Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 578 Accesses

Abstract

Properities and the operating principle of solid oxide fuel cells (SOFCs) are briefly introduced. Advantages and challenges of the metal–supported solid oxide fuel cells (MS-SOFCs) are reviewed, e.g., choice of the metal support, materials and fabrication techniques of electrolytes, anode/cathode issues and the corresponding strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O’hayre R, Cha S-W, Prinz FB, Colella W (2016) Fuel cell fundamentals. Wiley, New York

    Google Scholar 

  2. McIntosh S, Gorte RJ (2004) Direct hydrocarbon solid oxide fuel cells. Chem Rev 104:4845–4865

    Article  Google Scholar 

  3. Minh NQ (2004) Solid oxide fuel cell technology—features and applications. Solid State Ionics 174:271–277

    Article  Google Scholar 

  4. Ormerod RM (2003) Solid oxide fuel cells. Chem Soc Rev 32:17–28

    Article  Google Scholar 

  5. Singhal SC (2002) Solid oxide fuel cells for stationary, mobile, and military applications. Solid State Ionics 152:405–410

    Article  Google Scholar 

  6. Minh NQ, Mogensen MB (2013) Reversible solid oxide fuel cell technology for green fuel and power production. Electrochem Soc Interface 22:55

    Google Scholar 

  7. Aguiar P, Adjiman CS, Brandon NP (2004) Anode-supported intermediate temperature direct internal reforming solid oxide fuel cell. I: model-based steady-state performance. J Power Sources 138:120–136

    Article  Google Scholar 

  8. George RA (2000) Status of tubular SOFC field unit demonstrations. J Power Sources 86:134–139

    Article  Google Scholar 

  9. Huang K, Singhal SC (2013) Cathode-supported tubular solid oxide fuel cell technology: a critical review. J Power Sources 237:84–97

    Article  Google Scholar 

  10. Shao ZP, Haile SM (2004) A high-performance cathode for the next generation of solid-oxide fuel cells. Nature 431:170–173

    Article  Google Scholar 

  11. Wachsman ED, Lee KT (2011) Lowering the temperature of solid oxide fuel cells. Science 334:935–939

    Article  Google Scholar 

  12. Zhan Z, Bierschenk DM, Cronin JS, Barnett SA (2011) A reduced temperature solid oxide fuel cell with nanostructured anodes. Energy Environ Sci 4:3951–3954

    Article  Google Scholar 

  13. Lee JG, Park JH, Shul YG (2014) Tailoring gadolinium-doped ceria-based solid oxide fuel cells to achieve 2 W cm−2 at 550 °C. Nat Commun 5:4045

    Google Scholar 

  14. Molin S, Kusz B, Gazda M, Jasinski P (2008) Evaluation of porous 430L stainless steel for SOFC operation at intermediate temperatures. J Power Sources 181:31–37

    Article  Google Scholar 

  15. Antepara I, Villarreal I, Rodriguez-Martinez LM, Lecanda N, Castro U, Laresgoiti A (2005) Evaluation of ferritic steels for use as interconnects and porous metal supports in IT–SOFCs. J Power Sources 151:103–107

    Article  Google Scholar 

  16. Leah RT, Brandon NP, Aguiar P (2005) Modelling of cells, stacks and systems based around metal-supported planar IT–SOFC cells with CGO electrolytes operating at 500–600 °C. J Power Sources 145:336–352

    Article  Google Scholar 

  17. Matus YB, De Jonghe LC, Jacobson CP, Visco SJ (2005) Metal-supported solid oxide fuel cell membranes for rapid thermal cycling. Solid State Ionics 176:443–449

    Article  Google Scholar 

  18. Malzbender J, Wessel E, Steinbrech RW (2005) Reduction and re-oxidation of anodes for solid oxide fuel cells. Solid State Ionics 176:2201–2203

    Article  Google Scholar 

  19. Young JL, Birss VI (2011) Crack severity in relation to non-homogeneous Ni oxidation in anode-supported solid oxide fuel cells. J Power Sources 196:7126–7135

    Article  Google Scholar 

  20. Leah R, Lankin M, Bone A, Selcuk A, Pierce R, Rees L et al (2013) Towards a fully REDOX stable SOFC: cell development at Ceres Power. ECS Trans 57:849–856

    Article  Google Scholar 

  21. Tucker MC, Jacobson CP, De Jonghe LC, Visco SJ (2006) A braze system for sealing metal-supported solid oxide fuel cells. J Power Sources 160:1049–1057

