Epithelial Mitochondrial Dysfunction in Lung Disease

  • Linlin Zhang
  • William Wang
  • Bijun Zhu
  • Xiangdong WangEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1038)


Since the twentieth century, scientists have studied the functions and mechanisms of the mitochondria. The mitochondrion plays many important roles in cell functioning and contributes to apoptosis, embryonic and tissue development, aging, etc. Consequently, mitochondrial dysfunction often has a direct impact on health such as aging, tumorigenesis, lung injury and COPD, etc. Recent evidence indicates that the mitochondria could also be a crucial contributor to immunity with functions such as biogenesis, fusion, and fission impacting various areas in initializing immunity. In this review, we will describe both the structure and various functions of the mitochondria with an emphasis on functions such ATP production which is crucial for a multitude of processes such as apoptosis, biosynthesis of Fe/S clusters, steroid synthesis, and, more fundamentally, cell survival. In addition, this review aims to investigate the relationship of epithelial mitochondria and lung disease. Cigarette smoke is known to induce structural and functional mutations in airway epithelial mitochondria often acting as an indicator for diseases such as COPD. Further evidence to support this speculation is the presence of reactive oxygen species (ROS) within cigarette smoke which is a factor in the development of COPD.


Mitochondria Structure Apoptosis Reactive oxygen species COPD 



The work was supported by Zhongshan Distinguished Professor Grant (XDW), the National Nature Science Foundation of China (91230204, 81270099, 81320108001, 81270131, 81300010), the Shanghai Committee of Science and Technology (12JC1402200, 12431900207, 11410708600, 14431905100), the operation funding of Shanghai Institute of Clinical Bioinformatics, the Ministry of Education for Academic Special Science and Research Foundation for PhD Education (20130071110043), and the National Key Research and Development Program (2016YFC0902400, 2017YFSF090207).


  1. 1.
    Bao L, Diao H, Dong N, Su X, Wang B, Mo Q, Yu H, Wang XD, Chen C. Histone deacetylase inhibitor induces cell apoptosis and cycle arrest in lung cancer cells via mitochondrial injury and p53 up-acetylation. Cell Biol Toxicol. 2016;32:469–82. [PubMed: 27423454]CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Torrealba N, Aranguiz P, Alonso C, Rothermel BA, Lavandero S. Mitochondria in structural and functional cardiac remodeling. Adv Exp Med Biol. 2017;982:277–306. [PubMed: 28551793]CrossRefPubMedGoogle Scholar
  3. 3.
    Mills EF, Kelly B, O’Neill LAJ. Mitochondria are the powerhouses of immunity. Nat Immunol. 2017;18:488–98. [PubMed: 28418387]CrossRefPubMedGoogle Scholar
  4. 4.
    Palade GE. The fine structure of mitochondria. Anat Rec. 1952;114:427–51. [PubMed: 12996882]CrossRefPubMedGoogle Scholar
  5. 5.
    Kharbangar A, Khynriam D, Prasad SB. Effect of cisplatin on mitochondrial protein, glutathione, and succinate dehydrogenase in Dalton lymphoma-bearing mice. Cell Biol Toxicol. 2000;16:363–73. [PubMed: 11254162]CrossRefPubMedGoogle Scholar
  6. 6.
    Kakkar P, Mehrotra S, Viswanathan PN. Influence of antioxidants on the peroxidative swelling of mitochondria in vitro. Cell Biol Toxicol. 1998;14:313–21. [PubMed: 9808359]CrossRefPubMedGoogle Scholar
  7. 7.
    Lea PJ, Hollenberg MJ. Mitochondrial structure revealed by high resolution scanning electron microscopy. Am J Anat. 1989;184:245–57. [PubMed: 2750680]CrossRefPubMedGoogle Scholar
  8. 8.
    Sardão VA, Oliveira PJ, Holy J, Oliveira CR, Wallace KB. Morphological alterations induced by doxorubicin on H9c2 myoblasts: nuclear, mitochondrial, and cytoskeletal targets. Cell Biol Toxicol. 2009;25:227–43. [PubMed: 18386138]CrossRefPubMedGoogle Scholar
  9. 9.
    Arismendi-Morillo G, Castellano-Ramírez A, Seyfried TN. Ultrastructural characterization of the mitochondria-associated membranes abnormalities in human astrocytomas: functional and therapeutics implications. Ultrastruct Patho. 2017;41:234–44. [PubMed: 28375672]CrossRefGoogle Scholar
  10. 10.
