Skip to main content

An Introduction to Brachytherapy

  • Chapter
  • First Online:
  • 1264 Accesses

Abstract

Brachytherapy can deliver a high dose to the tumour while sparing the surrounding normal tissues and is based on the principle of rapid dose fall-off with increasing distance based on the “inverse square law” where a 1 cm difference in coverage can result in dose falling by even half. This involves placing implants in the form of seeds, wires or pellets directly into the tumour. Such implants may be temporary or permanent depending on the implant and the tumour itself. The benefit of such a method is that the tumour receives nearly the entire dose, while healthy tissue hardly receives any. In brachytherapy, very high doses are always obtained close to the sources, and there are actually no large volumes for which the dose is nearly homogeneous as in external beam therapy. The objectives of brachytherapy are to achieve disease control and cure, enable a high tumour-to-normal tissue dose ratio (reducing radiation morbidities), preserve organ function and cosmesis and occasionally use for re-irradiation of recurrent tumours.

This is a preview of subscription content, log in via an institution.

References

  1. Rivard MJ, Coursey BM, DeWerd LA, et al. Update of AAPM Task Group No. 43 Report: a revised AAPM protocol for brachytherapy dose calculations. Med Phys. 2004;31:633.

    Article  PubMed  Google Scholar 

  2. Report No. 38. Dose and volume specification for reporting intracavitary brachytherapy for gynecology. Bethesda, MD: International Commission on Radiation Units and Measurements; 1985.

    Google Scholar 

  3. Hall EJ. Radiobiology for the radiologist. 5th ed. Philadelphia: Lippinott Williams & Wilkins; 2000. p. 401.

    Google Scholar 

  4. Dale RG. The application of the linear-quadratic dose-effect equation to fractionated and protracted radiotherapy. Br J Radiol. 1985;58:515.

    Article  CAS  PubMed  Google Scholar 

  5. Fowler JF. Why shorter half-times for repair lead to greater damage in pulsed brachytherapy. Int J Radiat Oncol Biol Phys. 1993;26:353.

    Article  CAS  PubMed  Google Scholar 

  6. Thames HD. Effect-independent measurements of tissue responses to fractionated irradiation. Int J Radiat Biol Relat Stud Phys Chem Med. 1984;45(1):1–10.

    Article  PubMed  Google Scholar 

  7. Orton CG. High and low dose rate remote afterloading: a critical comparison. In: Sauer R, editor. International radiation therapy techniques—brachytherapy. Berlin: Springer; 1991. p. 53.

    Chapter  Google Scholar 

  8. Hall EJ. Radiobiology for the radiologist. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2000. p. 74.

    Google Scholar 

  9. Nag S, Gupta N. A simple method of obtaining equivalent doses for use in HDR brachytherapy. Int J Radiat Oncol Biol Phys. 2000;46:507–13.

    Article  CAS  PubMed  Google Scholar 

  10. Dale RG. The use of small fraction numbers in high dose-rate gynecological afterloading: some radiobiological considerations. Br J Radiol. 1990;63:290.

    Article  CAS  PubMed  Google Scholar 

  11. Krempien RC, Dacuber S, Hensley FW, et al. Image fusion of CT and MRI data enables improved target volume definition in 3D-brachytherapy treatment planning. Brachytherapy. 2003;2(3):164.

    Article  PubMed  Google Scholar 

  12. Milicokovic N, Giannouli S, Baltas D, et al. Catheter auto reconstruction in computed tomography based brachytherapy treatment planning. Med Phys. 2000;27(5):1047.

    Article  Google Scholar 

  13. Milickovic N, Lahanas M, Papagiannopoulou M, et al. Multiobjective anatomy-based dose optimization for HDR-brachytherapy with constraint free deterministic algorithms. Phys Med Biol. 2002;47:2263.

    Article  CAS  PubMed  Google Scholar 

  14. Kim Y, Hsu I-C, Lessard E, et al. Dose uncertainty due to computed tomography CT slice thickness in CT-based high dose rate brachytherapy of the prostate cancer. Med Phys. 2004;31(9):2543.

    Article  PubMed  Google Scholar 

  15. Yue N, Dicker AP, Nath R, et al. The impact of edema on planning 125I and 103Pd prostate implants. Med Phys. 1999;26:763.

    Article  CAS  PubMed  Google Scholar 

  16. Yue N, Dicker AP, Corn BW, et al. A dynamic model for the estimation of optimum timing of computed tomography scan for dose evaluation of 125I or 103Pd seed implant of prostate. Int J Radiat Oncol Biol Phys. 1999;43:447.