    Article  Google Scholar 

  22. Sakuno S, Takahashi S, Sasatsu H (2009) Metal-supported SOFC development at JPOWER. ECS Trans 25:731–737

    Article  Google Scholar 

  23. Tucker MC (2010) Progress in metal-supported solid oxide fuel cells: a review. J Power Sources 195:4570–4582

    Article  Google Scholar 

  24. Yang Z, Weil KS, Paxton DM, Stevenson JW (2003) Selection and evaluation of heat-resistant alloys for SOFC interconnect applications. J Electrochem Soc 150:A1188–A1201

    Article  Google Scholar 

  25. Wu J, Liu X (2010) Recent development of SOFC metallic interconnect. J Mater Sci Technol 26:293–305

    Article  Google Scholar 

  26. Fergus JW (2005) Metallic interconnects for solid oxide fuel cells. Mater Sci Eng, A 397:271–283

    Article  Google Scholar 

  27. Belogolovsky I, Hou PY, Jacobson CP, Visco SJ (2008) Chromia scale adhesion on 430 stainless steel: effect of different surface treatments. J Power Sources 182:259–264

    Article  Google Scholar 

  28. Hui S, Yang D, Wang Z, Yick S, Deces-Petit C, Qu W et al (2007) Metal-supported solid oxide fuel cell operated at 400–600 °C. J Power Sources 167:336–339

    Article  Google Scholar 

  29. Yoo Y, Wang Y, Deng X, Singh D, Legoux J-G (2012) Metal supported tubular solid oxide fuel cells fabricated by suspension plasma spray and suspension high velocity oxy-fuel spray. J Power Sources 215:307–311

    Article  Google Scholar 

  30. Kong Y, Hua B, Pu J, Chi B, Jian L (2010) A cost-effective process for fabrication of metal-supported solid oxide fuel cells. Int J Hydrogen Energy 35:4592–4596

    Article  Google Scholar 

  31. Li K, Wang X, Jia L, Yan D, Pu J, Chi B et al (2014) High performance Ni–Fe alloy supported SOFCs fabricated by low cost tape casting-screen printing-cofiring process. Int J Hydrogen Energy 39:19747–19752

    Article  Google Scholar 

  32. Ju Y-W, Ida S, Inagaki T, Ishihara T (2011) Reoxidation behavior of Ni–Fe bimetallic anode substrate in solid oxide fuel cells using a thin LaGaO3 based film electrolyte. J Power Sources 196:6062–6069

    Article  Google Scholar 

  33. Villarreal I, Jacobson C, Leming A, Matus Y, Visco S, De Jonghe L (2003) Metal-supported solid oxide fuel cells. Electrochem Solid State Lett 6:A178–A179

    Article  Google Scholar 

  34. Villarreal I, Rivas M, Rodriguez-Martinez LM, Otaegi L, Zabala A, Gomez N et al (2009) Tubular metal supported SOFC development for domestic power generation. ECS Trans 25:689–694

    Article  Google Scholar 

  35. Blennow P, Hjelm J, Klemenso T, Persson AH, Ramousse S, Mogensen M (2011) Planar metal-supported SOFC with novel cermet anode. Fuel Cells 11:661–668

    Article  Google Scholar 

  36. Xie Y, Neagu R, Hsu C-S, Zhang X, Deces-Petit C, Qu W et al (2010) Thin film solid oxide fuel cells deposited by spray pyrolysis. J Fuel Cell Sci Technol 7:021007

    Google Scholar 

  37. Hui R, Berghaus JO, Deces-Petit C, Qu W, Yick S, Legoux J-G et al (2009) High performance metal-supported solid oxide fuel cells fabricated by thermal spray. J Power Sources 191:371–376

    Article  Google Scholar 

  38. C-s Hwang, Tsai C-H, Yu J-F, Chang C-L, Lin J-M, Shiu Y-H et al (2011) High performance metal-supported intermediate temperature solid oxide fuel cells fabricated by atmospheric plasma spraying. J Power Sources 196:1932–1939

    Article  Google Scholar 

  39. Ju Y-W, Inagaki T, Ida S, Ishihara T (2011) Sm(Sr)CoO3 cone cathode on LaGaO3 thin film electrolyte for IT–SOFC with high power density. J Electrochem Soc 158:B825–B830

    Article  Google Scholar 

  40. Larring Y, Fontaine M-L (2013) Critical issues of metal-supported fuel cell. In: Solid oxide fuels cells: facts and figures. Springer, Berlin, pp 71–93

