Advertisement

How Far Can Mitochondrial DNA Drive the Disease?

  • Hongzhi SunEmail author
  • Weibin ShiEmail author
  • Xiangdong WangEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1038)

Abstract

Mitochondria are one of the dominant drivers for producing cellular energy to meet a large number of biological functions, of which the mitochondrial DNA (mtDNA) is the control center of energetic driving force and the dominant driver of mitochondrial molecular diversification. mtDNA transcription generates the necessary RNAs to regulate the extent and nature of mtRNA post-transcriptional modifications and the activity of nucleus-encoded enzymes. With a special focus on mtDNA, the current volume aims to overview the biology and structures of mtDNA, regulatory roles of mtDNA in lung diseases, or involvement of mtDNA in metabolism. We explore the significance of mtDNA sequencing, methylation, stability, and mutation in the pathogenesis of the diseases. Molecular mechanisms by which mtDNA contribute to the regulation of mitochondrial homeostasis and drug resistance are also discussed. We also point out the importance of mitochondrial ribosome, single cell biology, and gene editing in the understanding of the development of mitochondrial dysfunction in lung disease.

Keywords

Mitochondria mtDNA Diseases Energy Metabolism 

Notes

Acknowledgments

The work was supported by Zhongshan Distinguished Professor Grant (XDW), the National Nature Science Foundation of China (91230204, 81270099, 81320108001, 81270131, 81300010), the Shanghai Committee of Science and Technology (12JC1402200, 12431900207, 11410708600, 14431905100), Operation funding of Shanghai Institute of Clinical Bioinformatics, Ministry of Education for Academic Special Science and Research Foundation for PhD Education (20130071110043), and National Key Research and Development Program (2016YFC0902400, 2017YFSF090207).