    Wang M, Huang YP, Wu H, Song K, Wan C, Chi AN, Xiao YM, Zhao XY. Mitochondrial complex I deficiency leads to the retardation of early embryonic development in Ndufs4 knockout mice. PeerJ. 2017;5:e3339. [PubMed: 28533980]CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Zhu J, Wang KZ, Chu CT. After the banquet mitochondrial biogenesis, mitophagy, and cell survival. Autophagy. 2013;9:1663–76. [PubMed: 23787782]CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Bogenhagen DF. Mitochondrial DNA nucleoid structure. Biochim Biophys Acta. 1819;2012:914–20. [PubMed: 22142616]Google Scholar
  13. 13.
    Hu HL, Zhang ZX, Chen CS, Cai C, Zhao JP, Wang XD. Effects of mitochondrial K+ channel and membrane potential on hypoxic human pulmonary artery smooth muscle cells. Am J Respir Cell Mol Biol. 2010;42:661–6. [PubMed: 19617400]CrossRefPubMedGoogle Scholar
  14. 14.
    Pesole G, Gissi C, De Chirico A, Saccone C. Nucleotide substitution rate of mammalian mitochondrial genome. J Mol Evol. 1999;48:427–34. [PubMed: 10079281]CrossRefPubMedGoogle Scholar
  15. 15.
    Patenge N. Quantification of DNA damage and repair in mitochondrial, nuclear, and bacterial genomes by real-time PCR. Methods Mol Biol. 1644;2017:159–66. [PubMed: 28710762]Google Scholar
  16. 16.
    McBride HM, Neuspiel M, Wasiak S. Mitochondria: more than just a powerhouse. Curr Biol. 2006;16:R551–60. [PubMed: 16860735]CrossRefPubMedGoogle Scholar
  17. 17.
    Arumugam P, Samson A, Ki J, Song JM. Knockdown of clusterin alters mitochondrial dynamics, facilitates necrosis in camptothecin-induced cancer stem cells. Cell Biol Toxicol. 2017;33:307–21. [PubMed: 28064403]CrossRefPubMedGoogle Scholar
  18. 18.
    Kaarniranta K, Tokarz P, Koskela A, Paterno J, Blasiak J. Autophagy regulates death of retinal pigment epithelium cells in age-related macular degeneration. Cell Biol Toxicol. 2017;33:113–28. [PubMed: 27900566]CrossRefPubMedGoogle Scholar
  19. 19.
    Shukla GS, Shukla A, Potts RJ, Osier M, Hart BA, Chiu JF. Cadmium-mediated oxidative stress in alveolar epithelial cells induces the expression of gamma-glutamylcysteine synthetase catalytic subunit and glutathione S-transferase alpha and pi isoforms: potential role of activator protein-1. Cell Biol Toxicol. 2000;16:347–62. [PubMed: 11254161]CrossRefPubMedGoogle Scholar
  20. 20.
    Velentzas PD, Velentzas AD, Mpakou VE, Antonelou MH, Margaritis LH, Papassideri IS, Stravopodis DJ. Detrimental effects of proteasome inhibition activity in Drosophila melanogaster: implication of ER stress, autophagy, and apoptosis. Cell Biol Toxicol. 2013;29:13–37. [PubMed: 23161111]CrossRefPubMedGoogle Scholar
  21. 21.
    Rincheval V, Bergeaud M, Mathieu L, Leroy J, Guillaume A, Mignotte B, Le Floch N, Vayssière JL. Differential effects of Bcl-2 and caspases on mitochondrial permeabilization during endogenous or exogenous reactive oxygen species-induced cell death: a comparative study of H2O2, paraquat, t-BHP, etoposide and TNF-α-induced cell death. Cell Biol Toxicol. 2012;28:239–53. [PubMed: 22491967]CrossRefPubMedGoogle Scholar
  22. 22.
    Van der Toorn M, Slebos DJ, de Bruin HG, Leuvenink HG, Bakker SJ, Gans RO, Koëter GH, van Oosterhout AJ, Kauffman HF. Cigarette smoke-induced blockade of the mitochondrial respiratory chain switches lung epithelial cell apoptosis into necrosis. Am J Physiol Lung Cell Mol Physiol. 2007;292:L1211–8. [PubMed: 17209140]CrossRefPubMedGoogle Scholar
  23. 23.
