Skip to main content

Sustainable Power Production from Plant-Mediated Microbial Fuel Cells

  • Chapter
  • First Online:
Sustainable Agriculture towards Food Security

Abstract

The diverse capacity of microbial fuel cells (MFCs) lies in the catabolization of complex/simple organic substrates into electricity with the aid of microbial communities and their interactions. One of the most promising types is plant-based MFCs (P-MFCs), whose benefits allow direct generation of electricity while growing the plants. Since a decade, P-MFCs have been intensively researched and developed, leading to an expansion of their functionalities and improvements in their performance, employing cost-effective materials. The power densities have been amplified mainly due to improvements in the setup construction, operation, and materials, which overcome the system restrictions. Moreover, P-MFCs could be operated with a nitrogen removal system incorporated into the cathodic electron acceptor, which would represent some advantages compared with oxygen as the final terminal electron acceptor. Accordingly, P-MFCs might be a future energy-efficient and economical solution for sustainable agriculture processes and wetland-based wastewater treatment methods. This chapter presents the technologies available in MFCs with a summary of their merits and feasible applications in the near future. Plant-mediated bioelectricity will be an alternative source of generating power throughout the world.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bais HP, Weir TL, Al PLGE (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57(1):233–266

    Article  CAS  PubMed  Google Scholar 

  • Bard AJ, Faulkner LR (2001) Electrochemical methods fundamentals and applications, 2nd edn. Wiley, Hoboken

    Google Scholar 

  • Blossfeld S, Perriguey J, Sterckeman T et al (2010) Rhizosphere pH dynamics in trace-metal-contaminated soils monitored with planar pH optodes. Plant Soil 330(1):173–184

    Article  CAS  Google Scholar 

  • Bond DR, Lovley DR (2005) Evidence for involvement of an electron shuttle in electricity generation by Geothrix fermentans. Appl Environ Microbiol 71:2186–2189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bond DR, Holmes DE, Tender LM et al (2002) Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295:483–485

    Article  CAS  PubMed  Google Scholar 

  • Borole AP, Jonathan RM, Tatiana AV et al (2009) Controlling accumulation of fermentation inhibitors in biorefinery recycle water using microbial fuel cells. Biotechnol Biofuels 2(1):1–14

    Article  Google Scholar 

  • Borole AP, Hamilton CY, Schell DJ (2013) Conversion of residual organics in corn Stover–derived biorefinery stream to bioenergy via a microbial fuel cell. Environ Sci Technol 47:642–648

    Article  CAS  PubMed  Google Scholar 

  • Bose A, Gardel EJ, Vidoudez C, Parra EA, Girguis PR (2014) Electron uptake by iron-oxidizing phototrophic bacteria. Nat Commun 5:3391

    Article  CAS  PubMed  Google Scholar 

  • Byrne JM et al (2015) Redox cycling of Fe(II) and Fe(III) in magnetite by Fe-metabolizing bacteria. Science 347:1473–1476

    Article  CAS  PubMed  Google Scholar 

  • Chae KJ, Choi MJ, Lee JW et al (2009) Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells. Bioresour Technol 100:3518–3525

    Article  CAS  PubMed  Google Scholar 

  • Chaudhuri SK, Lovley DR (2003) Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat Biotechnol 21(10):1229–1232

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Huang YC, Liang JH et al (2012) A novel sediment microbial fuel cell with a biocathode in the rice rhizosphere. Bioresour Technol 108:55–59

    Article  CAS  PubMed  Google Scholar 

  • Cheng S, Logan BE (2011) Increasing power generation for scaling up single-chamber air cathode microbial fuel cells. Bioresour Technol 102(6):4468–4473

    Article  CAS  PubMed  Google Scholar 

  • De Schamphelaire L, Rabaey K, Boeckx P et al (2008) Outlook for benefits of sediment microbial fuel cells with two bio-electrodes. Microbiol Biotechnol 1(6):446–462. Energy Information Administration’s (EIA’s) handling of non-policies in the international energy outlook

    Google Scholar 

  • Emerson D, Moyer C (1997) Isolation and characterization of novel iron-oxidizing bacteria that grow at circumneutral pH. Appl Environ Microbiol 63:4784–4792

