Skip to main content

Roles of Mitochondrial DNA Signaling in Immune Responses

  • Chapter
  • First Online:
Mitochondrial DNA and Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1038))

Abstract

Mitochondrial DNA (mtDNA) plays an important role in immune responses during the evolution. The present chapter systemically describes its role on immune-related diseases and its interaction on immune responses. It is important to explore the main function and mechanisms of mtDNA in immune responses by which mtDNA regulates the signaling pathways of Toll-like receptor 9, autophagy, and STING. There are potentials to discover therapeutic targets of mtDNA in immune diseases and inflammation. It will be more exciting if the CRISPR-Cas9 method can be applied for mtDNA gene editing to cure diseases and provide a novel insight of mtDNA in immune responses as well as new therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ALI:

Acute lung injury

CPB:

Cardiopulmonary bypass

CRISPR-Cas9:

Prokaryotic type II clustered regularly interspaced short palindromic repeats-CRISPR-associated 9

DAMPs:

Damage-associated molecular patterns

HMGB1:

High-mobility group protein B1

IRF7:

Interferon regulatory factor 7

IRP:

Immune-related pancytopenia

ISG:

Interferon-stimulated genes

LC3B:

Microtubule-associated protein1 light chain 3B

MAPKs:

Mitogen-activated protein kinases

MELAS:

Stroke-like episodes

MPT:

Mitochondrial permeability transition

mtDNA:

Mitochondrial DNA

MYD88:

Response protein 88

NAFLD:

Nonalcoholic fatty liver disease

nDNA:

Nuclear DNA

NET:

Neutrophil extracellular traps

NF-κB:

Nuclear factor-κB

OXPHOS:

Oxidative phosphorylation

PMN:

Polymorphonuclear neutrophils

RA:

Rheumatoid arthritis

ROS:

Reactive oxygen species

SHR:

Spontaneously hypertensive rats

TLR9:

Toll-like receptor 9

References

  1. Finsterer J, Zarrouk-Mahjoub S. Is chronic fatigue syndrome truly associated with haplogroups or mtDNA single nucleotide polymorphisms? J Transl Med. 2016;14:182. PubMed:27317438

    Article  PubMed  PubMed Central  Google Scholar 

  2. Zhu LZ, Hou YJ, Zhao M, Yang MF, XT F, Sun JY, et al. Caudatin induces caspase-dependent apoptosis in human glioma cells with involvement of mitochondrial dysfunction and reactive oxygen species generation. Cell Biol Toxicol. 2016;32:333–45. PubMed:27184666

    Article  CAS  PubMed  Google Scholar 

  3. Opperman CM, Sishi BJ. Tumor necrosis factor alpha stimulates p62 accumulation and enhances proteasome activity independently of ROS. Cell Biol Toxicol. 2015;31:83–94. PubMed:25761618

    Article  CAS  PubMed  Google Scholar 

  4. Ribas V, Garcia-Ruiz C, Fernandez-Checa JC. Mitochondria, cholesterol and cancer cell metabolism. Clin Transl Med. 2016;5:22. PubMed:27455839

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zerin T, Kim JS, Gil HW, Song HY, Hong SY. Effects of formaldehyde on mitochondrial dysfunction and apoptosis in SK-N-SH neuroblastoma cells. Cell Biol Toxicol. 2015;31:261–72. PubMed:26728267

    Article  CAS  PubMed  Google Scholar 

  6. Khan NA, Nikkanen J, Yatsuga S, Jackson C, Wang L, Pradhan S, et al. mTORC1 regulates mitochondrial integrated stress response and mitochondrial myopathy progression. Cell Metab. 2017;26:419–28 e5. PubMed:28768179

    Article  CAS  PubMed  Google Scholar 

  7. Kodron A, Ghanim M, Krawczyk KK, Stelmaszczyk-Emmel A, Tonska K, Demkow U, et al. Mitochondrial DNA in pediatric leukemia patients. Acta Biochim Pol. 2017;64:183–7. PubMed:28284021

    Article  CAS  PubMed  Google Scholar 

  8. Patrushev M, Kasymov V, Patrusheva V, Ushakova T, Gogvadze V, Gaziev A. Mitochondrial permeability transition triggers the release of mtDNA fragments. Cell Mol Life Sci. 2004;61:3100–3. PubMed:15583871