    Renvoizé C, Biola A, Pallardy M, Bréard J. Apoptosis: identification of dying cells. Cell Biol Toxicol. 1998;14:111–20. [PubMed: 9553722]CrossRefPubMedGoogle Scholar
  24. 24.
    Vukotic M, Nolte H, König T, Saita S, Ananjew M, Krüger M, Tatsuta T, Langer T. Acylglycerol kinase mutated in Sengers syndrome is a subunit of the TIM22 protein translocase in mitochondria. Mol Cell. 2017;67:471–83. [PubMed: 28712724]CrossRefPubMedGoogle Scholar
  25. 25.
    Zerin T, Kim JS, Gil HW, Song HY, Hong SY. Effects of formaldehyde on mitochondrial dysfunction and apoptosis in SK-N-SH neuroblastoma cells. Cell Biol Toxicol. 2015;31:261–72. [PubMed: 26728267]CrossRefPubMedGoogle Scholar
  26. 26.
    Larsen FJ, Schiffer TA, Ørtenblad N, Zinner C, Morales-Alamo D, Willis SJ, Calbet JA, Holmberg HC, Boushel R. High-intensity sprint training inhibits mitochondrial respiration through aconitase inactivation. FASEB J. 2016;30:417–27. [PubMed: 26452378]CrossRefPubMedGoogle Scholar
  27. 27.
    Kalayou S, Hamre AG, Ndossi D, Connolly L, Sørlie M, Ropstad E, Verhaegen S. Using SILAC proteomics to investigate the effect of the mycotoxin, alternariol, in the human H295R steroidogenesis model. Cell Biol Toxicol. 2014;30:361–76. [PubMed: 25416481]PubMedGoogle Scholar
  28. 28.
    Papadopoulos V, Miller WL. Role of mitochondria in steroidogenesis. Best Pract Res Clin Endocrinol Metab. 2012;26:771–90. [PubMed: 23168279]CrossRefPubMedGoogle Scholar
  29. 29.
    Issop L, Rone MB, Papadopoulos V. Organelle plasticity and interactions in cholesterol transport and steroid biosynthesis. Mol Cell Endocrinol. 2013;371:34–46. [PubMed: 23246788]CrossRefPubMedGoogle Scholar
  30. 30.
    Medvedev R, Hildt E, Paloen D. Look who’s talking-the crosstalk between oxidative stress and autophagy supports exosomal-dependent release of HCV particles. Cell Biol Toxicol. 2017;33:211–31. [PubMed: 27987184]CrossRefPubMedGoogle Scholar
  31. 31.
    Issop L, Fan J, Lee S, Rone MB, Basu K, Mui J, Papadopoulos V. Mitochondria-associated membrane formation in hormone-stimulated Leydig cell steroidogenesis: role of ATAD3. Endocrinology. 2015;156:334–45. [PubMed: 25375035]CrossRefPubMedGoogle Scholar
  32. 32.
    Fang XC, Wang XD, Danderson M, Bai CX. Chronic obstructive pulmonary disease in China: the burden and the importance of proper management. Chest. 2011;139:920–9. [PubMed: 21467059]CrossRefPubMedGoogle Scholar
  33. 33.
    Wang DC, Shi L, Zhu Z, Gao D, Zhang Y. Genomic mechanisms of transformation from chronic obstructive pulmonary disease to lung cancer. Semin Cancer Biol. 2017;42:52–9. [PubMed: 27840275]CrossRefPubMedGoogle Scholar
  34. 34.
    Wu X, Yuan B, López E, Bai C, Wang XD. Gene polymorphisms and chronic obstructive pulmonary disease. J Cell Mol Med. 2014;18:15–26. [PubMed: 24256364]CrossRefPubMedGoogle Scholar
  35. 35.
    Wang X. New biomarkers and therapeutics can be discovered during COPD-lung cancer transition. Cell Biol Toxicol. 2016;32:359–61. [PubMed: 27405768]CrossRefPubMedGoogle Scholar
  36. 36.
    Farfán Labonne BE, Gutiérrez M, Gómez-Quiroz LE, Konigsberg Fainstein M, Bucio L, Souza V, Flores O, Ortíz V, Hernández E, Kershenobich D. Acetaldehyde-induced mitochondrial dysfunction sensitizes hepatocytes to oxidative damage. Cell Biol Toxicol. 2009;25:599–609. [PubMed: 19137438]CrossRefPubMedGoogle Scholar
  37. 37.