    CAS  PubMed  PubMed Central  Google Scholar 

  • Uren N (2007) Types amounts and possible functions of compounds released into the rhizosphere by soil-grown plants. In: The rhizosphere. CRC Press, pp 1–21

    Google Scholar 

  • Garcia AJ, Rousseau DPL, Morato J et al (2010) Contaminant removal processes in subsurface-flow constructed wetlands: a review. Crit Rev Environ Sci Technol 40(7):561–661

    Article  CAS  Google Scholar 

  • Gralnick JA, Newman DK (2007) Extracellular respiration. Mol Microbiol 65:1–11

    Article  PubMed  PubMed Central  Google Scholar 

  • Helder M, Strik DPBTB, Hamelers HVM et al (2010) Concurrent bio-electricity and biomass production in three plant-microbial fuel cells using Spartina anglica, Arundinella anomala and Arundo donax. Bioresour Technol 101(10):3541–3547

    Article  CAS  PubMed  Google Scholar 

  • Helder M, Strik DPBTB, Hamelers HVM et al (2012) New plant-growth medium for increased power output of the plant-microbial fuel cell. Bioresour Technol 104:417–423

    Article  CAS  PubMed  Google Scholar 

  • Helder M, Strik DPBTB, Timmers RA et al (2013) Resilience of roof-top plant-microbial fuel cells during Dutch winter. Biomass Bioenergy 51:1–7

    Article  CAS  Google Scholar 

  • Hernandez ME, Kappler A, Newman DK (2004) Phenazines and other redox-active antibiotics promote microbial mineral reduction. Appl Environ Microbiol 70:921–928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holmes DE, Bond DR, ONeil RA et al (2004) Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments. Microb Ecol 48:178–190

    Article  CAS  PubMed  Google Scholar 

  • Jiao Y, Kappler A, Croal LR, Newman DK (2005) Isolation and characterization of a genetically tractable photoautotrophic Fe(II)-oxidizing bacterium, Rhodopseudomonas palustris strain TIE-1. Appl Environ Microbiol 71:4487–4496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaku N, Yonezawa N, Kodama Y et al (2008) Plant microbe cooperation for electricity generation in a rice paddy field. Appl Microbiol Biotechnol 79(1):43–49

    Article  CAS  PubMed  Google Scholar 

  • Kim HJ, Hyun MS, Chang IS, Kim BH (1999a) A microbial fuel cell type lactate biosensor using a metal-reducing bacterium, Shewanella putrefaciens. J Microbiol Biotechnol 9:365–367

    CAS  Google Scholar 

  • Kim BH, Ikeda T, Park HS et al (1999b) Electrochemical activity of an Fe(III)-reducing bacterium, Shewanella putrefaciens IR-1, in the presence of alternative electron acceptors. Biotechnol Tech 13:475–478

    Article  CAS  Google Scholar 

  • Kim BH, Park DH, Shin PK et al (1999c) Mediator-less biofuel cell. Google Patents

    Google Scholar 

  • Kim HJ, Park HS, Hyun MSA (2002) Mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzym Microb Technol 30:145–152

    Article  CAS  Google Scholar 

  • Kim BH, Park HS, Kim HJ (2004) Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell. Appl Microbiol Biotechnol 63(6):672–681

    Article  CAS  PubMed  Google Scholar 

  • Kim GT, Hyun MS, Chang IS (2005) Dissimilatory Fe(III) reduction by an electrochemically active lactic acid bacterium phylogenetically related to Enterococcus gallinarum isolated from submerged soil. J Appl Microbiol 99:978–987

    Article  CAS  PubMed  Google Scholar 

  • Kondaveeti S, Kwang SC, Ramesh K et al (2014) Microalgae Scenedesmus obliquus as renewable biomass feedstock for electricity generation in microbial fuel cells (MFCs). Front Environ Sci Eng 8(5):784–791

    Article  CAS  Google Scholar 

  • Kumar A, Hsu LH-H, Kavanagh P, Barrière F, Lens PNL, Lapinsonnière L, Leech D (2017) The ins and outs of microorganism–electrode electron transfer reactions. Nat Rev Chem 1:0024

    Article  Google Scholar 

  • Lakaniemi AM, Olli HT, Jaakko AP (2012) Production of electricity and butanol from microalgal biomass in microbial fuel cells. Bio Energy Res 5(2):481–491

