Skip to main content

Strategies for Biological Control and Antagonisms

  • Chapter
  • First Online:
Plant-Microbe Interactions in Agro-Ecological Perspectives

Abstract

Microorganisms play an important niche in the control of soil populations producing a variety of bioactive compounds as an ecological strategy for competition for space and nutrients. Thus, the bioprospecting of microorganisms as potential antagonists for pathogen biocontrol, or obtaining their bioactive metabolites, is one of the alternatives currently studied for the control of diseases, especially in species of agronomic importance. In this chapter, we reviewed several microorganisms and how, in general, the products of their metabolism are obtained to be used in the control of pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alymanesh M, Taheri P, Tarighi S (2016) Pseudomonas as a frequent and important quorum quenching bacterium with biocontrol capability against many phytopathogens. Biocontrol Sci Tech 26:1719–1735

    Article  Google Scholar 

  • Axel C, Zannini E, Coffey A, Guo J, Waters DM, Arendt EK (2012) Ecofriendly control of potato late blight causative agent and the potential role of lactic acid bacteria: a review. Appl Microbiol Biotechnol 96:37–48

    Article  CAS  PubMed  Google Scholar 

  • Aysan Y, Karatas A, Cinar O (2003) Biological control of bacterial stem rot caused by Erwinia chrysanthemi on tomato. Crop Prot 22:807–811

    Article  Google Scholar 

  • Banani H, Spadaro D, Zhang D, Matic S, Garibaldi A, Gullino ML (2015) Postharvest application of a novel chitinase cloned from Metschnikowia fructicola and overexpressed in Pichia pastoris to control brown rot of peaches. Int J Food Microbiol 199:54–61

    Article  CAS  PubMed  Google Scholar 

  • Bérdy J (2005) Bioactive microbial metabolites. J Antibiot 58(1):1–26

    Google Scholar 

  • Bérdy J (2012) Thoughts and facts about antibiotics: where we are now and where we are heading. J Antibiot 65:385–395

    Article  PubMed  Google Scholar 

  • Bettiol W, Morandi MAB, Pinto ZV, Júnior TJP, Corrêa EB, MouraAB LCMM, Costa JCB, Bezerra JL (2012) Produtos Comerciais à base de agentes de biocontrole de doenças de plantas. Embrapa Meio Ambiente, Jaguariúna

    Google Scholar 

  • Bhattacharjee R, Dey U (2014) An overview of fungal and bacterial biopesticides to control plant pathogens/diseases. Afr J Microbiol Res 8:1749–1762

    Article  Google Scholar 

  • Bi Y, Yu Z (2016) Diterpenoids from Streptomyces sp. SN194 and their antifungal activity against Botrytis cinerea. J Agric Food Chem 64:8525–8529

    Article  CAS  PubMed  Google Scholar 

  • Bokhove M, Jimenez PN, Quax WJ, Dijkstra BW (2010) The quorum-quenching N-acyl homoserine lactone acylase PvdQ is an Ntn-hydrolase with an unusual substrate-binding pocket. Proc Natl Acad Sci 107:686–691

    Article  CAS  PubMed  Google Scholar 

  • Borrero C, Ordovás J, Trillas MI, Avilés M (2006) Tomato fusarium wilt suppressiveness. The relationship between the organic plant growth media and their microbial communities as characterised by biolog. Soil Biol Biochem 38:1631–1637

    Article  CAS  Google Scholar 

  • Borrero C, Trillas MI, Avilés M (2009) Carnation Fusarium wilt suppression in four composts. Eur J Plant Pathol 123:425–433

    Article  Google Scholar 

  • Cardozo VF, Oliveira AG, Nishio EK, Perugini MRE, Andrade CGTJ, Silveira WD, Durán N, Andrade G, Kobayashi RKT, Nakazato G (2013) Antibacterial activity of extracellular compounds produced by a Pseudomonas strain against methicillin-resistant Staphylococcus aureus (MRSA) strains. Ann Clin Microbiol Antimicrob 12:1–8