    Kennedy CH, Catallo WJ, Wilson VL, Mitchell JB. Combustion products of 1,3-butadiene inhibit catalase activity and induce expression of oxidative DNA damage repair enzymes in human bronchial epithelial cells. Cell Biol Toxicol. 2009;25:457–70. [PubMed: 18685817]CrossRefPubMedGoogle Scholar
  38. 38.
    Fischer BM, Voynow JA, Ghio AJ. COPD: balancing oxidants and antioxidants. Int J Chron Obstruct Pulmon Dis. 2015;10:261–76. [PubMed: 25673984]CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Wu X, Sun X, Chen C, Bai C, Wang XD. Dynamic gene expressions of peripheral blood mononuclear cells in patients with acute exacerbation of chronic obstructive pulmonary disease: a preliminary study. Crit Care. 2014;18:508. [PubMed: 25407108]CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Białas AJ, Sitarek P, Miłkowska-Dymanowska J, Piotrowski WJ, Górski P. The role of mitochondria and oxidative/antioxidative imbalance in pathobiology of chronic obstructive pulmonary disease. Oxid Med Cell Longev. 2016;2016:7808576. [PubMed: 28105251]PubMedPubMedCentralGoogle Scholar
  41. 41.
    Chen C, Shi L, Li Y, Wang X, Yang S. Disease-specific dynamic biomarkers selected by integrating inflammatory mediators with clinical informatics in ARDS patients with severe pneumonia. Cell Biol Toxicol. 2016;32:169–84. [PubMed: 27095254]CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Schuliga M. NF-𝜅B signaling in chronic inflammatory airway disease. Biomolecules. 2015;5:1266–83. [PubMed: 26131974]CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Chen H, Song ZJ, Qian MJ, Bai CX, Wang XD. Selection of disease-specific biomarkers by integrating inflammatory mediators with clinical informatics in AECOPD patients: a preliminary study. J Cell Mol Med. 2012;16:1286–97. [PubMed: 21883889]CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Chen H, Wang YL, Bai CX, Wang XD. Alterations of serum inflammatory biomarkers in the healthy and chronic obstructive pulmonary disease patients with or without acute exacerbation. J Cell Mol Med. 2012;16:1286–97. [PubMed: 22343073]CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Xu M, Wang X. Critical roles of mucin-1 in sensitivity of lung cancer cells to tumor necrosis factor-alpha and dexamethasone. Cell Biol Toxicol. 2017;33:361–71. [PubMed: 28470556]CrossRefPubMedGoogle Scholar
  46. 46.
    Fang XC, Li SQ, Gao L, Zhao NQ, Wang XD, Bai CX. A short-term educational program improved physicians’ adherence to guidelines for COPD and asthma in Shanghai. Clin Transl Med. 2012;1:13. [PubMed: 23369324]CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Fang X, Netzer M, Baumgartner C, Bai C, Wang XD. Genetic network and gene set enrichment analysis to identify biomarkers related to cigarette smoking and lung cancer. Cancer Treat Rev. 2013;39:77–88. [PubMed: 22789435]CrossRefPubMedGoogle Scholar
  48. 48.
    Fang X, Li K, Tao X, Chen C, Wang X, Wang L, Wang DC, Zhang Y, Bai C, Wang XD. Effects of phosphoinositide 3-kinase on protease-induced acute and chronic lung inflammation, remodeling, and emphysema in rats. Chest. 2013;143:1025–35. [PubMed: 23188423]CrossRefPubMedGoogle Scholar
  49. 49.
    Truedsson M, Malm J, Barbara Sahlin K, Bugge M, Wieslander E, Dahlbäck M, Appelqvist R, Fehniger TE, Marko-Varga G. Biomarkers of early chronic obstructive pulmonary disease (COPD) in smokers and former smokers. Protocol of a longitudinal study. Clin Transl Med. 2016;5:9. [PubMed: 26951192]CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Wang YL, Bai CX, Li K, Adler KB, Wang XD. Role of airway epithelial cells in development of asthma and allergic rhinitis. Respir Med. 2008;102:949–55. [PubMed: 18339528]CrossRefPubMedGoogle Scholar
  51. 51.
