Skip to main content

Epithelial Mitochondrial Dysfunction in Lung Disease

  • Chapter
  • First Online:
Mitochondrial DNA and Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1038))

Abstract

Since the twentieth century, scientists have studied the functions and mechanisms of the mitochondria. The mitochondrion plays many important roles in cell functioning and contributes to apoptosis, embryonic and tissue development, aging, etc. Consequently, mitochondrial dysfunction often has a direct impact on health such as aging, tumorigenesis, lung injury and COPD, etc. Recent evidence indicates that the mitochondria could also be a crucial contributor to immunity with functions such as biogenesis, fusion, and fission impacting various areas in initializing immunity. In this review, we will describe both the structure and various functions of the mitochondria with an emphasis on functions such ATP production which is crucial for a multitude of processes such as apoptosis, biosynthesis of Fe/S clusters, steroid synthesis, and, more fundamentally, cell survival. In addition, this review aims to investigate the relationship of epithelial mitochondria and lung disease. Cigarette smoke is known to induce structural and functional mutations in airway epithelial mitochondria often acting as an indicator for diseases such as COPD. Further evidence to support this speculation is the presence of reactive oxygen species (ROS) within cigarette smoke which is a factor in the development of COPD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bao L, Diao H, Dong N, Su X, Wang B, Mo Q, Yu H, Wang XD, Chen C. Histone deacetylase inhibitor induces cell apoptosis and cycle arrest in lung cancer cells via mitochondrial injury and p53 up-acetylation. Cell Biol Toxicol. 2016;32:469–82. [PubMed: 27423454]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Torrealba N, Aranguiz P, Alonso C, Rothermel BA, Lavandero S. Mitochondria in structural and functional cardiac remodeling. Adv Exp Med Biol. 2017;982:277–306. [PubMed: 28551793]

    Article  PubMed  Google Scholar 

  3. Mills EF, Kelly B, O’Neill LAJ. Mitochondria are the powerhouses of immunity. Nat Immunol. 2017;18:488–98. [PubMed: 28418387]

    Article  CAS  PubMed  Google Scholar 

  4. Palade GE. The fine structure of mitochondria. Anat Rec. 1952;114:427–51. [PubMed: 12996882]

    Article  CAS  PubMed  Google Scholar 

  5. Kharbangar A, Khynriam D, Prasad SB. Effect of cisplatin on mitochondrial protein, glutathione, and succinate dehydrogenase in Dalton lymphoma-bearing mice. Cell Biol Toxicol. 2000;16:363–73. [PubMed: 11254162]

    Article  CAS  PubMed  Google Scholar 

  6. Kakkar P, Mehrotra S, Viswanathan PN. Influence of antioxidants on the peroxidative swelling of mitochondria in vitro. Cell Biol Toxicol. 1998;14:313–21. [PubMed: 9808359]

    Article  CAS  PubMed  Google Scholar 

  7. Lea PJ, Hollenberg MJ. Mitochondrial structure revealed by high resolution scanning electron microscopy. Am J Anat. 1989;184:245–57. [PubMed: 2750680]

    Article  CAS  PubMed  Google Scholar 

  8. Sardão VA, Oliveira PJ, Holy J, Oliveira CR, Wallace KB. Morphological alterations induced by doxorubicin on H9c2 myoblasts: nuclear, mitochondrial, and cytoskeletal targets. Cell Biol Toxicol. 2009;25:227–43. [PubMed: 18386138]

    Article  PubMed  Google Scholar 

  9. Arismendi-Morillo G, Castellano-Ramírez A, Seyfried TN. Ultrastructural characterization of the mitochondria-associated membranes abnormalities in human astrocytomas: functional and therapeutics implications. Ultrastruct Patho. 2017;41:234–44. [PubMed: 28375672]

    Article  Google Scholar 

  10. Wang M, Huang YP, Wu H, Song K, Wan C, Chi AN, Xiao YM, Zhao XY. Mitochondrial complex I deficiency leads to the retardation of early embryonic development in Ndufs4 knockout mice. PeerJ. 2017;5:e3339. [PubMed: 28533980]

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zhu J, Wang KZ, Chu CT. After the banquet mitochondrial biogenesis, mitophagy, and cell survival. Autophagy. 2013;9:1663–76. [PubMed: 23787782]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bogenhagen DF. Mitochondrial DNA nucleoid structure. Biochim Biophys Acta. 1819;2012:914–20. [PubMed: 22142616]