    Article  CAS  PubMed  Google Scholar 

  9. Ganta KK, Mandal A, Chaubey B. Depolarization of mitochondrial membrane potential is the initial event in non-nucleoside reverse transcriptase inhibitor efavirenz induced cytotoxicity. Cell Biol Toxicol. 2017;33:69–82. PubMed:27639578

    Article  PubMed  Google Scholar 

  10. Hammerling BC, Shires SE, Leon LJ, Cortez MQ, Gustafsson AB. Isolation of Rab5-positive endosomes reveals a new mitochondrial degradation pathway utilized by BNIP3 and Parkin. Small GTPases. 2017:1–8. PubMed:28696827

    Google Scholar 

  11. Meng N, Han L, Pan X, Su L, Jiang Z, Lin Z, et al. Nano-Mg(OH)2-induced proliferation inhibition and dysfunction of human umbilical vein vascular endothelial cells through caveolin-1-mediated endocytosis. Cell Biol Toxicol. 2015;31:15–27. PubMed:25575676

    Article  CAS  PubMed  Google Scholar 

  12. Bao W, Xia H, Liang Y, Ye Y, Lu Y, Xu X, et al. Toll-like receptor 9 can be activated by endogenous mitochondrial DNA to induce podocyte apoptosis. Sci Rep. 2016;22579:6. PubMed:26934958

    Google Scholar 

  13. EP Y, Bennett MR. Mitochondrial DNA damage and atherosclerosis. Trends Endocrinol Metab. 2014;25:481–7. PubMed:25034130

    Article  Google Scholar 

  14. Kikuchi S, Ninomiya T, Kohno T, Kojima T, Tatsumi H. Cobalt inhibits motility of axonal mitochondria and induces axonal degeneration in cultured dorsal root ganglion cells of rat. Cell Biol Toxicol. 2017. https://doi.org/10.1007/s10565-017-9402-0. PubMed:28656345

  15. Giromini C, Rebucci R, Fusi E, Rossi L, Saccone F, Baldi A. Cytotoxicity, apoptosis, DNA damage and methylation in mammary and kidney epithelial cell lines exposed to ochratoxin A. Cell Biol Toxicol. 2016;32:249–58. PubMed:27154019

    Article  CAS  PubMed  Google Scholar 

  16. Vedi M, Sabina EP. Assessment of hepatoprotective and nephroprotective potential of withaferin A on bromobenzene-induced injury in Swiss albino mice: possible involvement of mitochondrial dysfunction and inflammation. Cell Biol Toxicol. 2016;32:373–90. PubMed:27250656

    Article  CAS  PubMed  Google Scholar 

  17. Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W, et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature. 2010;464:104–7. PubMed:20203610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yousefi S, Mihalache C, Kozlowski E, Schmid I, Simon HU. Viable neutrophils release mitochondrial DNA to form neutrophil extracellular traps. Cell Death Differ. 2009;16:1438–44. PubMed:19609275

    Article  CAS  PubMed  Google Scholar 

  19. McIlroy DJ, Jarnicki AG, Au GG, Lott N, Smith DW, Hansbro PM, et al. Mitochondrial DNA neutrophil extracellular traps are formed after trauma and subsequent surgery. J Crit Care. 2014;29(1133):e1–5. PubMed:25128442

    Google Scholar 

  20. Venkatesan T, Choi YW, Mun SP, Kim YK. Pinus radiata bark extract induces caspase-independent apoptosis-like cell death in MCF-7 human breast cancer cells. Cell Biol Toxicol. 2016;32:451–64. PubMed:27400986

    Article  PubMed  Google Scholar 

  21. Medvedev R, Hildt E, Ploen D. Look who’s talking-the crosstalk between oxidative stress and autophagy supports exosomal-dependent release of HCV particles. Cell Biol Toxicol. 2017;33:211–31. PubMed:27987184

    Article  CAS  PubMed  Google Scholar 

  22. Morshed M, Hlushchuk R, Simon D, Walls AF, Obata-Ninomiya K, Karasuyama H, et al. NADPH oxidase-independent formation of extracellular DNA traps by basophils. J Immunol. 2014;192:5314–23. PubMed:24771850

    Article  CAS  PubMed  Google Scholar 

  23. Meller S, Di Domizio J, Voo KS, Friedrich HC, Chamilos G, Ganguly D, et al. T(H)17 cells promote microbial killing and innate immune sensing of DNA via interleukin 26. Nat Immunol. 2015;16:970–9. PubMed:26168081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Collins LV, Hajizadeh S, Holme E, Jonsson IM, Tarkowski A. Endogenously oxidized mitochondrial DNA induces in vivo and in vitro inflammatory responses. J Leukoc Biol. 2004;75:995–1000. PubMed:14982943

    Article  CAS  PubMed  Google Scholar 

  25. Seo JB, Jung SR, Hille B, Koh DS, Extracellular ATP. protects pancreatic duct epithelial cells from alcohol-induced damage through P2Y1 receptor-cAMP signal pathway. Cell Biol Toxicol. 2016;32:229–47. PubMed:27197531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. West AP, Khoury-Hanold W, Staron M, Tal MC, Pineda CM, Lang SM, et al. Mitochondrial DNA stress primes the antiviral innate immune response. Nature. 2015;520:553–7. PubMed:25642965

    Article  PubMed  PubMed Central  Google Scholar 

  27. Di Caro V, Walko TD 3rd, Bola RA, Hong JD, Pang D, Hsue V, et al. Plasma mitochondrial DNA – a novel DAMP in pediatric sepsis. Shock. 2016;45:506–11. PubMed:26682947

    Article  PubMed  PubMed Central  Google Scholar 

  28. Oka T, Hikoso S, Yamaguchi O, Taneike M, Takeda T, Tamai T, et al. Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure. Nature. 2012;485:251–5. PubMed:22535248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Marques PE, Amaral SS, Pires DA, Nogueira LL, Soriani FM, Lima BH, et al. Chemokines and mitochondrial products activate neutrophils to amplify organ injury during mouse acute liver failure. Hepatology. 2012;56:1971–82. PubMed:22532075

    Article  CAS  PubMed  Google Scholar 

  30. Kaarniranta K, Tokarz P, Koskela A, Paterno J, Blasiak J. Autophagy regulates death of retinal pigment epithelium cells in age-related macular degeneration. Cell Biol Toxicol. 2017;33:113–28. PubMed:27900566

    Article  CAS  PubMed  Google Scholar 

  31. Celardo I, Martins LM, Gandhi S. Unravelling mitochondrial pathways to Parkinson’s disease. Br J Pharmacol. 2014;171:1943–57. PubMed:24117181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lin C, Chen S, Li Y. T cell modulation in immunotherapy for hematological malignancies. Cell Biol Toxicol. 2017;33:323–7. PubMed:28474249

    Article  PubMed  Google Scholar 

  33. Berridge MV, Dong L, Neuzil J. Mitochondrial DNA in tumor initiation, progression, and metastasis: role of horizontal mtDNA transfer. Cancer Res. 2015;75:3203–8. PubMed:26224121

    Article  CAS  PubMed  Google Scholar 

  34. Pasquier J, Guerrouahen BS, Al Thawadi H, Ghiabi P, Maleki M, Abu-Kaoud N, et al. Preferential transfer of mitochondria from endothelial to cancer cells through tunneling nanotubes modulates chemoresistance. J Transl Med. 2013;11:94. PubMed:23574623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bai L, Chen W, Chen J, Li W, Zhou L, Niu C, et al. Heterogeneity of toll-like receptor 9 signaling in B cell malignancies and its potential therapeutic application. J Transl Med. 2017;51:15. PubMed:28241765

    Google Scholar 

  36. Barber GN. Cytoplasmic DNA innate immune pathways. Immunol Rev. 2011;243:99–108. PubMed:21884170

    Article  CAS  PubMed  Google Scholar 

  37. He Y, Feng D, Li M, Gao Y, Ramirez T, Cao H, et al. Hepatic mitochondrial DNA/Toll-like receptor 9/MicroRNA-223 forms a negative feedback loop to limit neutrophil overactivation and acetaminophen hepatotoxicity in mice. Hepatology. 2017;220-34:66. PubMed:28295449

    Google Scholar 

  38. Zhang L, Deng S, Zhao S, Ai Y, Pan P, Su X, et al. Intra-peritoneal administration of mitochondrial DNA provokes acute lung injury and systemic inflammation via toll-like receptor 9. Int J Mol Sci. 2016;17:1425. PubMed:27589725

    Article  PubMed Central  Google Scholar 

  39. Tsuji N, Tsuji T, Ohashi N, Kato A, Fujigaki Y, Yasuda H. Role of mitochondrial DNA in septic AKI via toll-like receptor 9. J Am Soc Nephrol. 2016;27:2009–20. PubMed:26574043