    Sohal SS, Mahmood MQ, Walters EH. Clinical significance of epithelial mesenchymal transition (EMT) in chronic obstructive pulmonary disease (COPD): potential target for prevention of airway fibrosis and lung cancer. Clin Transl Med. 2014;3:33. [PubMed: 26932377]CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    King PT. Inflammation in chronic obstructive pulmonary disease and its role in cardiovascular disease and lung cancer. Clin Transl Med. 2015;4:68. [PubMed: 26220864]CrossRefPubMedGoogle Scholar
  53. 53.
    Yan FG, Chen CS, Jing JY, Li W, Shen HB, Wang XD. Association between polymorphism of glutathione S-transferase P1 and chronic obstructive pulmonary disease: a meta-analysis. Respir Med. 2010;104:473–80. [PubMed: 20117922]CrossRefPubMedGoogle Scholar
  54. 54.
    Freeman CM, Curtis JL. Lung dendritic cells: shaping immune responses throughout chronic obstructive pulmonary disease progression. Am J Respir Cell Mol Biol. 2017;56:152–9. [PubMed: 27767327]PubMedGoogle Scholar
  55. 55.
    Upham JW, Xi Y. Dendritic cells in human lung disease: recent advances. Chest. 2017;151:668–73. [PubMed: 27729261]CrossRefPubMedGoogle Scholar
  56. 56.
    Wang W, Zhu B, Wang X. Dynamic phenotypes: illustrating a single-cell odyssey. Cell Biol Toxicol. 2017. [PubMed: 28638956
  57. 57.
    Fessenden M. Metabolomics: small molecules, single cells. Nature. 2016;540:153–5. [PubMed: 27905420]CrossRefPubMedGoogle Scholar
  58. 58.
    Wang W, Wang X. Single-cell CRISPR screening in drug resistance. Cell Biol Toxicol. 2017;33:207–10. [PubMed: 28474250]CrossRefPubMedGoogle Scholar
  59. 59.
    Niu F, Wang DC, Lu JP, Wu W, Wang XD. Potentials of single-cell biology in identification and validation of disease biomarkers. J Cell Mol Med. 2016;20:1789–95. [PubMed: 27113384]CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Barnes PJ. Cellular and molecular mechanisms of chronic obstructive pulmonary disease. Clin Chest Med. 2014;35:71–86. [PubMed: 24507838]CrossRefPubMedGoogle Scholar
  61. 61.
    Jiang Y, Wang X, Hu D. Mitochondrial alterations during oxidative stress in chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2017;12:1153–62. [PubMed: 28458526]CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Papa S, Martino PL, Capitanio G, Gaballo A, De Rasmo D, Signorile A, Petruzzella V. The oxidative phosphorylation system in mammalian mitochondria. Adv Exp Med Biol. 2012;942:3–37. [PubMed: 22399416]CrossRefPubMedGoogle Scholar
  63. 63.
    Reddi AR, Hamza I. Heme mobilization in animals: a Metallolipid’s journey. Acc Chem Res. 2016;49:1104–10. [PubMed: 27254265]CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Leu JI, Dumont P, Hafey M, Murphy ME, George DL. Mitochondrial p53 activates Bak and causes disruption of a Bak-Mcl1 complex. Nat Cell Biol. 2004;6:443–50. [PubMed: 15077116]CrossRefPubMedGoogle Scholar
  65. 65.
    Huang L, Han J, Ben-Hail D, He L, Li B, Chen Z, Wang Y, Yang Y, Liu L, Zhu Y, et al. A new fungal Diterpene induces VDAC1-dependent apoptosis in Bax/Bak-deficient cells. J Biol Chem. 2015;290:23563–78. [PubMed: 26253170]CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Roland FH, Sina Z, Simone MB, Arjan K, Harold GB. Prolonged cigarette smoke exposure alters mitochondrial structure and function in airway epithelial cells. Respir Res. 2013;14:97. [PubMed: 24088173]CrossRefGoogle Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s) 2018 2017

Authors and Affiliations

  • Linlin Zhang
    • 1
  • William Wang
    • 1
  • Bijun Zhu
    • 1
  • Xiangdong Wang
    • 1
    Email author
  1. 1.Zhongshan Hospital Institute of Clinical ScienceFudan University, Shanghai Medical CollegeShanghaiChina

Personalised recommendations