Advertisement

Significance of Mitochondria DNA Mutations in Diseases

  • Zhenhua Zhu
  • Xiangdong WangEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1038)

Abstract

Mitochondria are essential double-membraned cytoplasmic organelles to support aerobic respiration and produce cellular energy by oxidative phosphorylation (OXPHOS). Mitochondrial functions are controlled by mitochondrial (mtDNA) and nuclear genomes (nDNA). Mutations of mtDNA result in mitochondrial dysfunction and multisystem diseases through compromising OXPHOS function directly by a point mutation or a large-scale mtDNA rearrangement. One or more of OXPHOS complexes are impaired and dysfunctional to affect tissues with high energy demands. mtDNA is more susceptible to oxidative damage and has more mutations than nDNA. Unlike diploid nDNA, mtDNA is a multi-copy genome transmitted and maternally inherited through oocyte. The multi-copy nature of mtDNA easily causes the heteroplasmy as a unique aspect of mtDNA, making mitochondrial diseases more complex and heterogeneous. mtDNA-associated mitochondrial dysfunction plays the important role in the development of multisystemic primary mitochondrial disease, neurodegeneration, and cancer. The present article overviews the occurrence of mtDNA mutation, interactions with other factors, and molecular mechanisms of mtDNA-associated diseases.

Keywords

Mitochondria Mutation Oxidative phosphorylation Heteroplasmy 

References

  1. 1.
    Stehling O, Lill R. The role of mitochondria in cellular iron-sulfur protein biogenesis: mechanisms, connected processes, and diseases. Cold Spring Harb Perspect Biol. 2013;5(8):a011312. PMID:23906713CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Wallace DC, et al. Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy. Science. 1988;242(4884):1427–30. PMID:3201231CrossRefPubMedGoogle Scholar
  3. 3.
    Sallevelt SC, de Die-Smulders CE, Hendrickx AT, et al. De novo mtDNA point mutations are common and have a low recurrence risk. J Med Genet. 2017;54(2):73–83. PMID:27450679CrossRefPubMedGoogle Scholar
  4. 4.
    Ylikallio E, Suomalainen A. Mechanisms of mitochondrial diseases. Ann Med. 2012;44(1):41–59. PMID:21806499CrossRefPubMedGoogle Scholar
  5. 5.
    Alston CL, et al. The genetics and pathology of mitochondrial disease. J Pathol. 2017;241(2):236–50. PMID:27659608CrossRefPubMedGoogle Scholar
  6. 6.
    Calvo SE, Clauser KR, Mootha VK. MitoCarta2.0: an updated inventory of mammalian mitochondrial proteins. Nucleic Acids Res. 2016;44(D1):D1251–7. PMID:26450961CrossRefPubMedGoogle Scholar
  7. 7.
    Giles RE, et al. Maternal inheritance of human mitochondrial DNA. Proc Natl Acad Sci U S A. 1980;77(11):6715–9. PMID:6256757CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Stewart JB, Chinnery PF. The dynamics of mitochondrial DNA heteroplasmy: implications for human health and disease. Nat Rev Genet. 2015;16(9):530–42. PMID:26281784CrossRefPubMedGoogle Scholar
  9. 9.
    Brandon M, Baldi P, Wallace DC. Mitochondrial mutations in cancer. Oncogene. 2006;25(34):4647–62. PMID:16892079CrossRefPubMedGoogle Scholar
  10. 10.
    Lee HC, Chang CM, Chi CW. Somatic mutations of mitochondrial DNA in aging and cancer progression. Ageing Res Rev. 2010;9(Suppl 1):S47–58. PMID:20816876CrossRefPubMedGoogle Scholar
  11. 11.
    Anderson S, et al. Sequence and organization of the human mitochondrial genome. Nature. 1981;290(5806):457–65. PMID:7219534CrossRefPubMedGoogle Scholar
  12. 12.
    Tuppen HA, et al. Mitochondrial DNA mutations and human disease. Biochim Biophys Acta. 2010;1797(2):113–28. PMID:19761752CrossRefPubMedGoogle Scholar
  13. 13.