    Article  Google Scholar 

  • Chet I (1987) Innovative approaches to plant disease control. 372 p

    Google Scholar 

  • Chin-A-Woeng TFC, Bloemberg GV, Lugtenberg BJJ (2003) Phenazines and their role in biocontrol by Pseudomonas bacteria. New Phytol 157:503–523

    Article  CAS  Google Scholar 

  • Cordero-Ramírez JD, López-Rivera R, Figueroa-Lopez AM, Mancera-López ME, Martínez-Álvarez JC, Apodaca-Sánchez MA, Maldonado-MendozaI E (2013) Native soil bacteria isolates in Mexico exhibit a promising antagonistic effect against Fusarium oxysporum f sp radicis-lycopersici. J Basic Microbiol 53:838–847

    PubMed  Google Scholar 

  • De Oliveira AG, Murate LS, Spago FR, Lopes LP, Beranger JPO, San Martin JAB, Nogueira MA, Mello JCP, Andrade CGTJ, Andrade G (2011) Evaluation of the antibiotic activity of extracellular compounds produced by the Pseudomonas strain against the Xanthomonas citri pv. citri 306 strain. Biol Control 56:125–131

    Article  Google Scholar 

  • De Oliveira AG, Spago FR, Simionato AS, Navarro MO, Silva CS, Barazetti AR, Cely MV, Tischer CA, San Martin JA, Andrade CG, Novello CR, Mello JC, Andrade G (2016) Bioactive organocopper compound from Pseudomonas aeruginosa inhibits the growth of Xanthomonas citri subsp. citri. Front Microbiol 7:1–12

    Google Scholar 

  • Eilenberg J, Hajek A, Lomer C (2001) Suggestions for unifying the terminology in biological control. BioControl 46:387–400

    Article  Google Scholar 

  • El-Banna N, Winkelmann G (1998) Pyrrolnitrin from Burkholderia cepacia: antibiotic activity against fungi and novel activities against streptomycetes. J Appl Microbiol 85:69–76

    Article  CAS  PubMed  Google Scholar 

  • Elkahouia S, Djébali N, Karkouch I, Ibrahim AH, Kalai L, Bachkouel S, Tabbene O, Limam F (2014) Mass spectrometry identification of antifungal lipopeptides from Bacillus sp. BCLRB2 against Rhizoctonia Solani and Sclerotinia Sclerotiorum. Appl Biochem Microbiol 50:161–165

    Article  Google Scholar 

  • Embrapa (2015) Title of preprint. http://ainfo.cnptia.embrapa.br/digital/bitstream/item/137596/1/bioprospeccao-microbiana-web.pdf

  • Emiliano J (2016) Componentes do metabolismo secundário bacteriano com potencial inibitório sobre Sclerotinia sclerotiorum. Dissertation, Universidade Estadual de Ponta Grossa.

    Google Scholar 

  • Fravel DR (2005) Commercialization and implementation of biocontrol. Annu Rev Phytopathol 43:337–359

    Article  CAS  PubMed  Google Scholar 

  • Gade A, Ingle A, Whiteley C, Rai M (2010) Mycogenic metal nanoparticles: progress and applications. Biotechnol Lett 32:593–600

    Article  CAS  PubMed  Google Scholar 

  • Ge B, Liu B, Nwet TT, Zhao W, Shi L, Zhang K (2016) Bacillus methylotrophicus Strain NKG-1, isolated from Changbai Mountain, China, has potential applications as a biofertilizer or biocontrol Agent. PLoS One 11:1–13

    CAS  Google Scholar 

  • Großkinsky DK, Tafner R, Moreno MV, Stenglein SA, Salamone IEG, Nelson LM, Novák O, Strnad M, van der Graaff E, Roitsh T (2016) Cytokinin production by Pseudomonas fluorescens G20-18 determines biocontrol activity against Pseudomonas syringae in Arabidopsis. Sci Rep 6:1–11