References

  1. 1.
    Xu MM, Pu Y, Han D, Shi Y, Cao X, Liang H, et al. Dendritic cells but not macrophages sense tumor mitochondrial DNA for cross-priming through signal regulatory protein α signaling. Immunity. 2017;47(2):363–73. https://doi.org/10.1016/j.immuni.2017.07.016. PMID: 28801234CrossRefPubMedGoogle Scholar
  2. 2.
    Gao S, Tian X, Chang H, Sun Y, Wu Z, Cheng Z, et al. Two novel lncRNAs discovered in human mitochondrial DNA using PacBio full-length transcriptome data. Mitochondrion. 2017. https://doi.org/10.1016/j.mito.2017.08.002. PMID: 28802668
  3. 3.
    Pearce SF, Rebelo-Guiomar P, D’Souza AR, Powell CA, Van Haute L, Minczuk M. Regulation of mammalian mitochondrial gene expression: recent advances. Trends Biochem Sci. 2017;42(8):625–39. PMID: 28285835CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Fang XC, Wang XD, Danderson M, Bai CX. Chronic obstructive pulmonary disease in China: the burden and the importance of proper management. Chest. 2011;139(4):920–9. PMID: 21467059CrossRefPubMedGoogle Scholar
  5. 5.
    Chen C, Shi L, Li Y, Wang X, Yang S. Disease-specific dynamic biomarkers selected by integrating inflammatory mediators with clinical informatics in ARDS patients with severe pneumonia. Cell Biol Toxicol. 2016;32(3):169–84. PMID: 27095254CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Shi L, Zhu B, Xu M, Wang X. Selection of AECOPD-specific immunomodulatory biomarkers by integrating genomics and proteomics with clinical informatics. Cell Biol Toxicol. 2017. https://doi.org/10.1007/s10565-017-9405-x. PMID: 28779230
  7. 7.
    Liu F, Sanin DE, Wang X. Mitochondrial DNA in lung cancer. Adv Exp Med Biol. 2017;1038:2Google Scholar
  8. 8.
    Wang X. New biomarkers and therapeutics can be discovered during COPD-lung cancer transition. Cell Biol Toxicol. 2016;32(5):359–61. PMID: 27405768CrossRefPubMedGoogle Scholar
  9. 9.
    Gu J, Wang X. New future of cell biology and toxicology: thinking deeper. Cell Biol Toxicol. 2016;32(1):1–3. PMID: 26874518CrossRefPubMedGoogle Scholar
  10. 10.
    Wang X. CBT profiles of cabozantinib approved for advanced renal cell carcinomas. Cell Biol Toxicol. 2016;32:259–61. PMID:27383755CrossRefPubMedGoogle Scholar
  11. 11.
    Qian M, Spada C, Wang X. Approach, application and bioethics of mtDNA sequencing in cancer. Adv Exp Med Biol. 2017;1038:3Google Scholar
  12. 12.
    Matilainen O, Quirós PM, Auwerx J. Mitochondria and epigenetics – crosstalk in homeostasis and stress. Trends Cell Biol. 2017;27(6):453–63. PMID: 28274652CrossRefPubMedGoogle Scholar
  13. 13.
    Wang L, Liebmen M, Wang X. Roles of mitochondrial DNA signaling in immune responses. Adv Exp Med Biol. 2017;1038:4Google Scholar
  14. 14.
    Hou J, Eldeeb MA, Wang X. Beyond deubiquitylation: USP30-mediated regulation of mitochondrial homeostasis. Adv Exp Med Biol. 2017;1038:5Google Scholar
  15. 15.
    Lv J, Bhatia M, Wang X. Roles of mitochondrial DNA in energy metabolism. Adv Exp Med Biol. 2017;1038:6Google Scholar
  16. 16.
    Park SJ, Gavrilova O, Brown AL, Soto JE, Bremner S, Kim J, et al. DNA-PK promotes the mitochondrial, metabolic, and physical decline that occurs during aging. Cell Metab. 2017;25(5):1135–1146.e7. PMID: 28467930CrossRefPubMedGoogle Scholar
  17. 17.
    Kikuchi S, Ninomiya T, Kohno T, Kojima T, Tatsumi H. Cobalt inhibits motility of axonal mitochondria and induces axonal degeneration in cultured dorsal root ganglion cells of rat. Cell Biol Toxicol. 2017. https://doi.org/10.1007/s10565-017-9402-0. PMID: 28656345
  18. 18.
    Zerin T, Kim JS, Gil HW, Song HY, Hong SY. Effects of formaldehyde on mitochondrial dysfunction and apoptosis in SK-N-SH neuroblastoma cells. Cell Biol Toxicol. 2015;31(6):261–72. PMID: 26728267CrossRefPubMedGoogle Scholar
  19. 19.
    Vedi M, Sabina EP. Assessment of hepatoprotective and nephroprotective potential of withaferin a on bromobenzene-induced injury in Swiss albino mice: possible involvement of mitochondrial dysfunction and inflammation. Cell Biol Toxicol. 2016;32(5):373–90. PMID: 27250656CrossRefPubMedGoogle Scholar
  20. 20.
    Song D, Cretoiu D, Wang X. Mitochondrial DNA in telocytes. Adv Exp Med Biol. 2017;1038:7Google Scholar
  21. 21.
    Pan Y, Cao M, Yang Q, Go VG, Lee PWN, Xiao GG. Metabolic regulation in mitochondria and drug resistance. Adv Exp Med Biol. 2017;1038:8Google Scholar
  22. 22.
    Lu B. Mitochondrial Lon protease and cancer. Adv Exp Med Biol. 2017;1038:9Google Scholar
  23. 23.
    Guney Eskiler G, Cecener G, Tunca B, Egeli U. An in vitro model for the development of acquired tamoxifen resistance. Cell Biol Toxicol. 2016;32(6):563–81. PMID: 27585693CrossRefPubMedGoogle Scholar
  24. 24.
    Peng WX, Han X, Zhang CL, Ge L, FY D, Jin J, Gong AH. FoxM1-mediated RFC5 expression promotes temozolomide resistance. Cell Biol Toxicol. 2017. https://doi.org/10.1007/s10565-017-9381-1. PMID: 28185110
  25. 25.
    Gu W, Dong N, Wang P, Shi C, Yang J, Wang J. Tamoxifen resistance and metastasis of human breast cancer cells were mediated by the membrane-associated estrogen receptor ER-α36 signaling in vitro. Cell Biol Toxicol. 2017;33(2):183–95. PMID: 27837347CrossRefPubMedGoogle Scholar
  26. 26.
    Sidor-Kaczmarek J, Cichorek M, Spodnik JH, Wójcik S, Moryś J. Proteasome inhibitors against amelanotic melanoma. Cell Biol Toxicol. 2017. https://doi.org/10.1007/s10565-017-9390-0. PMID: 28281027
  27. 27.
    Ge S, Li T, Yao Q, Yan H, Huiyun Z, Zheng Y, Zhang B, He S. Expression of proteinase-activated receptor (PAR)-2 in monocytes from allergic patients and potential molecular mechanism. Cell Biol Toxicol. 2016;32(6):529–42. PMID: 27423452CrossRefPubMedGoogle Scholar
  28. 28.
    Zhang L, Reyes A, Wang X. The role of base excision repair in maintaining mitochondrial DNA stability. Adv Exp Med Biol. 2017;1038:10Google Scholar
  29. 29.
    Zhang L, Wang W, Zhu B, Wang X. Regulatory roles of mitochondrial ribosome in lung diseases and single cell biology. Adv Exp Med Biol. 2017;1038:11Google Scholar
  30. 30.
    Zhang L, Wang W, Zhu B, Wang X. Epithelial mitochondrial dysfunction in lung disease. Adv Exp Med Biol. 2017; 1038: 12Google Scholar
  31. 31.
    Gao D, Zhu B, Sun H, Wang X. Mitochondrial DNA methylation and related disease. Adv Exp Med Biol. 2017;1038:13Google Scholar
  32. 32.
    Chu MP, Kriangkum J, Venner CP, Sandhu I, Hewitt J, Belch AR, Pilarski LM. Addressing heterogeneity of individual blood cancers: the need for single cell analysis. Cell Biol Toxicol. 2017;33(2):83–97. PMID: 27761761CrossRefPubMedGoogle Scholar
  33. 33.
    Wang W, Gao D, Wang X. Can single-cell RNA sequencing crack the mystery of cells? Cell Biol Toxicol. 2017. https://doi.org/10.1007/s10565-017-9404-y. PMID: 28733864
  34. 34.
    Wang W, Zhu B, Wang X. Dynamic phenotypes: illustrating a single-cell odyssey. Cell Biol Toxicol. 2017.; PMID: 28638956Google Scholar
  35. 35.
    Wang W, Wang X. Single-cell CRISPR screening in drug resistance. Cell Biol Toxicol. 2017;33(3):207–10. https://doi.org/10.1007/s10565-017-9396-7. PMID: 28474250CrossRefPubMedGoogle Scholar
  36. 36.
    Wang W, Hou J, Zhu Z, Fang H. Is mitochondrial cell fragility a cell weakness? Adv Exp Med Biol. 2017;1038:14Google Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s) 2018 2017

Authors and Affiliations

  1. 1.Liaoning Province Key Laboratory of Cancer MetabolomicsJinzhou Hospital of Jinzhou Medical UniversityJinzhouChina
  2. 2.Medical Examination Center of Zhongshan HospitalFudan UniversityShanghaiChina
  3. 3.Zhongshan Hospital Institute of Clinical ScienceFudan University, Shanghai Medical CollegeShanghaiChina

Personalised recommendations