    Article  CAS  PubMed  Google Scholar 

  40. Schafer ST, Franken L, Adamzik M, Schumak B, Scherag A, Engler A, et al. Mitochondrial DNA: an endogenous trigger for immune paralysis. Anesthesiology. 2016;124:923–33. PubMed:26808636

    Article  PubMed  Google Scholar 

  41. McCarthy CG, Wenceslau CF, Goulopoulou S, Ogbi S, Baban B, Sullivan JC, et al. Circulating mitochondrial DNA and Toll-like receptor 9 are associated with vascular dysfunction in spontaneously hypertensive rats. Cardiovasc Res. 2015;119-30:107. PubMed:25910936

    Google Scholar 

  42. Bliksoen M, Mariero LH, Torp MK, Baysa A, Ytrehus K, Haugen F, et al. Extracellular mtDNA activates NF-kappaB via toll-like receptor 9 and induces cell death in cardiomyocytes. Basic Res Cardiol. 2016;42:111. PubMed:27164906

    Google Scholar 

  43. Gu X, Wu G, Yao Y, Zeng J, Shi D, Lv T, et al. Intratracheal administration of mitochondrial DNA directly provokes lung inflammation through the TLR9-p38 MAPK pathway. Free Radic Biol Med. 2015;83:149–58. PubMed:25772007

    Article  CAS  PubMed  Google Scholar 

  44. Sandler N, Kaczmarek E, Itagaki K, Zheng Y, Otterbein L, Khabbaz K, et al. Mitochondrial DAMPs are released during cardiopulmonary bypass surgery and are associated with postoperative atrial fibrillation. Heart Lung Circ. 2017. https://doi.org/10.1016/j.hlc.2017.02.014. PubMed:28487062

  45. Zhang Q, Itagaki K, Hauser CJ. Mitochondrial DNA is released by shock and activates neutrophils via p38 map kinase. Shock. 2010;34:55–9. PubMed:19997055

    Article  PubMed  Google Scholar 

  46. Wang X. New biomarkers and therapeutics can be discovered during COPD-lung cancer transition. Cell Biol Toxicol. 2016;32:359–61. PubMed:27405768

    Article  PubMed  Google Scholar 

  47. Chen C, Shi L, Li Y, Wang X, Yang S. Disease-specific dynamic biomarkers selected by integrating inflammatory mediators with clinical informatics in ARDS patients with severe pneumonia. Cell Biol Toxicol. 2016;32:169–84. PubMed:27095254

    Article  PubMed  PubMed Central  Google Scholar 

  48. Arumugam P, Samson A, Ki J, Song JM. Knockdown of clusterin alters mitochondrial dynamics, facilitates necrosis in camptothecin-induced cancer stem cells. Cell Biol Toxicol. 2017;33:307–21. PubMed:28064403

    Article  CAS  PubMed  Google Scholar 

  49. Lippai M, Szatmari Z. Autophagy-from molecular mechanisms to clinical relevance. Cell Biol Toxicol. 2017;33:145–68. PubMed:27957648

    Article  CAS  PubMed  Google Scholar 

  50. Zhang Z, Meng P, Han Y, Shen C, Li B, Hakim MA, et al. Mitochondrial DNA-LL-37 complex promotes atherosclerosis by escaping from autophagic recognition. Immunity. 2015;1137-47:43. PubMed:26680206

    Google Scholar 

  51. Carlos D, Costa FR, Pereira CA, Rocha FA, Yaochite JN, Oliveira GG, et al. Mitochondrial DNA activates the NLRP3 inflammasome and predisposes to type 1 diabetes in Murine model. Front Immunol. 2017;8:164. PubMed:28289409

    Article  PubMed  PubMed Central  Google Scholar 

  52. Denardin CC, Martins LA, Parisi MM, Vieira MQ, Terra SR, Barbe-Tuana FM, et al. Autophagy induced by purple pitanga (Eugenia uniflora L.) extract triggered a cooperative effect on inducing the hepatic stellate cell death. Cell Biol Toxicol. 2017;33:197–206. PubMed:27744523

    Article  PubMed  Google Scholar 

  53. Cao C, Wang W, Lu L, Wang L, Chen X, Guo R, et al. Inactivation of Beclin-1-dependent autophagy promotes ursolic acid-induced apoptosis in hypertrophic scar fibroblasts. Exp Dermatol. 2017. https://doi.org/10.1111/exd.13410. PubMed:28767174