    Article  CAS  PubMed  Google Scholar 

  17. Waterman FM, Yue N, Corn BW, et al. Edema associated with I-125 or Pd-103 prostate brachytherapy and its impact on post-implant dosimetry: an analysis based on serial CT acquisition. Int J Radiat Oncol Biol Phys. 1998;41:1069.

    Article  CAS  PubMed  Google Scholar 

  18. Prestidge BR, Bice WS, Kiefer EJ, et al. Timing of computed tomography-based postimplant assessment following permanent transperineal prostate brachytherapy. Int J Radiat Oncol Biol Phys. 1998;40:1111.

    Article  CAS  PubMed  Google Scholar 

  19. Kim YB, Hsu I-C, Lessard E, et al. Prostate volume change and dosimetric impact of edema between HDR brachytherapy fractions. Int J Radiat Oncol Biol Phys. 2004;59(4):1208.

    Article  PubMed  Google Scholar 

  20. Kim Y, Hsu I, Pouliot J. Cranio-caudal catheter displacement between fractions in CT-based HDR brachytherapy of prostate cancer. J Appl Clin Med Phys. 2007;8(4):1.

    Article  Google Scholar 

  21. Martinez AA, Pataki I, Edmundson G, et al. Phase II prospective study of the use of conformal high-dose-rate brachytherapy as monotherapy for the treatment of favorable stage prostate cancer: a feasibility report. Int J Radiat Oncol Biol Phys. 2001;49(1):61.

    Article  CAS  PubMed  Google Scholar 

  22. Damore SJ, Syed AM, Puthawala AA, et al. Needle displacement during HDR brachytherapy in the treatment of prostate cancer. Int J Radiat Oncol Biol Phys. 2000;46(5):1205.

    Article  CAS  PubMed  Google Scholar 

  23. Mullokandov E, Gejerman G. Analysis of serial CT scans to assess template and catheter movement in prostate HDR brachytherapy. Int J Radiat Oncol Biol Phys. 2004;58(4):1063.

    Article  PubMed  Google Scholar 

  24. Taylor RH, Stoianovici D. Medical robotics in computer-integrated surgery. IEEE Trans Rob Autom. 2003;19(5):765–81.

    Article  Google Scholar 

  25. Cleary K, Melzer A, Watson V, et al. Interventional robotic systems: applications and technology state-of-the-art. Minim Invasiv Ther Allied Technol. 2006;15(2):101–13.

    Article  Google Scholar 

  26. Kwoh YS, Hou J, Jonckheere EA, et al. A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery. IEEE Trans Biomed Eng. 1988;35(2):153.

    Article  CAS  PubMed  Google Scholar 

  27. Masamune K, Ji LH, Suzuki M, et al. A newly developed stereotactic robot with detachable drive for neurosurgery. In:Medical image computing and computer assisted intervention (MICCAI); 1998. p. 215.

    Google Scholar 

  28. Fichtinger G, Burdette EC, Tanacs A, et al. Robotically assisted prostate brachytherapy with transrectal ultrasound guidance phantom experiments. Brachytherapy. 2006;5(1):14.

    Article  PubMed  Google Scholar 

  29. Maurin B, Doignon C, Ganglo J, et al. CT-Bot: a stereotactic-guided robotic assistant for percutaneous procedures of the abdomen. Proc SPIE Med Imag. 2005;2005:241.

    Article  Google Scholar 

  30. Chinzei K, Hata N, Jolesz FA, et al. MR compatible surgical assist robot: system integration and preliminary feasibility study. In:Medical image computing and computer assisted intervention (MICCAI). New York: Springer; 2000. p. 921.

    Google Scholar 

  31. DiMaio SP, Pieper S, Chinzei K, et al. Robot-assisted needle placement in open-MRI: system architecture, integration and validation. In: Westwood JD, et al., editors. Medicine meets virtual reality, vol. 14. Washington: IOS; 2006. p. 126.

    Google Scholar 

  32. Lessard E, Kwa SLS, Pickett B, et al. Class solution for inversely planned permanent prostate implants to mimic an experienced dosimetrist for pre and real-time treatment planning. Med Phys. 2006;33(8):2773.

    Article  PubMed  Google Scholar 

  33. Marion PR, Van Gellekom MP, Marinus A, et al. MRI-guided prostate brachytherapy with single needle method—a planning study. Radiother Oncol. 2004;71:327.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mukherji, A. (2018). An Introduction to Brachytherapy. In: Basics of Planning and Management of Patients during Radiation Therapy. Springer, Singapore. https://doi.org/10.1007/978-981-10-6659-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6659-7_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6658-0

  • Online ISBN: 978-981-10-6659-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics