Advertisement

Beyond Deubiquitylation: USP30-Mediated Regulation of Mitochondrial Homeostasis

  • Jiayun Hou
  • Mohmmad Eldeeb
  • Xiangdong WangEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1038)

Abstract

Mutations or sequence aberrations in the Parkin gene are among the most common causes of autosomal recessive Parkinson’s disorder (PD). Parkin, a cytoplasmic E3 ubiquitin ligase, is involved in mitochondrial quality control pathways, including mitochondrial fission and mitophagy by autophagy-related genes. Parkin mediates the covalent addition of ubiquitin (Ub) chains to Lys 6, Lys 11, and Lys 63 on diverse mitochondrial-related target proteins. USP30, a mitochondrial deubiquitinase, promotes mitochondrial fusion by mediating the deubiquitination of ubiquitylated forms of mitofusins, such as Mfn1 and Mfn2. USP30 preferentially mediates the removal of Ub chains from Lys 6 and Lys 11 on mitochondria-derived proteins. USP30 mediates the removal of the ubiquitin chains added by Parkin. It was demonstrated that overexpression of USP30 triggers the mitochondrial dynamic signaling toward elevated fusion and reduced fission and halts mitochondrial clearance via mitophagy. Although mounting lines of evidences reveal the pivotal role of Parkin in mitochondrial quality control pathways, the crucial role of deubiquitinases including the USP30 deubiquitinase is emerging. Herein, we review briefly the role of USP30 in the dynamic networks of mitochondrial quality control and its physiological implications.

Keywords

Mitochondrial fusion Mitochondrial fission Mitophagy Deubiquitylation USP30 

Notes

Acknowledgments

The work was supported by Zhongshan Distinguished Professor Grant (XDW), the National Nature Science Foundation of China (91230204, 81270099, 81320108001, 81270131, 81300010), the Shanghai Committee of Science and Technology (12JC1402200, 12431900207, 11410708600, 14431905100), the operation funding of Shanghai Institute of Clinical Bioinformatics, the Ministry of Education for Academic Special Science and Research Foundation for PhD Education (20130071110043), and the National Key Research and Development Program (2016YFC0902400, 2017YFSF090207).