  54. Nakahira K, Haspel JA, Rathinam VA, Lee SJ, Dolinay T, Lam HC, et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat Immunol. 2011;12:222–30. PubMed:21151103

    Article  CAS  PubMed  Google Scholar 

  55. Rodgers MA, Bowman JW, Liang Q, Jung JU. Regulation where autophagy intersects the inflammasome. Antioxid Redox Signal. 2014;20:495–506. PubMed:23642014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Unuma K, Aki T, Funakoshi T, Hashimoto K, Uemura K. Extrusion of mitochondrial contents from lipopolysaccharide-stimulated cells: Involvement of autophagy. Autophagy. 2015;11:1520–36. PubMed:26102061

    Article  PubMed  PubMed Central  Google Scholar 

  57. Liu S, Zhang Y, Ren J, Li J. Microbial DNA recognition by cGAS-STING and other sensors in dendritic cells in inflammatory bowel diseases. Inflamm Bowel Dis. 2015;21:901–11. PubMed:25581829

    Article  PubMed  Google Scholar 

  58. Rongvaux A, Jackson R, Harman CC, Li T, West AP, de Zoete MR, et al. Apoptotic caspases prevent the induction of type I interferons by mitochondrial DNA. Cell. 2014;159:1563–77. PubMed:25525875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhang X, Yin H, Li Z, Zhang T, Yang Z. Nano-TiO2 induces autophagy to protect against cell death through antioxidative mechanism in podocytes. Cell Biol Toxicol. 2016;32:513–27. PubMed:27430495

    Article  CAS  PubMed  Google Scholar 

  60. Yuan L, Mao Y, Luo W, Wu W, Xu H, Wang XL, et al. Palmitic acid dysregulates the Hippo-YAP pathway and inhibits angiogenesis by inducing mitochondrial damage and activating the cytosolic DNA sensor cGAS-STING-IRF3 signaling. J Biol Chem. 2017. https://doi.org/10.1074/jbc.M117.804005. PubMed:28698384

  61. Mao Y, Luo W, Zhang L, Wu W, Yuan L, Xu H, et al. STING-IRF3 triggers endothelial inflammation in response to free fatty acid-induced mitochondrial damage in diet-induced obesity. Arterioscler Thromb Vasc Biol. 2017;37:920–9. PubMed:28302626

    Article  CAS  PubMed  Google Scholar 

  62. Zhu D, Liu Z, Pan Z, Qian M, Wang L, Zhu T, et al. A new method for classifying different phenotypes of kidney transplantation. Cell Biol Toxicol. 2016;32:323–32. PubMed:27278387

    Article  CAS  PubMed  Google Scholar 

  63. Biacchesi S, Merour E, Lamoureux A, Bernard J, Bremont M. Both STING and MAVS fish orthologs contribute to the induction of interferon mediated by RIG-I. PLoS One. 2012;7:e47737. PubMed:23091644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. White MJ, McArthur K, Metcalf D, Lane RM, Cambier JC, Herold MJ, et al. Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production. Cell. 2014;159:1549–62. PubMed:25525874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Petrasek J, Iracheta-Vellve A, Csak T, Satishchandran A, Kodys K, Kurt-Jones EA, et al. STING-IRF3 pathway links endoplasmic reticulum stress with hepatocyte apoptosis in early alcoholic liver disease. Proc Natl Acad Sci U S A. 2013;110:16544–9. PubMed:24052526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Onuora S. Autoinflammation: a new STING-associated monogenic autoinflammatory disease. Nat Rev Rheumatol. 2014;10:512. PubMed:25090944

    Article  PubMed  Google Scholar 

  67. Li XD, Wu J, Gao D, Wang H, Sun L, Chen ZJ. Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects. Science. 2013;341:1390–4. PubMed:23989956

    Article  CAS  PubMed  Google Scholar 

  68. Gao D, Wu J, YT W, Du F, Aroh C, Yan N, et al. Cyclic GMP-AMP synthase is an innate immune sensor of HIV and other retroviruses. Science. 2013;341:903–6. PubMed:23929945

    Article  CAS  PubMed  Google Scholar 

  69. Wu B, Ni H, Li J, Zhuang X, Zhang J, Qi Z, et al. The impact of circulating mitochondrial DNA on cardiomyocyte apoptosis and myocardial injury after TLR4 activation in experimental autoimmune myocarditis. Cell Physiol Biochem. 2017;42:713–28. PubMed:28618428