    Google Scholar 

  13. Hu HL, Zhang ZX, Chen CS, Cai C, Zhao JP, Wang XD. Effects of mitochondrial K+ channel and membrane potential on hypoxic human pulmonary artery smooth muscle cells. Am J Respir Cell Mol Biol. 2010;42:661–6. [PubMed: 19617400]

    Article  CAS  PubMed  Google Scholar 

  14. Pesole G, Gissi C, De Chirico A, Saccone C. Nucleotide substitution rate of mammalian mitochondrial genome. J Mol Evol. 1999;48:427–34. [PubMed: 10079281]

    Article  CAS  PubMed  Google Scholar 

  15. Patenge N. Quantification of DNA damage and repair in mitochondrial, nuclear, and bacterial genomes by real-time PCR. Methods Mol Biol. 1644;2017:159–66. [PubMed: 28710762]

    Google Scholar 

  16. McBride HM, Neuspiel M, Wasiak S. Mitochondria: more than just a powerhouse. Curr Biol. 2006;16:R551–60. [PubMed: 16860735]

    Article  CAS  PubMed  Google Scholar 

  17. Arumugam P, Samson A, Ki J, Song JM. Knockdown of clusterin alters mitochondrial dynamics, facilitates necrosis in camptothecin-induced cancer stem cells. Cell Biol Toxicol. 2017;33:307–21. [PubMed: 28064403]

    Article  CAS  PubMed  Google Scholar 

  18. Kaarniranta K, Tokarz P, Koskela A, Paterno J, Blasiak J. Autophagy regulates death of retinal pigment epithelium cells in age-related macular degeneration. Cell Biol Toxicol. 2017;33:113–28. [PubMed: 27900566]

    Article  CAS  PubMed  Google Scholar 

  19. Shukla GS, Shukla A, Potts RJ, Osier M, Hart BA, Chiu JF. Cadmium-mediated oxidative stress in alveolar epithelial cells induces the expression of gamma-glutamylcysteine synthetase catalytic subunit and glutathione S-transferase alpha and pi isoforms: potential role of activator protein-1. Cell Biol Toxicol. 2000;16:347–62. [PubMed: 11254161]

    Article  CAS  PubMed  Google Scholar 

  20. Velentzas PD, Velentzas AD, Mpakou VE, Antonelou MH, Margaritis LH, Papassideri IS, Stravopodis DJ. Detrimental effects of proteasome inhibition activity in Drosophila melanogaster: implication of ER stress, autophagy, and apoptosis. Cell Biol Toxicol. 2013;29:13–37. [PubMed: 23161111]

    Article  CAS  PubMed  Google Scholar 

  21. Rincheval V, Bergeaud M, Mathieu L, Leroy J, Guillaume A, Mignotte B, Le Floch N, Vayssière JL. Differential effects of Bcl-2 and caspases on mitochondrial permeabilization during endogenous or exogenous reactive oxygen species-induced cell death: a comparative study of H2O2, paraquat, t-BHP, etoposide and TNF-α-induced cell death. Cell Biol Toxicol. 2012;28:239–53. [PubMed: 22491967]

    Article  CAS  PubMed  Google Scholar 

  22. Van der Toorn M, Slebos DJ, de Bruin HG, Leuvenink HG, Bakker SJ, Gans RO, Koëter GH, van Oosterhout AJ, Kauffman HF. Cigarette smoke-induced blockade of the mitochondrial respiratory chain switches lung epithelial cell apoptosis into necrosis. Am J Physiol Lung Cell Mol Physiol. 2007;292:L1211–8. [PubMed: 17209140]

    Article  PubMed  Google Scholar 

  23. Renvoizé C, Biola A, Pallardy M, Bréard J. Apoptosis: identification of dying cells. Cell Biol Toxicol. 1998;14:111–20. [PubMed: 9553722]

    Article  PubMed  Google Scholar 

  24. Vukotic M, Nolte H, König T, Saita S, Ananjew M, Krüger M, Tatsuta T, Langer T. Acylglycerol kinase mutated in Sengers syndrome is a subunit of the TIM22 protein translocase in mitochondria. Mol Cell. 2017;67:471–83. [PubMed: 28712724]