    Article  Google Scholar 

  • Gupta CP, Kumar B, Dubey RC, Maheshwari DK (2006) Chitinase-mediated destructive antagonistic potential of Pseudomonas aeruginosa GRC1 against Sclerotinia sclerotiorum causing stem rot of peanut. BioControl 51:821–835

    Article  CAS  Google Scholar 

  • Haidar H, Roudeta J, Bonnarda O, Dufoura MC, Corio-Costeta MF, Ferta M, Gautiera T, Deschampsa A, Fermauda M (2016) Screening and modes of action of antagonistic bacteria to control the fungal pathogen Phaeomoniella chlamydospora involved in grapevine trunk diseases. Microbiol Res 192:172–184

    Article  PubMed  Google Scholar 

  • Hamid R, Khan MA, Ahmad M, Ahmad MM (2013) Chitinases: An update. J Pharm Bioallied Sci 5:21–29

    PubMed  PubMed Central  Google Scholar 

  • Han JH, Shim H, Shin JH, Kim KS (2015) Antagonistic activities of Bacillus spp. strains isolated from tidal flat sediment towards anthracnose pathogens Colletotrichum acutatum and C. gloeosporioides in South Korea. Plant Pathol J 31:165–175

    Article  PubMed  PubMed Central  Google Scholar 

  • Harman GE (2000) Myths and dogmas of biocontrol changes in perceptions derived from research on Trichoderma harzinum T-22. Plant Dis 84:377–393

    Article  Google Scholar 

  • Hu W, Gao Q, Hamada MS, Dawood DH, Zheng J, Chen Y, Ma Z (2014) Potential of Pseudomonas chlororaphis subsp. Aurantiaca Strain Pcho10 as a biocontrol agent against Fusarium graminearum. Phytopathology 104:1289–1297

    Article  CAS  PubMed  Google Scholar 

  • Junaid JM, Dar NA, Bhat TA, Bhat AH, Bhat MA (2013) commercial biocontrol agents and their mechanism of action in the management of plant pathogens. Int J Mod Plant Anim Sci 1:39–57

    Google Scholar 

  • Jung WK, Koo HC, Kim KW, Shin S, Kim SH, Park YH (2008) Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol 74:2171–2178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasprzewska A (2003) Plant chitinases-Regulation and function. Cell Mol Biol Lett 8:809–824

    CAS  PubMed  Google Scholar 

  • Lemire JA, Harrison JJ, Turner RJ (2013) Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat Rev Microbiol 11:371–384

    Article  CAS  PubMed  Google Scholar 

  • Ligon JM, Hill DS, Hammer PE, Torkewitz NR, Hofmann D, Kempf HJ, van Pee KH (2000) Natural products with antifungal activity from Pseudomonas biocontrol bacteria. Pest Manage 56:688–695

    Article  CAS  Google Scholar 

  • Ling LL, Schneider T, Peoples AJ, Spoering AL, Engels I, Conlon BP, Mueller A, Schäberle TF, Hughes DE, Epstein S, Jones M, Lazarides L, Steadman VA, Cohen DR, Felix CR, Fetterman KA, Millett WP, Nitti AG, Zullo AM, Chen C, Lewis K (2015) A new antibiotic kills pathogens without detectable resistance. Nature 517(7535):455–459

    Google Scholar 

  • Lopes LP, de Oliveira AG, Beranger JPO, Góis CG, Vasconcellos FCS, San Martin JAB, Andrade CGTJ, Mello JCP, Andrade G (2012) Activity of extracellular compounds of Pseudomonas sp. against Xanthomonas axonopodis in vitro and bacterial leaf blight in eucalyptus. Trop Plant Pathol 37:233–238

    Article  Google Scholar 

  • Madigan MT, Martinko JM, Dunlap PV, Clark DP (2010) Microbiologia Industrial. In: Madigan MT, Martinko JM, Dunlap PV, Clark DP Microbiologia de Brock. 12 edn. Porto Alegre: Artmed 734-760

    Google Scholar 

  • Marrone PG (2014) The market and potential for biopesticides. In: Biopesticides: state of the art and future opportunities. American Chemical Society, Washington, DC, pp 245–258

    Google Scholar 

  • Mathre DE, Cook RJ, Callan NW (1999) From discovery to use – traversing the world of commercializing biocontrol agents for plant disease control. Plant Dis 83:971–983

    Article  Google Scholar 

  • McCormack PJ, Bailey MJ, Jeffries P (1994) An artificial wax substrate for the in vitro study of phylloplane micro-organisms. J Microbiol Methods 19:19–28

    Article  CAS  Google Scholar 

  • Melo IS (1991) Potencialidades de utilização de Trichoderma spp. no controle biológico de doenças de plantas. In: Bettiol W (Org.) Controle biológico de doenças de plantas. EMBRAPA, Brasília, p 388

    Google Scholar 

  • Molina L, Constantinescu F, Michel L, Reimmann C, Duffy B, Défago G (2003) Degradation of pathogen quorum-sensing molecules by soil bacteria: a preventive and curative biological control mechanism. FEMS Microbiol Ecol 45:71–81

    Article  CAS  PubMed  Google Scholar 

  • Narayana KJP, Prabhakar P, Vijayalakshmi M, Venkateswarlu Y, Krishna PSJ (2008) Study on bioctive compounds from Streptomyces sp. ANU 6277. Polish J Microbiol 57:35–39

    CAS  Google Scholar 

  • Niu J, Chen J, Xu Z, Zhu X, Wu Q, Li J (2016) Synthesis and bioactivities of amino acid ester conjugates of phenazine-1-carboxylic acid. Bioorg Med Chem Lett 26:5384–5386

    Article  CAS  PubMed  Google Scholar 

  • Nawrocka J, Małolepsza U (2013) Diversity in plant systemic resistance induced by Trichoderma. Biol Control 67(2):149–156

    Google Scholar 

  • Olorunleke FE, Hua GKH, Kieu NP, Ma Z, Höfte M (2015) Interplay between orfamides, sessilins and phenazines in the control of Rhizoctonia diseases by Pseudomonas sp. CRM12a. Environ Microbiol Rep 7:774–781

    Article  CAS  PubMed  Google Scholar 

  • Olson S (2015) An analysis of the biopesticide market now and where it is going. Outlooks Pest Manag 26:203–206

    Article  Google Scholar 

  • Paulitz TC, Bélanger RR (2001) Biological control in greenhouse systems. Ann Rev Phytophatol 39:103–133

    Article  CAS  Google Scholar 

  • Pierson LS III, Pierson EA (2010) Metabolism and function of bacteria in the environment and biotechnological processes. Appl Microbiol Biotechnol 86:1659–1670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rampazo LGL (2004) Avaliação de agentes biológicos e seus produtos na incidência de lesões foliares do Cancro Cítrico. Dissertation, Universidade Estadual de Londrina

    Google Scholar 

  • Ravensberg JW (2015) Commercialisation of microbes: present situation and future prospects. In: Lugtenberg B (ed) Principles of plant-microbe interactions. Springer, Leiden, pp 309–317

    Google Scholar 

  • Schneider JK, Taraz H, Budzikiewicz P, Jacques P, Thonart (1999) The structure of two fengycins from Bacillus subtilis S499. Z Naturforsch 54:859–865

    CAS  Google Scholar 

  • Shanmugaiah V, Mathivanan N, Varghese B (2010) Purification, crystal structure and antimicrobial activity of phenazine-1-carboxamide produced by a growth-promoting biocontrol bacterium, Pseudomonas aeruginosa MML2212. J Appl Microbiol 108:703–711