    CAS  Google Scholar 

  • Larminie J, Dicks A (2013) Introduction. In: Fuel cell systems explained. Hoboken, Wiley, pp 1–24

    Google Scholar 

  • Liu Z, Liu J, Zhang S et al (2009) Study of operational performance and electrical response on mediator-less microbial fuel cells fed with carbon- and protein-rich substrates. Biochem Eng J 45:185–191

    Article  CAS  Google Scholar 

  • Logan BE (2004) Extracting hydrogen and electricity from renewable resources. Environ Sci Technol 38:160A–167A

    Article  CAS  PubMed  Google Scholar 

  • Logan BE, Regan JM (2006) Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol 14(12):512–518

    Article  CAS  PubMed  Google Scholar 

  • Logan BE, Murano C, Scott K et al (2005) Electricity generation from cysteine in a microbial fuel cell. Water Res 39(5):942–952

    Article  CAS  PubMed  Google Scholar 

  • Logan BE, Hamelers B, Rozendal R et al (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40(17):5181–5192

    Article  CAS  PubMed  Google Scholar 

  • Lovley DR (2006a) Bug juice: harvesting electricity with microorganisms. Nat Rev Microbiol 4:497–508

    Article  CAS  PubMed  Google Scholar 

  • Lovley DR (2006b) Microbial fuel cells: novel microbial physiologies and engineering approaches. Curr Opin Biotechnol 17:327–332

    Article  CAS  PubMed  Google Scholar 

  • Lovley DR, Phillips EJ (1988) Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol 54:1472–1480

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lovley DR, Stolz JF, Nord GL, Phillips EJP (1987) Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature 330:252–254

    Article  CAS  Google Scholar 

  • Lovley DR, Baedecker MJ, Lonergan DJ et al (1989a) Oxidation of aromatic contaminants coupled to microbial iron reduction. Nature 339:297–299

    Article  CAS  Google Scholar 

  • Lovley DR, Phillips EJ, Lonergan DJ (1989b) Hydrogen and formate oxidation coupled to dissimilatory reduction of iron or manganese by Alteromonas putrefaciens. Appl Environ Microbiol 55:700–706

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lovley DR, Phillips EJP, Gorby YA, Landa ER (1991) Microbial reduction of uranium. Nature 350(6317):413–416

    Google Scholar 

  • Lovley DR, Holmes DE, Nevin KP (2004) Dissimilatory Fe(III) and Mn(IV) reduction. Adv Microb Physiol 49:219–286

    Article  CAS  PubMed  Google Scholar 

  • Lynch JM, Whipps JM (1990) Substrate flow in the rhizosphere. Plant Soil 129(1):1–10

    Article  CAS  Google Scholar 

  • Malvankar NS, Mester T, Tuominen MT, Lovley DR (2012) Supercapacitors based on c-type cytochromes using conductive nanostructured networks of living bacteria. ChemPhysChem 13:463–468

    Article  CAS  PubMed  Google Scholar 

  • Melton ED, Swanner ED, Behrens S, Schmidt C, Kappler A (2014) The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle. Nat Rev Microbiol 12:797–808

    Article  CAS  PubMed  Google Scholar 

  • Myers CR, Nealson KH (1988) Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science 240:1319–1321

    Article  CAS  PubMed  Google Scholar 

  • Neumann G (2007) Root exudates and nutrient cycling. In: Marschner P, Rengel Z (eds) Nutrient cycling in terrestrial ecosystems. Springer, Berlin, pp 123–157

    Chapter  Google Scholar 

  • Niessen J, Schroder U, Scholtz F (2004) Exploiting complex carbohydrates for microbial electricity generation—a bacterial fuel cell operating on starch. Elecrochem Commun 6:955–958

    Article  CAS  Google Scholar 

  • Niessen J, Harnisch F, Rosenbaum M et al (2006) Heat treated soil as convenient and versatile source of bacterial communities for microbial electricity generation. Electrochem Commun 8:869–873

    Article  CAS  Google Scholar 

  • Park HS, Kim BH, Kim HS (2001) A novel electrochemically active and Fe(III) reducing bacterium phylogenetically related to Clostridium butyricum isolated from a bacterial fuel cell. Anaerobe 7:297–306