    Article  CAS  PubMed  Google Scholar 

  25. Zerin T, Kim JS, Gil HW, Song HY, Hong SY. Effects of formaldehyde on mitochondrial dysfunction and apoptosis in SK-N-SH neuroblastoma cells. Cell Biol Toxicol. 2015;31:261–72. [PubMed: 26728267]

    Article  CAS  PubMed  Google Scholar 

  26. Larsen FJ, Schiffer TA, Ørtenblad N, Zinner C, Morales-Alamo D, Willis SJ, Calbet JA, Holmberg HC, Boushel R. High-intensity sprint training inhibits mitochondrial respiration through aconitase inactivation. FASEB J. 2016;30:417–27. [PubMed: 26452378]

    Article  CAS  PubMed  Google Scholar 

  27. Kalayou S, Hamre AG, Ndossi D, Connolly L, Sørlie M, Ropstad E, Verhaegen S. Using SILAC proteomics to investigate the effect of the mycotoxin, alternariol, in the human H295R steroidogenesis model. Cell Biol Toxicol. 2014;30:361–76. [PubMed: 25416481]

    CAS  PubMed  Google Scholar 

  28. Papadopoulos V, Miller WL. Role of mitochondria in steroidogenesis. Best Pract Res Clin Endocrinol Metab. 2012;26:771–90. [PubMed: 23168279]

    Article  CAS  PubMed  Google Scholar 

  29. Issop L, Rone MB, Papadopoulos V. Organelle plasticity and interactions in cholesterol transport and steroid biosynthesis. Mol Cell Endocrinol. 2013;371:34–46. [PubMed: 23246788]

    Article  CAS  PubMed  Google Scholar 

  30. Medvedev R, Hildt E, Paloen D. Look who’s talking-the crosstalk between oxidative stress and autophagy supports exosomal-dependent release of HCV particles. Cell Biol Toxicol. 2017;33:211–31. [PubMed: 27987184]

    Article  CAS  PubMed  Google Scholar 

  31. Issop L, Fan J, Lee S, Rone MB, Basu K, Mui J, Papadopoulos V. Mitochondria-associated membrane formation in hormone-stimulated Leydig cell steroidogenesis: role of ATAD3. Endocrinology. 2015;156:334–45. [PubMed: 25375035]

    Article  PubMed  Google Scholar 

  32. Fang XC, Wang XD, Danderson M, Bai CX. Chronic obstructive pulmonary disease in China: the burden and the importance of proper management. Chest. 2011;139:920–9. [PubMed: 21467059]

    Article  PubMed  Google Scholar 

  33. Wang DC, Shi L, Zhu Z, Gao D, Zhang Y. Genomic mechanisms of transformation from chronic obstructive pulmonary disease to lung cancer. Semin Cancer Biol. 2017;42:52–9. [PubMed: 27840275]

    Article  CAS  PubMed  Google Scholar 

  34. Wu X, Yuan B, López E, Bai C, Wang XD. Gene polymorphisms and chronic obstructive pulmonary disease. J Cell Mol Med. 2014;18:15–26. [PubMed: 24256364]

    Article  PubMed  Google Scholar 

  35. Wang X. New biomarkers and therapeutics can be discovered during COPD-lung cancer transition. Cell Biol Toxicol. 2016;32:359–61. [PubMed: 27405768]

    Article  PubMed  Google Scholar 

  36. Farfán Labonne BE, Gutiérrez M, Gómez-Quiroz LE, Konigsberg Fainstein M, Bucio L, Souza V, Flores O, Ortíz V, Hernández E, Kershenobich D. Acetaldehyde-induced mitochondrial dysfunction sensitizes hepatocytes to oxidative damage. Cell Biol Toxicol. 2009;25:599–609. [PubMed: 19137438]

    Article  PubMed  Google Scholar 

  37. Kennedy CH, Catallo WJ, Wilson VL, Mitchell JB. Combustion products of 1,3-butadiene inhibit catalase activity and induce expression of oxidative DNA damage repair enzymes in human bronchial epithelial cells. Cell Biol Toxicol. 2009;25:457–70. [PubMed: 18685817]

    Article  CAS  PubMed  Google Scholar 

  38. Fischer BM, Voynow JA, Ghio AJ. COPD: balancing oxidants and antioxidants. Int J Chron Obstruct Pulmon Dis. 2015;10:261–76. [PubMed: 25673984]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wu X, Sun X, Chen C, Bai C, Wang XD. Dynamic gene expressions of peripheral blood mononuclear cells in patients with acute exacerbation of chronic obstructive pulmonary disease: a preliminary study. Crit Care. 2014;18:508. [PubMed: 25407108]