    Article  CAS  PubMed  Google Scholar 

  70. Xie L, Liu S, Cheng J, Wang L, Liu J, Gong J. Exogenous administration of mitochondrial DNA promotes ischemia reperfusion injury via TLR9-p38 MAPK pathway. Regul Toxicol Pharmacol. 2017;89:148–54. PubMed:28757323

    Article  CAS  PubMed  Google Scholar 

  71. Duvvuri B, Duvvuri VR, Wang C, Chen L, Wagar LE, Jamnik V, et al. The human immune system recognizes neopeptides derived from mitochondrial DNA deletions. J Immunol. 2014;192:4581–91. PubMed:24733843

    Article  CAS  PubMed  Google Scholar 

  72. Zhou QF, SM X, Wang HQ, Xing LM, Fu R, Shao ZH. Single nucleotide polymorphism of mitochondrial DNA D-LOOP region in peripheral blood lymphocytes of immuno-related pancytopenia patients. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2017;25:186–91. PubMed:28245399

    PubMed  Google Scholar 

  73. Wang W, Zhuang Q, Ji K, Wen B, Lin P, Zhao Y, et al. Identification of miRNA, lncRNA and mRNA-associated ceRNA networks and potential biomarker for MELAS with mitochondrial DNA A3243G mutation. Sci Rep. 2017;7:41639. PubMed:28139706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Imanishi H, Takibuchi G, Kobayashi T, Ishikawa K, Nakada K, Mori M, et al. Specific mtDNA mutations in mouse carcinoma cells suppress their tumor formation via activation of the host innate immune system. PLoS One. 2013;8:e75981. PubMed:24098752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Feng S, Xiong L, Ji Z, Cheng W, Yang H. Correlation between increased ND2 expression and demethylated displacement loop of mtDNA in colorectal cancer. Mol Med Rep. 2012;6:125–30. PubMed:22505229

    CAS  PubMed  Google Scholar 

  76. Fang H, Wang W. Could CRISPR be the solution for gene editing’s Gordian knot? Cell Biol Toxicol. 2016;32:465–7. PubMed:27614448

    Article  PubMed  Google Scholar 

  77. Wang W, Wang X. Single-cell CRISPR screening in drug resistance. Cell Biol Toxicol. 2017;33:207–10. PubMed:28474250

    Article  CAS  PubMed  Google Scholar 

  78. Paes B, Moco PD, Pereira CG, Porto GS, de Sousa Russo EM, Reis LCJ, et al. Ten years of iPSC: clinical potential and advances in vitro hematopoietic differentiation. Cell Biol Toxicol. 2017;33:233–50. PubMed:28039590

    Article  PubMed  Google Scholar 

  79. Arroyo JD, Jourdain AA, Calvo SE, Ballarano CA, Doench JG, Root DE, et al. A genome-wide CRISPR death screen identifies genes essential for oxidative phosphorylation. Cell Metab. 2016;24:875–85. PubMed:27667664

    Article  CAS  PubMed  Google Scholar 

  80. Luo C, Lim JH, Lee Y, Granter SR, Thomas A, Vazquez F, et al. A PGC1alpha-mediated transcriptional axis suppresses melanoma metastasis. Nature. 2016;537:422–6. PubMed:27580028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The work was supported by Zhongshan Distinguished Professor Grant (XDW), the National Nature Science Foundation of China (91230204, 81270099, 81320108001, 81270131, 81300010), the Shanghai Committee of Science and Technology (12JC1402200, 12431900207, 11410708600, 14431905100), Operation funding of Shanghai Institute of Clinical Bioinformatics, Ministry of Education for Academic Special Science and Research Foundation for PhD Education (20130071110043), and National Key Research and Development Program (2016YFC0902400, 2017YFSF090207).

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangdong Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Editor(s) (if applicable) and The Author(s) 2018

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, L., Liebmen, M.N., Wang, X. (2017). Roles of Mitochondrial DNA Signaling in Immune Responses. In: Sun, H., Wang, X. (eds) Mitochondrial DNA and Diseases. Advances in Experimental Medicine and Biology, vol 1038. Springer, Singapore. https://doi.org/10.1007/978-981-10-6674-0_4

Download citation

Publish with us

Policies and ethics