    Article  CAS  Google Scholar 

  • Patra A (2008) Low-cost single-chambered microbial fuel cells for harvesting energy and cleansing waste water. J US SJWP 2008, 3:72–85

    Google Scholar 

  • Pfeffer C, Larsen S, Song J, Dong M, Besenbacher F, Meyer RL, Nielsen LP (2012) Filamentous bacteria transport electrons over centimetre distances. Nature 491(7423):218–221

    Article  CAS  PubMed  Google Scholar 

  • Pham CA, Jung SJ, Phung NT (2003) A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Aeromonas hydrophila, isolated from a microbial fuel cell. FEMS Microbiol Lett 223:129–134

    Article  CAS  PubMed  Google Scholar 

  • Phung NT, Lee J, Kang KH et al (2004) Analysis of microbial diversity in oligotrophic microbial fuel cells using 16S rDNA sequences. FEMS Microbiol Lett 233(1):77–82

    Article  CAS  PubMed  Google Scholar 

  • Potter MC (2011) Electrical effects accompanying the decomposition of organic compounds. Proc R Soc Lond B 84(571):260–276

    Google Scholar 

  • Rabaey K, Verstraete W (2005) Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol 23(6):291–298

    Article  CAS  PubMed  Google Scholar 

  • Rabaey K, Boon N, Siciliano SD (2004) Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl Environ Microbiol 70(9):5373–5382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reimers CE, Tender LM, Fertig S et al (2001) Harvesting energy from the marine sediment−water interface. Environ Sci Technol 35(1):192–195

    Article  CAS  PubMed  Google Scholar 

  • Reimers CE, Girguis P, Stecher HA (2006) Microbial fuel cell energy from an ocean cold seep. Geobiology 4:123–136

    Article  CAS  Google Scholar 

  • Rezaei F, Xing D, Wagner R et al (2009) Simultaneous cellulose degradation and electricity production by Enterobacter cloacae in a microbial fuel cell. Appl Environ Microbiol 75(11):3673–3678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ringeisen BR, Henderson E, Wu PK, Jones-Meehan JM (2006) High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10. Environ Sci Technol 40:2629–2634

    Article  CAS  PubMed  Google Scholar 

  • Ryckelynck N, Stecher HA, Reimers CE (2005) Understanding the anodic mechanism of a seafloor fuel cell: interactions between geochemistry and microbial activity. Bio Geochem 76:113–139

    Google Scholar 

  • Sapsford KE, Russ AW, Berti L et al (2013) Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. Chem Rev 113(3):1904–2074

    Article  CAS  PubMed  Google Scholar 

  • Sathish-Kumar K (2015) Plant based microbial fuel cells, Memorias 1a Reunión de Trabajo, Laboratorio de Materiales Fotovoltaicos, CICATA Altamira. 19 de Junio de

    Google Scholar 

  • Sathish-Kumar K, Solorza-Feria O, Vázquez-Huerta G et al (2012) Electrical stres–directed evolution of biocatalysts community sampled from a sodic–saline soil for microbial fuel cells. J New Mater Electrochem Syst 15(3):181–186

    CAS  Google Scholar 

  • Sathish-Kumar K, Solorza-Feria O, Tapia-Ramírez J et al (2013) Electrochemical and chemical enrichment methods of a sodic–saline inoculum for microbial fuel cells. Int J Hydrogen Energy 38(28):12600–12609

    Article  CAS  Google Scholar 

  • Sathish-Kumar K, Solorza-Feria O, José T-R et al (2015) Microbial fuel cell with wooden integrated graphite based electrode for waste water treatment applications, Mexican patent number: MX/a/2015/001573

    Google Scholar 

  • Schamphelaire LD, Bossche LVD, Dang HS et al (2008) Microbial fuel cells generating electricity from rhizodeposits of rice plants. Environ Sci Technol 42(8):3053–3058

    Article  PubMed  Google Scholar 

  • Schröder U (2008) From wastewater to hydrogen: biorefineries based on microbial fuel-cell technology. ChemSusChem 1:281–282

    Article  PubMed  Google Scholar 

  • Schroder U, Harnisch F, Angenent LT (2015) Microbial electrochemistry and technology: terminology and classification. Energy Environ Sci 8(2):513–519