References

  1. 1.
    Bordi M, Nazio F, Campello S. The close interconnection between mitochondrial dynamics and mitophagy in cancer. Front Oncol. 2017;7:81. [PMID:28512624]CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Gugnoni M, Sancisi V, Manzotti G, Gandolfi G, Ciarrocchi A. Autophagy and epithelial-mesenchymal transition: an intricate interplay in cancer. Cell Death Dis. 2016;7:e2520. [PMID:27929542]CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues. Cell. 2011;147:728–41. [PMID:22078875]CrossRefPubMedGoogle Scholar
  4. 4.
    Takayama K, Matsuura A, Itakura E. Dissection of ubiquitinated protein degradation by basal autophagy. FEBS Lett. 2017;591:1199–211. [PMID:28369861]CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Bragoszewski P, Turek M, Chacinska A. Control of mitochondrial biogenesis and function by the ubiquitin-proteasome system. Open Biol. 2017;7:170007. [PMID:28446709]CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Eldeeb M, Fahlman R. The-N-end rule: the beginning determines the end. Protein Pept Lett. 2016;23:343–8. [PMID:26743630]CrossRefPubMedGoogle Scholar
  7. 7.
    Weissman AM, Shabek N, Ciechanover A. The predator becomes the prey: regulating the ubiquitin system by ubiquitylation and degradation. Nat Rev Mol Cell Biol. 2011;12:605–20. [PMID:21860393]CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Escobar-Henriques M. Mitofusins: ubiquitylation promotes fusion. Cell Res. 2014;24:387–8. [PMID:24556809]CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Cunningham CN, Baughman JM, Phu L, Tea JS, Yu C, Coons M, et al. USP30 and parkin homeostatically regulate atypical ubiquitin chains on mitochondria. Nat Cell Biol. 2015;17:160–9. [PMID:25621951]CrossRefPubMedGoogle Scholar
  10. 10.
    Lazarou M, Narendra DP, Jin SM, Tekle E, Banerjee S, Youle RJ. PINK1 drives Parkin self-association and HECT-like E3 activity upstream of mitochondrial binding. J Cell Biol. 2013;200:163–72. [PMID:23319602]CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Ordureau A, Sarraf SA, Duda DM, Heo JM, Jedrychowski MP, Sviderskiy VO, et al. Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis. Mol Cell. 2014;56:360–75. [PMID:25284222]CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Hunter T. The age of crosstalk: phosphorylation, ubiquitination, and beyond. Mol Cell. 2007;28:730–8. [PMID:18082598]CrossRefPubMedGoogle Scholar
  13. 13.
    Eldeeb MA, Fahlman RP. Phosphorylation impacts N-end rule degradation of the proteolytically activated form of BMX kinase. J Biol Chem. 2016;291:22757–68. [PMID:27601470]CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Swaney DL, Rodriguez-Mias RA, Villen J. Phosphorylation of ubiquitin at Ser65 affects its polymerization, targets, and proteome-wide turnover. EMBO Rep. 2015;16:1131–44. [PMID:26142280]CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Wauer T, Swatek KN, Wagstaff JL, Gladkova C, Pruneda JN, Michel MA, et al. Ubiquitin Ser65 phosphorylation affects ubiquitin structure, chain assembly and hydrolysis. EMBO J. 2015;34:307–25. [PMID:25527291]CrossRefPubMedGoogle Scholar
  16. 16.
    Lokireddy S, Wijesoma IW, Teng S, Bonala S, Gluckman PD, McFarlane C, et al. The ubiquitin ligase Mul1 induces mitophagy in skeletal muscle in response to muscle-wasting stimuli. Cell Metab. 2012;16:613–24. [PMID:23140641]CrossRefPubMedGoogle Scholar
  17. 17.