    Article  PubMed  PubMed Central  Google Scholar 

  40. Białas AJ, Sitarek P, Miłkowska-Dymanowska J, Piotrowski WJ, Górski P. The role of mitochondria and oxidative/antioxidative imbalance in pathobiology of chronic obstructive pulmonary disease. Oxid Med Cell Longev. 2016;2016:7808576. [PubMed: 28105251]

    PubMed  PubMed Central  Google Scholar 

  41. Chen C, Shi L, Li Y, Wang X, Yang S. Disease-specific dynamic biomarkers selected by integrating inflammatory mediators with clinical informatics in ARDS patients with severe pneumonia. Cell Biol Toxicol. 2016;32:169–84. [PubMed: 27095254]

    Article  PubMed  PubMed Central  Google Scholar 

  42. Schuliga M. NF-𝜅B signaling in chronic inflammatory airway disease. Biomolecules. 2015;5:1266–83. [PubMed: 26131974]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chen H, Song ZJ, Qian MJ, Bai CX, Wang XD. Selection of disease-specific biomarkers by integrating inflammatory mediators with clinical informatics in AECOPD patients: a preliminary study. J Cell Mol Med. 2012;16:1286–97. [PubMed: 21883889]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen H, Wang YL, Bai CX, Wang XD. Alterations of serum inflammatory biomarkers in the healthy and chronic obstructive pulmonary disease patients with or without acute exacerbation. J Cell Mol Med. 2012;16:1286–97. [PubMed: 22343073]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Xu M, Wang X. Critical roles of mucin-1 in sensitivity of lung cancer cells to tumor necrosis factor-alpha and dexamethasone. Cell Biol Toxicol. 2017;33:361–71. [PubMed: 28470556]

    Article  CAS  PubMed  Google Scholar 

  46. Fang XC, Li SQ, Gao L, Zhao NQ, Wang XD, Bai CX. A short-term educational program improved physicians’ adherence to guidelines for COPD and asthma in Shanghai. Clin Transl Med. 2012;1:13. [PubMed: 23369324]

    Article  PubMed  PubMed Central  Google Scholar 

  47. Fang X, Netzer M, Baumgartner C, Bai C, Wang XD. Genetic network and gene set enrichment analysis to identify biomarkers related to cigarette smoking and lung cancer. Cancer Treat Rev. 2013;39:77–88. [PubMed: 22789435]

    Article  CAS  PubMed  Google Scholar 

  48. Fang X, Li K, Tao X, Chen C, Wang X, Wang L, Wang DC, Zhang Y, Bai C, Wang XD. Effects of phosphoinositide 3-kinase on protease-induced acute and chronic lung inflammation, remodeling, and emphysema in rats. Chest. 2013;143:1025–35. [PubMed: 23188423]

    Article  CAS  PubMed  Google Scholar 

  49. Truedsson M, Malm J, Barbara Sahlin K, Bugge M, Wieslander E, Dahlbäck M, Appelqvist R, Fehniger TE, Marko-Varga G. Biomarkers of early chronic obstructive pulmonary disease (COPD) in smokers and former smokers. Protocol of a longitudinal study. Clin Transl Med. 2016;5:9. [PubMed: 26951192]

    Article  PubMed  PubMed Central  Google Scholar 

  50. Wang YL, Bai CX, Li K, Adler KB, Wang XD. Role of airway epithelial cells in development of asthma and allergic rhinitis. Respir Med. 2008;102:949–55. [PubMed: 18339528]

    Article  PubMed  Google Scholar 

  51. Sohal SS, Mahmood MQ, Walters EH. Clinical significance of epithelial mesenchymal transition (EMT) in chronic obstructive pulmonary disease (COPD): potential target for prevention of airway fibrosis and lung cancer. Clin Transl Med. 2014;3:33. [PubMed: 26932377]

    Article  PubMed  PubMed Central  Google Scholar 

  52. King PT. Inflammation in chronic obstructive pulmonary disease and its role in cardiovascular disease and lung cancer. Clin Transl Med. 2015;4:68. [PubMed: 26220864]

    Article  PubMed  Google Scholar 

  53. Yan FG, Chen CS, Jing JY, Li W, Shen HB, Wang XD. Association between polymorphism of glutathione S-transferase P1 and chronic obstructive pulmonary disease: a meta-analysis. Respir Med. 2010;104:473–80. [PubMed: 20117922]