    Google Scholar 

  41. Franco T, Schibinger K, Ilhan Z, Schiller G, Venskutonis A (2007) Ceramic diffusion barrier layers for metal supported SOFCs. In: Eguchi K, Singhai SC, Yokokawa H, Mizusaki H (eds) Solid oxide fuel cells, vol 10, pp 771–80

    Google Scholar 

  42. Brandner M, Bram M, Froitzheim J, Buchkremer HP, Stoever D (2008) Electrically conductive diffusion barrier layers for metal-supported SOFC. Solid State Ionics 179:1501–1504

    Article  Google Scholar 

  43. Schiller G, Henne R, Lang M, Müller M (2004) Development of solid oxide fuel cells by applying DC and RF plasma deposition technologies. Fuel Cells 4:56–61

    Article  Google Scholar 

  44. Ishihara T, Yan J, Shinagawa M, Matsumoto H (2006) Ni–Fe bimetallic anode as an active anode for intermediate temperature SOFC using LaGaO3 based electrolyte film. Electrochim Acta 52:1645–1650

    Article  Google Scholar 

  45. Bance P, Brandon NP, Girvan B, Holbeche P, O’Dea S, Steele BCH (2004) Spinning-out a fuel cell company from a UK University—2 years of progress at Ceres Power. J Power Sources 131:86–90

    Article  Google Scholar 

  46. Waldbillig D, Kesler O (2009) Characterization of metal-supported axial injection plasma sprayed solid oxide fuel cells with aqueous suspension plasma sprayed electrolyte layers. J Power Sources 191:320–329

    Article  Google Scholar 

  47. Nedelec R, Neagu R, Uhlenbruck S, Maric R, Sebold D, Buchkremer HP et al (2011) Gas phase deposition of diffusion barriers for metal substrates in solid oxide fuel cells. Surf Coat Technol 205:3999–4004

    Article  Google Scholar 

  48. Hathiramani D, Vaßen R, Mertens J, Sebold D, Haanappel VAC, Stöver D (2008) Degradation mechanism of metal supported atmospheric plasma sprayed solid oxide fuel cells. In: Advances in solid oxide fuel cells II: ceramic engineering and science proceedings. Wiley, New York, pp 55–65

    Google Scholar 

  49. Ding D, Li X, Lai SY, Gerdes K, Liu M (2014) Enhancing SOFC cathode performance by surface modification through infiltration. Energy Environ Sci 7:552–575

    Article  Google Scholar 

  50. Tucker MC, Lau GY, Jacobson CP, DeJonghe LC, Visco SJ (2007) Performance of metal-supported SOFCs with infiltrated electrodes. J Power Sources 171:477–482

    Article  Google Scholar 

  51. Blennow P, Hjelm J, Klemenso T, Ramousse S, Kromp A, Leonide A et al (2011) Manufacturing and characterization of metal-supported solid oxide fuel cells. J Power Sources 196:7117–7125

    Article  Google Scholar 

  52. Joo JH, Choi GM (2008) Simple fabrication of micro-solid oxide fuel cell supported on metal substrate. J Power Sources 182:589–593

    Article  Google Scholar 

  53. Kim KH, Park YM, Kim H (2010) Fabrication and evaluation of the thin NiFe supported solid oxide fuel cell by co-firing method. Energy 35:5385–5390

    Article  Google Scholar 

  54. Park YM, Kim JH, Kim H (2012) Effects of a current treatment for an in-situ sintered cathode in a Ni-supported solid oxide fuel cell. Int J Hydrogen Energy 37:555–565

    Article  Google Scholar 

  55. Nielsen J, Hjalmarsson P, Hansen MH, Blennow P (2014) Effect of low temperature in-situ sintering on the impedance and the performance of intermediate temperature solid oxide fuel cell cathodes. J Power Sources 245:418–428

    Article  Google Scholar 

  56. Kim Y-M, Bae J (2009) Investigation of mixed conducting cathode for metal-supported SOFC. ASME Conf Proc 2009:847–849

    Google Scholar 

  57. Baek S-W, Jeong J, Kim Y-M, Kim JH, Shin S, Bae J (2011) Metal-supported solid oxide fuel cells with barium-containing in-situ cathodes. Solid State Ionics 192:387–393

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yucun Zhou .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Zhou, Y. (2018). Research Background. In: Study on Fabrication and Performance of Metal-Supported Solid Oxide Fuel Cells. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-6617-7_1

Download citation

Publish with us

Policies and ethics