    Article  Google Scholar 

  • Shelobolina E et al (2012) Microbial lithotrophic oxidation of structural Fe(II) in biotite. Appl Environ Microbiol 78:5746–5752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi L, Squier TC, Zachara JM, Fredrickson JK (2007) Respiration of metal (hydr)oxides by Shewanella and Geobacter: a key role for multihaem c-type cytochromes. Mol Microbiol 65:12–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi L, Tien M, Fredrickson JK, Zachara JM, Rosso KM (2016) In: Louro R, Diaz-Moreno I (eds) Redox proteins in supercomplexes and signalosomes. CRC Press, pp 187–216

    Google Scholar 

  • Shukla AK, Suresh P, Berchmans S et al (2004) Biological fuel cells and their applications. Curr Sci 87:455–468

    CAS  Google Scholar 

  • Strik DPBTB, Hamelers HVM, Snel JFH et al (2008) Green electricity production with living plants and bacteria in a fuel cell. Int J Energy Res 32(9):870–876

    Article  CAS  Google Scholar 

  • Strik DPBTB, Timmers RA, Helder M et al (2011) Microbial solar cells: applying photosynthetic and electrochemically active organisms. Trends Biotechnol 29(1):41–49

    Article  CAS  PubMed  Google Scholar 

  • Takanezawa K, Nishio K, Kato S et al (2010) Factors affecting electric output from rice-paddy microbial fuel cells. Biosci Biotechnol Biochem 74(6):1271–1273

    Article  CAS  PubMed  Google Scholar 

  • Tender LM, Reimers CE, Stecher HA et al (2002) Harnessing microbially generated power on the seafloor. Nat Biotechnol 20:821–825

    Article  CAS  PubMed  Google Scholar 

  • Thygesen A, Anne BT, Sam P et al (2010) Integration of microbial electrolysis cells (Mecs) in the biorefinery for production of ethanol, H2 and phenolics. Waste Biomass Valoriz 1(1):9–20

    Article  CAS  Google Scholar 

  • Timmers RA, Strik DPBTB, Hamelers HVM et al (2013) Electricity generation by a novel design tubular plant microbial fuel cell. Biomass Bioenergy 51:60–67

    Article  CAS  Google Scholar 

  • Uren N (2007) Types amounts and possible functions of compounds released into the rhizosphere by soil-grown plants. In: The rhizosphere. CRC Press, pp 1–21

    Google Scholar 

  • Venkata Mohan S, Mohanakrishna G, Chiranjeevi P (2011) Sustainable power generation from floating macrophytes based ecological microenvironment through embedded fuel cells along with simultaneous wastewater treatment. Bioresour Technol 102(14):7036–7042

    Article  CAS  PubMed  Google Scholar 

  • Watanabe K, Nishio K (2010) Electric power from rice paddy fields paths to sustainable energy Dr Artie Ng (Ed.). ISBN: 978-953-307-401-6. InTech. Available from: http://www.intechopen.com/books/paths-to-sustainable-energy/electric-power-from-rice-paddy-fields

  • Wetser K, Sudirjo E, Buisman CJN (2015) Electricity generation by a plant microbial fuel cell with an integrated oxygen reducing biocathode. Appl Energy 137:151–157

    Article  CAS  Google Scholar 

  • Xu B, Ge Z, He Z (2015) Sediment microbial fuel cells for wastewater treatment: challenges and opportunities. Environ Science Water Res Technol 1(3):279–284

    Article  CAS  Google Scholar 

  • Zhao L et al (2015) Biological redox cycling of iron in nontronite and its potential application in nitrate removal. Environ Sci Technol 49:5493–5501

    Article  CAS  PubMed  Google Scholar 

  • Zhi W, Ge Z, He Z et al (2014) Methods for understanding microbial community structures and functions in microbial fuel cells: a review. Bioresour Technol 171:461–468

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamaraj Sathish-Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sathish-Kumar, K., Vignesh, V., Caballero-Briones, F. (2017). Sustainable Power Production from Plant-Mediated Microbial Fuel Cells. In: Dhanarajan, A. (eds) Sustainable Agriculture towards Food Security. Springer, Singapore. https://doi.org/10.1007/978-981-10-6647-4_6

Download citation

Publish with us

Policies and ethics