    Hosoi KI, Miyata N, Mukai S, Furuki S, Okumoto K, Cheng EH, et al. The VDAC2-BAK axis regulates peroxisomal membrane permeability. J Cell Biol. 2017;216:709–22. [PMID:28174205]CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Ott C, Dorsch E, Fraunholz M, Straub S, Kozjak-Pavlovic V. Detailed analysis of the human mitochondrial contact site complex indicate a hierarchy of subunits. PLoS One. 2015;10:e0120213. [PMID:25781180]CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Yun J, Puri R, Yang H, Lizzio MA, Wu C, Sheng ZH, et al. MUL1 acts in parallel to the PINK1/parkin pathway in regulating mitofusin and compensates for loss of PINK1/parkin. elife. 2014;3:e01958. [PMID:24898855]CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Syu JS, Baba T, Huang JY, Ogawa H, Hsieh CH, JX H, et al. Lysosomal activity maintains glycolysis and cyclin E1 expression by mediating Ad4BP/SF-1 stability for proper steroidogenic cell growth. Sci Rep. 2017;7:240. [PMID:28325912]CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Riba A, Deres L, Eros K, Szabo A, Magyar K, Sumegi B, et al. Doxycycline protects against ROS-induced mitochondrial fragmentation and ISO-induced heart failure. PLoS One. 2017;12:e0175195. [PMID:28384228]CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Prieto J, Torres J. Mitochondrial dynamics: in cell reprogramming as it is in cancer. Stem Cells Int. 2017;2017:8073721. [PMID:28484497]CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Li Z, Ding B, Zhou X, Wang GL. The Rice Dynamin-related protein OsDRP1E negatively regulates programmed cell death by controlling the release of cytochrome c from mitochondria. PLoS Pathog. 2017;13:e1006157. [PMID:28081268]CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Ulengin I, Park JJ, Lee TH. ER network formation and membrane fusion by atlastin1/SPG3A disease variants. Mol Biol Cell. 2015;26:1616–28. [PMID:25761634]CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Santoro A, Campolo M, Liu C, Sesaki H, Meli R, Liu ZW, et al. DRP1 suppresses leptin and glucose sensing of POMC neurons. Cell Metab. 2017;25:647–60. [PMID:28190775]CrossRefPubMedGoogle Scholar
  26. 26.
    Moustaq L, Smaczynska-de R II, Palmer SE, Marklew CJ, Ayscough KR. Insights into dynamin-associated disorders through analysis of equivalent mutations in the yeast dynamin Vps1. Microb Cell. 2016;3:147–58. [PMID:28357347]CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Dalmasso G, Marin Zapata PA, Brady NR, Hamacher-Brady A. Agent-based modeling of mitochondria links sub-cellular dynamics to cellular homeostasis and heterogeneity. PLoS One. 2017;12:e0168198. [PMID:28060865CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Cao YL, Meng S, Chen Y, Feng JX, DD G, Yu B, et al. MFN1 structures reveal nucleotide-triggered dimerization critical for mitochondrial fusion. Nature. 2017;542:372–6. [PMID:28114303]CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Sawyer EM, Brunner EC, Hwang Y, Ivey LE, Brown O, Bannon M, et al. Testis-specific ATP synthase peripheral stalk subunits required for tissue-specific mitochondrial morphogenesis in Drosophila. BMC Cell Biol. 2017;18:16. [PMID:28335714]CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Shirozu R, Yashiroda H, Murata S. Proteasome impairment induces recovery of mitochondrial membrane potential and an alternative pathway of mitochondrial fusion. Mol Cell Biol. 2015;36:347–62. [PMID:26552703]PubMedGoogle Scholar
  31. 31.
    Pendin D, Filadi R, Pizzo P. The concerted action of mitochondrial dynamics and positioning: new characters in cancer onset and progression. Front Oncol. 2017;102:7. [PMID:28589083]Google Scholar
  32. 32.
    Qi Y, Yan L, Yu C, Guo X, Zhou X, Hu X, et al. Structures of human mitofusin 1 provide insight into mitochondrial tethering. J Cell Biol. 2016;215:621–9. [PMID:27920125]CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Del Campo A, Jaimovich E, Tevy MF. Mitochondria in the aging muscles of flies and mice: new perspectives for old characters. Oxidative Med Cell Longev. 2016;2016:9057593. [PMID:27630760]CrossRefGoogle Scholar
  34. 34.
    Norris KL, Hao R, Chen LF, Lai CH, Kapur M, Shaughnessy PJ, et al. Convergence of Parkin, PINK1, and alpha-Synuclein on stress-induced mitochondrial morphological remodeling. J Biol Chem. 2015;290:13862–74. [PMID:25861987]CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Fang CL, Sun DP, Chen HK, Lin CC, Hung ST, Uen YH, et al. Overexpression of mitochondrial GTPase MFN2 represents a negative prognostic marker in human gastric cancer and its inhibition exerts anti-cancer effects. J Cancer. 2017;8:1153–61. [PMID:28607589]CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Beresewicz M, Boratynska-Jasinska A, Charzewski L, Kawalec M, Kabzinska D, Kochanski A, et al. The effect of a novel c.820C>T (Arg274Trp) mutation in the Mitofusin 2 gene on fibroblast metabolism and clinical manifestation in a patient. PLoS One. 2017;12:e0169999. [PMID:28076385]CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Trotta AP, Chipuk JE. Mitochondrial dynamics as regulators of cancer biology. Cell Mol Life Sci. 2017;74:1999–2017. [PMID:28083595]CrossRefPubMedGoogle Scholar
  38. 38.
    Bannerman P, Burns T, Xu J, Miers L, Pleasure D. Mice hemizygous for a pathogenic Mitofusin-2 allele exhibit hind limb/foot gait deficits and phenotypic perturbations in nerve and muscle. PLoS One. 2016;11:e0167573. [PMID:27907123]CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Hardwick JM, Soane L. Multiple functions of BCL-2 family proteins. Cold Spring Harb Perspect Biol. 2013;5(2):pii: a008722. https://doi.org/10.1101/cshperspect.a008722. [PMID:23378584]
  40. 40.
    Yue W, Chen Z, Liu H, Yan C, Chen M, Feng D, et al. A small natural molecule promotes mitochondrial fusion through inhibition of the deubiquitinase USP30. Cell Res. 2014;24:482–96. [PMID:24513856]CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Hu C, Huang Y, Li L. Drp1-dependent mitochondrial fission plays critical roles in physiological and pathological progresses in mammals. Int J Mol Sci. 2017;18:144. [PMID:28098754]CrossRefPubMedCentralGoogle Scholar
  42. 42.
    Romanello V, Sandri M. Mitochondrial quality control and muscle mass maintenance. Front Physiol. 2015;6:422. [PMID:26793123]PubMedGoogle Scholar
  43. 43.
    Cohen MM, Amiott EA, Day AR, Leboucher GP, Pryce EN, Glickman MH, et al. Sequential requirements for the GTPase domain of the mitofusin Fzo1 and the ubiquitin ligase SCFMdm30 in mitochondrial outer membrane fusion. J Cell Sci. 2011;124:1403–10. [PMID:21502136]CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Novak EA, Mollen KP. Mitochondrial dysfunction in inflammatory bowel disease. Front Cell Dev Biol. 2015;3:62. [PMID:26484345]CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Van Laar VS, Berman SB. The interplay of neuronal mitochondrial dynamics and bioenergetics: implications for Parkinson’s disease. Neurobiol Dis. 2013;51:43–55. [PMID:22668779]CrossRefPubMedGoogle Scholar
  46. 46.
    Tang YC, Tian HX, Yi T, Chen HB. The critical roles of mitophagy in cerebral ischemia. Protein Cell. 2016;7:699–713. [PMID:27554669]CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Garedew A, Andreassi C, Moncada S. Mitochondrial dynamics, biogenesis, and function are coordinated with the cell cycle by APC/C CDH1. Cell Metab. 2012;15:466–79. [PMID:22482729]CrossRefPubMedGoogle Scholar
  48. 48.
    Braganza A, Li J, Zeng X, Yates NA, Dey NB, Andrews J, et al. UBE3B is a Calmodulin-regulated, mitochondrion-associated E3 ubiquitin ligase. J Biol Chem. 2017;292:2470–84. [PMID:28003368]CrossRefPubMedGoogle Scholar
  49. 49.
    Leboucher GP, Tsai YC, Yang M, Shaw KC, Zhou M, Veenstra TD, et al. Stress-induced phosphorylation and proteasomal degradation of mitofusin 2 facilitates mitochondrial fragmentation and apoptosis. Mol Cell. 2012;47:547–57. [PMID:22748923]CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Mouton-Liger F, Jacoupy M, Corvol JC, Corti O. PINK1/Parkin-dependent mitochondrial surveillance: from pleiotropy to Parkinson’s disease. Front Mol Neurosci. 2017;10:120. [PMID:28507507]CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Kuhlbrandt W. Structure and function of mitochondrial membrane protein complexes. BMC Biol. 2015;13:89. [PMID:26515107]CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Bin-Umer MA, McLaughlin JE, Butterly MS, McCormick S, Tumer NE. Elimination of damaged mitochondria through mitophagy reduces mitochondrial oxidative stress and increases tolerance to trichothecenes. Proc Natl Acad Sci U S A. 2014;111:11798–803. [PMID:25071194]CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Knorre DA, Sokolov SS, Zyrina AN, Severin FF. How do yeast sense mitochondrial dysfunction? Microb Cell. 2016;3:532–9. [PMID:28357322]CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Tanida I. Autophagy basics. Microbiol Immunol. 2011;55:1–11. [PMID:21175768]CrossRefPubMedGoogle Scholar
  55. 55.
    Singh V, Finke-Isami J, Hopper-Chidlaw AC, Schwerk P, Thompson A, Tedin K. Salmonella co-opts host cell chaperone-mediated autophagy for intracellular growth. J Biol Chem. 2017;292:1847–64. [PMID:27932462]CrossRefPubMedGoogle Scholar
  56. 56.
    Budini M, Buratti E, Morselli E, Criollo A. Autophagy and its impact on neurodegenerative diseases: new roles for TDP-43 and C9orf72. Front Mol Neurosci. 2017;10:170. [PMID:28611593]CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Lazarou M, Jin SM, Kane LA, Youle RJ. Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin. Dev Cell. 2012;22:320–33. [PMID:22280891]CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Pathak D, Berthet A, Bendor JT, Yu K, Sellnow RC, Orr AL, et al. Loss of alpha-Synuclein does not affect mitochondrial bioenergetics in rodent neurons. eNeuro. 2017;4(2). pii: ENEURO.0216-16. doi:https://doi.org/10.1523/ENEURO.0216-16. [PMID:28462393]
  59. 59.
    Anding AL, Baehrecke EH. Cleaning house: selective autophagy of organelles. Dev Cell. 2017;41:10–22. [PMID:28399394]CrossRefPubMedGoogle Scholar
  60. 60.
    Packiriswamy N, Coulson KF, Holcombe SJ, Sordillo LM. Oxidative stress-induced mitochondrial dysfunction in a normal colon epithelial cell line. World J Gastroenterol. 2017;23:3427–39. [PMID:28596679]CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Gong Y, Schumacher SE, WH W, Tang F, Beroukhim R, Chan TA. Pan-cancer analysis links PARK2 to BCL-XL-dependent control of apoptosis. Neoplasia. 2017;19:75–83. [PMID:28038320]CrossRefPubMedGoogle Scholar
  62. 62.
    Han K, Hassanzadeh S, Singh K, Menazza S, Nguyen TT, Stevens MV, et al. Parkin regulation of CHOP modulates susceptibility to cardiac endoplasmic reticulum stress. Sci Rep. 2017;7:2093. [PMID:28522833]CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Kankuan W, Wanichanon C, Titone R, Engsusophon A, Sumpownon C, Suphamungmee W, et al. Starvation promotes autophagy-associated maturation of the ovary in the giant freshwater prawn, Macrobrachium rosenbergii. Front Physiol. 2017;300:8. [PMID:28553234]Google Scholar
  64. 64.
    Dagda RK, Rice M. Protocols for assessing mitophagy in neuronal cell lines and primary neurons. NeuroMethods. 2017;123:249–77. [PMID:28603343]CrossRefPubMedGoogle Scholar
  65. 65.
    Reina S, Guarino F, Magri A, De Pinto V. VDAC3 as a potential marker of mitochondrial status is involved in cancer and pathology. Front Oncol. 2016;264:6. [PMID:28066720]Google Scholar
  66. 66.