    Schon EA, DiMauro S, Hirano M. Human mitochondrial DNA: roles of inherited and somatic mutations. Nat Rev Genet. 2012;13(12):878–90. PMID:23154810CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Elliott HR, et al. Pathogenic mitochondrial DNA mutations are common in the general population. Am J Hum Genet. 2008;83(2):254–60. PMID:18674747CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Shoffner JM, et al. Myoclonic epilepsy and ragged-red fiber disease (MERRF) is associated with a mitochondrial DNA tRNA(Lys) mutation. Cell. 1990;61(6):931–7. PMID:2112427CrossRefPubMedGoogle Scholar
  16. 16.
    Santorelli FM, et al. The mutation at nt 8993 of mitochondrial DNA is a common cause of Leigh’s syndrome. Ann Neurol. 1993;34(6):827–34. PMID:8250532CrossRefPubMedGoogle Scholar
  17. 17.
    Schapira AH, et al. Mitochondrial complex I deficiency in Parkinson’s disease. J Neurochem. 1990;54(3):823–7. PMID:2154550CrossRefPubMedGoogle Scholar
  18. 18.
    Chinnery PF, et al. Epigenetics, epidemiology and mitochondrial DNA diseases. Int J Epidemiol. 2012;41(1):177–87. PMID:22287136CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Goto Y, Nonaka I, Horai S. A mutation in the tRNA(Leu)(UUR) gene associated with the MELAS subgroup of mitochondrial encephalomyopathies. Nature. 1990;348(6302):651–3. PMID:2102678CrossRefPubMedGoogle Scholar
  20. 20.
    Scaglia F, Wong LJ. Human mitochondrial transfer RNAs: role of pathogenic mutation in disease. Muscle Nerve. 2008;37(2):150–71. PMID:17999409CrossRefPubMedGoogle Scholar
  21. 21.
    Holt IJ, et al. A new mitochondrial disease associated with mitochondrial DNA heteroplasmy. Am J Hum Genet. 1990;46(3):428–33. PMID:2137962PubMedPubMedCentralGoogle Scholar
  22. 22.
    Holt IJ, Harding AE, Morgan-Hughes JA. Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature. 1988;331(6158):717–9. PMID:2830540CrossRefPubMedGoogle Scholar
  23. 23.
    Rotig A, et al. Spectrum of mitochondrial DNA rearrangements in the Pearson marrow-pancreas syndrome. Hum Mol Genet. 1995;4(8):1327–30. PMID:7581370CrossRefPubMedGoogle Scholar
  24. 24.
    Kraytsberg Y, et al. Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nat Genet. 2006;38(5):518–20. PMID:16604072CrossRefPubMedGoogle Scholar
  25. 25.
    Wallace DC. Mitochondrial DNA mutations in disease and aging. Environ Mol Mutagen. 2010;51(5):440–50. PMID:20544884PubMedGoogle Scholar
  26. 26.
    Polyak K, et al. Somatic mutations of the mitochondrial genome in human colorectal tumours. Nat Genet. 1998;20(3):291–3. PMID:9806551CrossRefPubMedGoogle Scholar
  27. 27.
    Wang X. New biomarkers and therapeutics can be discovered during COPD-lung cancer transition. Cell Biol Toxicol. 2016;32(5):359–61. PMID:27405768CrossRefPubMedGoogle Scholar
  28. 28.
    Chen C, Shi L, Li Y, Wang X, Yang S. Disease-specific dynamic biomarkers selected by integrating inflammatory mediators with clinical informatics in ARDS patients with severe pneumonia. Cell Biol Toxicol. 2016;32(3):169–84. PMID:27095254CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Shi L, Zhu B, Xu M, Wang X. Selection of AECOPD-specific immunomodulatory biomarkers by integrating genomics and proteomics with clinical informatics. Cell Biol Toxicol. 2017. https://doi.org/10.1007/s10565-017-9405-x. (Epub ahead of print). PMID: 28779230
  30. 30.
    Gu J, Wang X. New future of cell biology and toxicology: thinking deeper. Cell Biol Toxicol. 2016;32(1):1–3. PMID:26874518CrossRefPubMedGoogle Scholar
  31. 31.
    Wu Y, Geng XC, Wang JF, Miao YF, YL L, Li B. The HepaRG cell line, a superior in vitro model to L-02, HepG2 and hiHeps cell lines for assessing drug-induced liver injury. Cell Biol Toxicol. 2016;32(1):37–59. PMID:27027780CrossRefPubMedGoogle Scholar
  32. 32.
    Zhu D, Liu Z, Pan Z, Qian M, Wang L, Zhu T, Xue Y, Wu DA. New method for classifying different phenotypes of kidney transplantation. Cell Biol Toxicol. 2016;32(4):323–32. PMID:27278387CrossRefPubMedGoogle Scholar
  33. 33.
    Kikuchi S, Ninomiya T, Kohno T, Kojima T, Tatsumi H. Cobalt inhibits motility of axonal mitochondria and induces axonal degeneration in cultured dorsal root ganglion cells of rat. Cell Biol Toxicol. 2017. https://doi.org/10.1007/s10565-017-9402-0. (Epub ahead of print). PMID:28656345
  34. 34.
    Hsu HC, Li SJ, Chen CY, Chen MF. Eicosapentaenoic acid protects cardiomyoblasts from lipotoxicity in an autophagy-dependent manner. Cell Biol Toxicol. 2017. https://doi.org/10.1007/s10565-017-9406-9. (Epub ahead of print). PMID:28741157
  35. 35.
    Zhu LZ, Hou YJ, Zhao M, Yang MF, XT F, Sun JY, XY F, Shao LR, Zhang HF, Fan CD, Gao HL, Sun BL. Caudatin induces caspase-dependent apoptosis in human glioma cells with involvement of mitochondrial dysfunction and reactive oxygen species generation. Cell Biol Toxicol. 2016;32(4):333–45. PMID:27184666CrossRefPubMedGoogle Scholar
  36. 36.
    Bao L, Diao H, Dong N, Su X, Wang B, Mo Q, Yu H, Wang X, Chen C. Histone deacetylase inhibitor induces cell apoptosis and cycle arrest in lung cancer cells via mitochondrial injury and p53 up-acetylation. Cell Biol Toxicol. 2016;32(6):469–82. PMID: 27423454CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Vedi M, Sabina EP. Assessment of hepatoprotective and nephroprotective potential of withaferin A on bromobenzene-induced injury in Swiss albino mice: possible involvement of mitochondrial dysfunction and inflammation. Cell Biol Toxicol. 2016;32(5):373–90. PMID: 27250656CrossRefPubMedGoogle Scholar
  38. 38.
    Sanyal S, Das P, Law S. Effect of chronic pesticide exposure on murine cornea: a histopathological, cytological and flow cytometric approach to study ocular damage by xenobiotics. Cell Biol Toxicol. 2016;32(1):7–22. PMID: 26897134CrossRefPubMedGoogle Scholar
  39. 39.
    Soltani B, Ghaemi N, Sadeghizadeh M, Najafi F. Curcumin confers protection to irradiated THP-1 cells while its nanoformulation sensitizes these cells via apoptosis induction. Cell Biol Toxicol. 2016;32(6):543–61. PMID: 27473378CrossRefPubMedGoogle Scholar
  40. 40.
    Keta O, Bulat T, Golić I, Incerti S, Korać A, Petrović I, Ristić-Fira A. The impact of autophagy on cell death modalities in CRL-5876 lung adenocarcinoma cells after their exposure to γ-rays and/or erlotinib. Cell Biol Toxicol. 2016;32(2):83–101. PMID: 27026538CrossRefPubMedGoogle Scholar
  41. 41.
    Fang H, Wang W. Could CRISPR be the solution for gene editing’s Gordian knot? Cell Biol Toxicol. 2016;32(6):465–7. PMID: 27614448CrossRefPubMedGoogle Scholar
  42. 42.
    Wang W, Wang X, Single-cell CRISPR. Screening in drug resistance. Cell Biol Toxicol. 2017;33(3):207–10. PMID: 28474250CrossRefPubMedGoogle Scholar
  43. 43.
    Sakuma T, Yamamoto T. Magic wands of CRISPR-lots of choices for gene knock-in. Cell Biol Toxicol. 2017. https://doi.org/10.1007/s10565-017-9409-6. PMID: 28828704
  44. 44.
    Wang W, Gao D, Wang X. Can single-cell RNA sequencing crack the mystery of cells? Cell Biol Toxicol. 2017. https://doi.org/10.1007/s10565-017-9404-y. (Epub ahead of print). PMID: 28733864
  45. 45.
    Wang W, Zhu B, Wang X. Dynamic phenotypes: illustrating a single-cell odyssey. Cell Biol Toxicol. 2017. https://doi.org/10.1007/s10565-017-9400-2. (Epub ahead of print). PMID: 28638956

Copyright information

© The Editor(s) (if applicable) and The Author(s) 2018 2017

Authors and Affiliations

  1. 1.Zhongshan Hospital Institute of Clinical ScienceFudan University, Shanghai Medical CollegeShanghaiChina

Personalised recommendations