    Article  CAS  PubMed  Google Scholar 

  • Silvertein RM, Webster F, Kiemle D (2005) Spectrometric identification of organic compounds, 7th edn. Wiley, Hoboken

    Google Scholar 

  • Singh PP, Shin YC, Park CS, Chung YR (1999) Biological control of Fusarium wilt of cucumber by chitinolytic bacteria. Biol Control 89:92–99

    CAS  Google Scholar 

  • Solomons T, Fryhle CB (2000) Química Orgânica, 7th edn. LTC editora, Rio de Janeiro, p 1

    Google Scholar 

  • Suk WS, Son HJ, Lee G, Lee SJ (1999) Purification and characterization of biosurfactants produced by Pseudomonas sp. SW 1. J Microbiol Biotechnol 9:56–61

    CAS  Google Scholar 

  • Tani A, Takeuchi T, Horita H (1990) Biological control of scab, black scurf and soft roto f potato by seed tuber bacterization. In: Homey D (ed) Biological control of soil borne plant pathogens. CAB International, Wallingford, pp 143–164

    Google Scholar 

  • Tempest DW, Wouters J (1981) Properties and performance of microorganisms in chemostat culture. Enzym Microb Technol 3:283–290

    Article  CAS  Google Scholar 

  • Trias R, Bañeras L, Montesinos E, Badosa E (2008) Lactic acid bacteria from fresh fruit and vegetables as biocontrol agents of phytopathogenic bacteria and fungi. Int Microbiol 11:231–236

    CAS  PubMed  Google Scholar 

  • Tupe SG, Kulkarni RR, Shirazi F, Sant DG, Joshi SP, Deshpande MV (2015) Possible mechanism of antifungal phenazine-1-carboxamide from sp. against dimorphic fungi and human pathogen. J Appl Microbiol 118(1):39–48

    Google Scholar 

  • Vasconcellos FCS, de Oliveira AG, Lopes-Santos L, Beranger JPO, Cely MVT, Simionato AS, Pistori JF, Spago FR, Mello JCP, San Martin JAB, Andrade CGTJ, Andrade G (2014) Evaluation of antibiotic activity produced by Pseudomonas aeruginosa LV strain against Xanthomonas arborícola pv. pruni. Agric Sci 5:71–76

    Google Scholar 

  • Woo SL, Ruocco M, Vinale F, Nigro M, Marra R, Lombardi N, Pascale A, Lanzuise S, Manganiello G, Lorito M (2014) Trichoderma-based products and their widespread use in agriculture. Open Mycol J 8:71–126

    Article  Google Scholar 

  • Wu B, Wang X, Yang L, Yang H, Zeng H, Qiu Y, Wang C, Yu J, Li J, Xu D, He Z, Chen S (2016) Effects of Bacillus amyloliquefaciensZM9 on bacterial wilt and rhizosphere microbial communities of tobacco. App Soil Ecol 103:1–12

    Article  Google Scholar 

  • Yu GY, Sinclair JB, Hartman GL, Bertagnolli BL (2002) Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani. Soil Biol Biochem 34:955–963

    Article  CAS  Google Scholar 

  • Zhang LH, Dong YH (2004) Quorum sensing and signal interference: diverse implications. Mol Microbiol 53:1563–1571

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Wang C, Su P, Liao X (2015) Control effects and possible mechanism of the natural compound Phenazine-1-Carboxiamide against Botrytis cinerea. PLoS One 10:1–17

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Galdino Andrade .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Simionato, A.S. et al. (2017). Strategies for Biological Control and Antagonisms. In: Singh, D., Singh, H., Prabha, R. (eds) Plant-Microbe Interactions in Agro-Ecological Perspectives. Springer, Singapore. https://doi.org/10.1007/978-981-10-6593-4_8

Download citation

Publish with us

Policies and ethics