    Bartolome F, Esteras N, Martin-Requero A, Boutoleau-Bretonniere C, Vercelletto M, Gabelle A, et al. Pathogenic p62/SQSTM1 mutations impair energy metabolism through limitation of mitochondrial substrates. Sci Rep. 2017;7:1666. [PMID:28490746]CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Strappazzon F, Cecconi F. AMBRA1-induced mitophagy: a new mechanism to cope with cancer? Mol Cell Oncol. 2015;2:e975647. [PMID:27308437]CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Gelmetti V, De Rosa P, Torosantucci L, Marini ES, Romagnoli A, Di Rienzo M, et al. PINK1 and BECN1 relocalize at mitochondria-associated membranes during mitophagy and promote ER-mitochondria tethering and autophagosome formation. Autophagy. 2017;13:654–69. [PMID:28368777]CrossRefPubMedGoogle Scholar
  69. 69.
    Lai SC, Devenish R. Peering into the ‘black box’ of pathogen recognition by cellular autophagy systems. Microb Cell. 2015;2:322–8. [PMID:28357309]CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Wesselborg S, Stork B. Autophagy signal transduction by ATG proteins: from hierarchies to networks. Cell Mol Life Sci. 2015;72:4721–57. [PMID:26390974]CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Itakura E, Kishi-Itakura C, Koyama-Honda I, Mizushima N. Structures containing Atg9A and the ULK1 complex independently target depolarized mitochondria at initial stages of Parkin-mediated mitophagy. J Cell Sci. 2012;125:1488–99. [PMID:22275429]CrossRefPubMedGoogle Scholar
  72. 72.
    Bingol B, Tea JS, Phu L, Reichelt M, Bakalarski CE, Song Q, et al. The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy. Nature. 2014;510:370–5. [PMID:24896179]PubMedGoogle Scholar
  73. 73.
    Rugarli EI, Langer T. Mitochondrial quality control: a matter of life and death for neurons. EMBO J. 2012;31:1336–49. [PMID:22354038]CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Lippai M, Szatmari Z. Autophagy-from molecular mechanisms to clinical relevance. Cell Biol Toxicol. 2017;33:145–68. [PMID:27957648]CrossRefPubMedGoogle Scholar
  75. 75.
    Hsu HC, Li SJ, Chen CY, Chen MF. Eicosapentaenoic acid protects cardiomyoblasts from lipotoxicity in an autophagy-dependent manner. Cell Biol Toxicol. 2017, July 24. doi:https://doi.org/10.1007/s10565-017-9406-9.[PMID:28741157]
  76. 76.
    Poindexter KM, Matthew S, Aronchik I, Firestone GL. Cooperative antiproliferative signaling by aspirin and indole-3-carbinol targets microphthalmia-associated transcription factor gene expression and promoter activity in human melanoma cells. Cell Biol Toxicol. 2016;32:103–19. [PMID:27055402]CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Opperman CM, Sishi BJ. Tumor necrosis factor alpha stimulates p62 accumulation and enhances proteasome activity independently of ROS. Cell Biol Toxicol. 2015;31:83–94. [PMID:25761618]CrossRefPubMedGoogle Scholar
  78. 78.
    Mbah NE, Overmeyer JH, Maltese WA. Disruption of endolysosomal trafficking pathways in glioma cells by methuosis-inducing indole-based chalcones. Cell Biol Toxicol. 2017;33:263–82. [PMID:27822587]CrossRefPubMedGoogle Scholar
  79. 79.
    Venkatesan T, Choi YW, Mun SP, Kim YK. Pinus radiata bark extract induces caspase-independent apoptosis-like cell death in MCF-7 human breast cancer cells. Cell Biol Toxicol. 2016;32:451–64. [PMID:27400986]CrossRefPubMedGoogle Scholar
  80. 80.
    Zerin T, Kim JS, Gil HW, Song HY, Hong SY. Effects of formaldehyde on mitochondrial dysfunction and apoptosis in SK-N-SH neuroblastoma cells. Cell Biol Toxicol. 2015;31:261–72. [PMID:26728267]CrossRefPubMedGoogle Scholar
  81. 81.
    Soltani B, Ghaemi N, Sadeghizadeh M, Najafi F. Curcumin confers protection to irradiated THP-1 cells while its nanoformulation sensitizes these cells via apoptosis induction. Cell Biol Toxicol. 2016;32:543–61. [PMID:27473378]CrossRefPubMedGoogle Scholar
  82. 82.
