Article  PubMed  Google Scholar 

  49. Liu R, Xu F, Si S, Zhao X, Bi S, Cen Y. Mitochondrial DNA-induced inflammatory responses and lung injury in thermal injury rat model: protective effect of epigallocatechin gallate. J Burn Care Res. 2017. [Pubmed:28198717]

    Google Scholar 

  50. Chu MP, Kriangkum J, Venner CP, Sandhu I, Hewitt J, Belch AR, Pilarski LM. Addressing heterogeneity of individual blood cancers: the need for single cell analysis. Cell Biol Toxicol. 2017;33(2):83–97. PMID: 27761761

    Article  CAS  PubMed  Google Scholar 

  51. Wang W, Gao D, Wang X. Can single-cell RNA sequencing crack the mystery of cells? Cell Biol Toxicol. 2017. https://doi.org/10.1007/s10565-017-9404-y. PMID: 28733864

  52. Wang W, Zhu B, Wang X. Dynamic phenotypes: illustrating a single-cell odyssey. Cell Biol Toxicol. 2017;33(5):423–7. PMID: 28638956

    Article  Google Scholar 

  53. Wang W, Wang X. Single-cell CRISPR screening in drug resistance. Cell Biol Toxicol. 2017;33(3):207–10. https://doi.org/10.1007/s10565-017-9396-7. PMID: 28474250

    Article  CAS  PubMed  Google Scholar 

  54. Gu J, Wang X. New future of cell biology and toxicology: thinking deeper. Cell Biol Toxicol. 2016;32(1):1–3. PMID: 26874518

    Article  PubMed  Google Scholar 

  55. Fang H, Wang W. Could CRISPR be the solution for gene editing’s Gordian knot? Cell Biol Toxicol. 2016;32(6):465–7.

    Article  PubMed  Google Scholar 

  56. Paes BCMF, Moço PD, Pereira CG, Porto GS, de Sousa Russo EM, Reis LCJ, Covas DT, Picanço-Castro V. Ten years of iPSC: clinical potential and advances in vitro hematopoietic differentiation. Cell Biol Toxicol. 2017;33(3):233–50. https://doi.org/10.1007/s10565-016-9377-2. PMID: 28039590

    Article  PubMed  Google Scholar 

  57. Kumar D, Anand T, Kues WA. Clinical potential of human-induced pluripotent stem cells: perspectives of induced pluripotent stem cells. Cell Biol Toxicol. 2017;33(2):99–112. PMID: 27900567

    Article  CAS  PubMed  Google Scholar 

  58. Wang X. New biomarkers and therapeutics can be discovered during COPD-lung cancer transition. Cell Biol Toxicol. 2016;32(5):359–61. PMID: 27405768

    Article  PubMed  Google Scholar 

  59. Chen C, Shi L, Li Y, Wang X, Yang S. Disease-specific dynamic biomarkers selected by integrating inflammatory mediators with clinical informatics in ARDS patients with severe pneumonia. Cell Biol Toxicol. 2016;32(3):169–84. PMID: 27095254

    Article  PubMed  PubMed Central  Google Scholar 

  60. Zhu D, Liu Z, Pan Z, Qian M, Wang L, Zhu T, Xue Y, Wu DA. New method for classifying different phenotypes of kidney transplantation. Cell Biol Toxicol. 2016;32(4):323–32. PMID: 27278387

    Article  CAS  PubMed  Google Scholar 

  61. Bao L, Zhang Y, Wang J, Wang H, Dong N, Su X, Xu M, Wang X. Variations of chromosome 2 gene expressions among patients with lung cancer or non-cancer. Cell Biol Toxicol. 2016;32(5):419–35. PMID: 27301951

    Article  CAS  PubMed  Google Scholar 

  62. Bao L, Diao H, Dong N, Su X, Wang B, Mo Q, Yu H, Wang X, Chen C. Histone deacetylase inhibitor induces cell apoptosis and cycle arrest in lung cancer cells via mitochondrial injury and p53 up-acetylation. Cell Biol Toxicol. 2016;32(6):469–82. PMID: 27423454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wang XCBT. Profiles of cabozantinib approved for advanced renal cell carcinomas. Cell Biol Toxicol. 2016;32(4):259–61. PMID: 27383755

    Article  CAS  PubMed  Google Scholar 

  64. Giromini C, Rebucci R, Fusi E, Rossi L, Saccone F, Baldi A. Cytotoxicity, apoptosis, DNA damage and methylation in mammary and kidney epithelial cell lines exposed to ochratoxin a. Cell Biol Toxicol. 2016;32(3):249–58. PMID: 27154019

    Article  CAS  PubMed  Google Scholar 

  65. Kang SJ, Lee HM, Park YI, Yi H, Lee H, So B, Song JY, Kang HG. Chemically induced hepatotoxicity in human stem cell-induced hepatocytes compared with primary hepatocytes and HepG2. Cell Biol Toxicol. 2016;32(5):403–17. PMID: 27287938

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by Zhongshan Distinguished Professor Grant (XDW), the National Nature Science Foundation of China (91230204, 81270099, 81320108001, 81270131, 81300010), the Shanghai Committee of Science and Technology (12JC1402200, 12431900207, 11410708600, 14431905100), Operation funding of Shanghai Institute of Clinical Bioinformatics, Ministry of Education for Academic Special Science and Research Foundation for PhD Education (20130071110043), and National Key Research and Development Program (2016YFC0902400, 2017YFSF090207).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangdong Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Editor(s) (if applicable) and The Author(s) 2018

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Song, D., Cretoiu, D., Wang, X. (2017). Mitochondrial DNA in Telocytes. In: Sun, H., Wang, X. (eds) Mitochondrial DNA and Diseases. Advances in Experimental Medicine and Biology, vol 1038. Springer, Singapore. https://doi.org/10.1007/978-981-10-6674-0_5

Download citation

Publish with us

Policies and ethics