    Article  PubMed  Google Scholar 

  54. Freeman CM, Curtis JL. Lung dendritic cells: shaping immune responses throughout chronic obstructive pulmonary disease progression. Am J Respir Cell Mol Biol. 2017;56:152–9. [PubMed: 27767327]

    CAS  PubMed  Google Scholar 

  55. Upham JW, Xi Y. Dendritic cells in human lung disease: recent advances. Chest. 2017;151:668–73. [PubMed: 27729261]

    Article  PubMed  Google Scholar 

  56. Wang W, Zhu B, Wang X. Dynamic phenotypes: illustrating a single-cell odyssey. Cell Biol Toxicol. 2017. https://doi.org/10.1007/s10565-017-9400-2. [PubMed: 28638956

  57. Fessenden M. Metabolomics: small molecules, single cells. Nature. 2016;540:153–5. [PubMed: 27905420]

    Article  CAS  PubMed  Google Scholar 

  58. Wang W, Wang X. Single-cell CRISPR screening in drug resistance. Cell Biol Toxicol. 2017;33:207–10. [PubMed: 28474250]

    Article  CAS  PubMed  Google Scholar 

  59. Niu F, Wang DC, Lu JP, Wu W, Wang XD. Potentials of single-cell biology in identification and validation of disease biomarkers. J Cell Mol Med. 2016;20:1789–95. [PubMed: 27113384]

    Article  PubMed  PubMed Central  Google Scholar 

  60. Barnes PJ. Cellular and molecular mechanisms of chronic obstructive pulmonary disease. Clin Chest Med. 2014;35:71–86. [PubMed: 24507838]

    Article  PubMed  Google Scholar 

  61. Jiang Y, Wang X, Hu D. Mitochondrial alterations during oxidative stress in chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2017;12:1153–62. [PubMed: 28458526]

    Article  PubMed  PubMed Central  Google Scholar 

  62. Papa S, Martino PL, Capitanio G, Gaballo A, De Rasmo D, Signorile A, Petruzzella V. The oxidative phosphorylation system in mammalian mitochondria. Adv Exp Med Biol. 2012;942:3–37. [PubMed: 22399416]

    Article  CAS  PubMed  Google Scholar 

  63. Reddi AR, Hamza I. Heme mobilization in animals: a Metallolipid’s journey. Acc Chem Res. 2016;49:1104–10. [PubMed: 27254265]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Leu JI, Dumont P, Hafey M, Murphy ME, George DL. Mitochondrial p53 activates Bak and causes disruption of a Bak-Mcl1 complex. Nat Cell Biol. 2004;6:443–50. [PubMed: 15077116]

    Article  CAS  PubMed  Google Scholar 

  65. Huang L, Han J, Ben-Hail D, He L, Li B, Chen Z, Wang Y, Yang Y, Liu L, Zhu Y, et al. A new fungal Diterpene induces VDAC1-dependent apoptosis in Bax/Bak-deficient cells. J Biol Chem. 2015;290:23563–78. [PubMed: 26253170]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Roland FH, Sina Z, Simone MB, Arjan K, Harold GB. Prolonged cigarette smoke exposure alters mitochondrial structure and function in airway epithelial cells. Respir Res. 2013;14:97. [PubMed: 24088173]

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported by Zhongshan Distinguished Professor Grant (XDW), the National Nature Science Foundation of China (91230204, 81270099, 81320108001, 81270131, 81300010), the Shanghai Committee of Science and Technology (12JC1402200, 12431900207, 11410708600, 14431905100), the operation funding of Shanghai Institute of Clinical Bioinformatics, the Ministry of Education for Academic Special Science and Research Foundation for PhD Education (20130071110043), and the National Key Research and Development Program (2016YFC0902400, 2017YFSF090207).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangdong Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Editor(s) (if applicable) and The Author(s) 2018

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, L., Wang, W., Zhu, B., Wang, X. (2017). Epithelial Mitochondrial Dysfunction in Lung Disease. In: Sun, H., Wang, X. (eds) Mitochondrial DNA and Diseases. Advances in Experimental Medicine and Biology, vol 1038. Springer, Singapore. https://doi.org/10.1007/978-981-10-6674-0_14

Download citation

Publish with us

Policies and ethics