    Seo JB, Jung SR, Hille B, Koh DS, Extracellular ATP. Protects pancreatic duct epithelial cells from alcohol-induced damage through P2Y1 receptor-cAMP signal pathway. Cell Biol Toxicol. 2016;32:229–47. [PMID:27197531]CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Ganta KK, Mandal A, Chaubey B. Depolarization of mitochondrial membrane potential is the initial event in non-nucleoside reverse transcriptase inhibitor efavirenz induced cytotoxicity. Cell Biol Toxicol. 2017;33:69–82. [PMID:27639578]CrossRefPubMedGoogle Scholar
  84. 84.
    Fathi H, Ebrahimzadeh MA, Ziar A, Mohammadi H. Oxidative damage induced by retching; antiemetic and neuroprotective role of Sambucus ebulus L. Cell Biol Toxicol. 2015;31:231–9. [PMID:26493312]CrossRefPubMedGoogle Scholar
  85. 85.
    Zhu LZ, Hou YJ, Zhao M, Yang MF, XT F, Sun JY, et al. Caudatin induces caspase-dependent apoptosis in human glioma cells with involvement of mitochondrial dysfunction and reactive oxygen species generation. Cell Biol Toxicol. 2016;32:333–45. [PMID:27184666]CrossRefPubMedGoogle Scholar
  86. 86.
    Bao L, Diao H, Dong N, Su X, Wang B, Mo Q, et al. Histone deacetylase inhibitor induces cell apoptosis and cycle arrest in lung cancer cells via mitochondrial injury and p53 up-acetylation. Cell Biol Toxicol. 2016;32:469–82. [PMID:27423454]CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Gu J, Wang X. New future of cell biology and toxicology: thinking deeper. Cell Biol Toxicol. 2016;32:1–3. [PMID:26874518]CrossRefPubMedGoogle Scholar
  88. 88.
    Divolis G, Mavroeidi P, Mavrofrydi O, Papazafiri P. Differential effects of calcium on PI3K-Akt and HIF-1alpha survival pathways. Cell Biol Toxicol. 2016;32:437–49. [PMID:27344565]CrossRefPubMedGoogle Scholar
  89. 89.
    Guney Eskiler G, Cecener G, Tunca B, Egeli U. An in vitro model for the development of acquired tamoxifen resistance. Cell Biol Toxicol. 2016;32:563–81. [PMID:27585693]CrossRefPubMedGoogle Scholar
  90. 90.
    Chu MP, Kriangkum J, Venner CP, Sandhu I, Hewitt J, Belch AR, et al. Addressing heterogeneity of individual blood cancers: the need for single cell analysis. Cell Biol Toxicol. 2017;33:83–97. [PMID:27761761]CrossRefPubMedGoogle Scholar
  91. 91.
    Wang W, Gao D, Wang X. Can single-cell RNA sequencing crack the mystery of cells? Cell Biol Toxicol. 2017, July 21. doi:https://doi.org/10.1007/s10565-017-9404-y. [PMID:28733864]
  92. 92.
    Wang W, Zhu B, Wang X. Dynamic phenotypes: illustrating a single-cell odyssey. Cell Biol Toxicol. 2017;33:423–7. [PMID:28638956]CrossRefGoogle Scholar
  93. 93.
    Wang W, Wang X, Single-cell CRISPR. Screening in drug resistance. Cell Biol Toxicol. 2017;33:207–10. [PMID:28474250]CrossRefPubMedGoogle Scholar
  94. 94.
    He M, Zhou Z, Shah AA, Zou H, Tao J, Chen Q, et al. The emerging role of deubiquitinating enzymes in genomic integrity, diseases, and therapeutics. Cell Biosci. 2016;6:62. [PMID:28031783]CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Cornelissen T, Haddad D, Wauters F, Van Humbeeck C, Mandemakers W, Koentjoro B, et al. The deubiquitinase USP15 antagonizes Parkin-mediated mitochondrial ubiquitination and mitophagy. Hum Mol Genet. 2014;23:5227–42. [PMID:24852371]CrossRefPubMedGoogle Scholar
  96. 96.
    Wang Y, Serricchio M, Jauregui M, Shanbhag R, Stoltz T, Di Paolo CT, et al. Deubiquitinating enzymes regulate PARK2-mediated mitophagy. Autophagy. 2015;11:595–606. [PMID:25915564]CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s) 2018 2017

Authors and Affiliations

  1. 1.Zhongshan Hospital Institute of Clinical ScienceFudan UniversityShanghaiChina
  2. 2.Shanghai Institute of Clinical Bioinformatics, Biomedical Research CenterShanghaiChina
  3. 3.Department of BiochemistryUniversity of AlbertaEdmontonCanada
  4. 4.Zhongshan Hospital Institute of Clinical ScienceFudan University, Shanghai Medical CollegeShanghaiChina

Personalised recommendations