Skip to main content

Role of Plant Growth-Promoting Rhizobacteria for Improving Crop Productivity in Sustainable Agriculture

  • Chapter
  • First Online:
Plant-Microbe Interactions in Agro-Ecological Perspectives

Abstract

The plant growth-promoting rhizobacteria (or PGPR) are the beneficial microorganism that colonizes rhizosphere and help in promoting plant growth, protecting from biotic and abiotic stresses, and significantly increasing soil fertility. For the effective ways of developing sustainable agriculture for improving crop productivity with a minimal disturbance to the environment is the exploration of plant growth-promoting rhizobacteria and some other microbe-based symbioses in plants. For increasing crop yields, the use of PGPR has been well proven for its eco-friendly sound by promoting plant growth either direct or indirect mechanism. The mechanisms of plant growth-promoting rhizobacteria include resistance against plant pathogens, solubilizing nutrients for easy uptake, and maintaining the plant growth regulator hormone. This chapter emphasizes an eco-friendly approach to increase crop production and health, the development of sustainable agriculture, the mechanism of PGPR for agricultural sustainability, and the role in different major crop plant varieties along with their mechanism of action.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Afzal A, Bano A (2008) Rhizobium and phosphate solubilizing bacteria improve the yield and phosphorus uptake in wheat (Triticum aestivum L.) Int J Agric Biol 10:85–88

    CAS  Google Scholar 

  • Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163:173–181

    Article  CAS  PubMed  Google Scholar 

  • Amara MAT, Dahdoh MSA (1997) Effect of inoculation with plant growth-promoting rhizobacteria (PGPR) on yield and uptake of nutrients by wheat grown on sandy soil. Egypt J Soil 37:467–484

    Google Scholar 

  • Angus JF (2001) Nitrogen supply and demand in Australian agriculture. Aust J Exp Agric 41:277–288

    Article  CAS  Google Scholar 

  • Anjum MA, Sajjad MR, Akhtar N, Qureshi MA, Iqbal A, Jami AR, Hassan M (2007) Response of cotton to plant growth promoting rhizobacteria (PGPR) inoculation under different levels of nitrogen. J Agric Res 45(2):135–143

    Google Scholar 

  • Araujo FF (2008) Inoculacao de sementes com Bacillus subtilis, formulado com farinha de ostras e desenvolvimento de milho, soja e algodao. Cienc Agrotec 32:456–462

    Article  Google Scholar 

  • Armada E, Portela G, Roldan A, Azcon R (2014) Combined use of beneficial soil microorganism and agrowaste residue to cope with plant water limitation under semiarid conditions. Geoderma 232:640–648

    Article  CAS  Google Scholar 

  • Arora NK, Khare E, Oh JH (2008) Diverse mechanisms adopted by Pseudomonas fluorescent PGC2 during the inhibition of Rhizoctonia solani and Phytophthora capsici. World J Microbiol Biotechnol 24:581–585

    Article  Google Scholar 

  • Asghar HN, Zahir ZA, Arshad M, Khalig A (2002) Plant growth regulating substances in the rhizosphere: microbial production and functions. Adv Agron 62:146–151

    Google Scholar 

  • Baldani VLD, Baldani JI, Dobereiner J (2000) Inoculation of rice plants with the endophytic diazotrophs Herbaspirillum seropedicae. Biol Fertil Soils 30:485–491

    Article  Google Scholar 

  • Banerjee MR, Yesmin L, Vessey JK (2006) Plant growth promoting rhizobacteria as biofertilizers and biopesticides. In: Rai MK (ed) Handbook of microbial biofertilizers. Haworth Press, Inc, New York

    Google Scholar 

  • Bashan Y (1998) Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnol Adv 16:729–770

    Article  CAS  Google Scholar 

  • Bashan Y, Holguin G (1997) Azospirillum-plant relationships: environmental and physiological advances. Can J Microbial 43:103–121

    Article  CAS  Google Scholar 

  • Bashan Y, de-Bashan LE, Prabhu SR, Hernandez JP (2014) Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant Soil 378:1–33

    Article  CAS  Google Scholar 

  • Beneduzi A, Ambrosini A, Passaglia LM (2012) Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet Mol Biol 35:1044–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. Wood J Microb Biotechnol 28:1327–1350

    Article  CAS  Google Scholar 

  • Bhuiyan NI (1995) Intensive cropping and soil nutrient balance in Bangladesh. In: Hussain MS, Huq SMI, Iqbal M, Khan TH (eds) Improving soil management for intensive cropping in the tropics and sub-tropics. Bangladesh Agricultural Research Council, Dhaka, pp 61–71

    Google Scholar 

  • Bin L, Smith DL, Ping-Qui F (2000) Application and mechanism of silicate bacteria in agriculture and industry. Guizhou Sci 18:43–53

    Google Scholar 

  • Biswas JC, Ladha JK, Dazzo FB (2000) Rhizobial inoculation influences seedling vigor and yield of rice. Agron J 92:880–886

    Article  Google Scholar 

  • Boddey, R.M., and Dobereiner, J. (1984) In: NS Subba Rao (ed) Current development in biological nitrogen fixation. Oxford and IBH Publication, New Delhi, p 277

    Google Scholar 

  • Boddey RM, Urquiaga S, Reis V, Döbereiner J (1991) Biological nitrogen fixation associated with sugar cane. Plant Soil 137:111–117

    Article  Google Scholar 

  • Butterbach-Bahl K, Baggs EM, Dannenmann M, Kiese R, Zechmeister-Boltenstern S (2013) Nitrous oxide emissions from soils: how well do we understand the processes and their controls. Philos Trans R Soc B 368:20130122

    Article  CAS  Google Scholar 

  • Çakmakçi R, Donmez F, Aydın A, Åžahin F (2006) Growth promotion of plants by plant growth promoting rhizobacteria under greenhouse and two different field soil conditions. Soil Biol Biochem 38:1482–1487

    Article  CAS  Google Scholar 

  • Çakmakci R, Erat M, Erdogan UG, Donmez MF (2007) The influence of PGPR on growth parameters, antioxidant and pentose phosphate oxidative cycle enzymes in wheat and spinach plants. J Plant Nutr Soil Sci 170:288–295

    Article  CAS  Google Scholar 

  • Calvo P, Nelson LM, Kloepper JW (2014) Agricultural uses of plant biostimulants. Plant Soil 383:3–41

    Article  CAS  Google Scholar 

  • Chanway CP (1998) Bacterial endophytes: ecological and practical implications. Sydowia 50:149–170

    Google Scholar 

  • Chelius MK, Triplett EW (2000) Diazotrophic endophytes associated with maize. In: Triplett EW (ed) Prokaryotic nitrogen fixation: a model system for the analysis of a biological process. Horizon Scientific Press, Wymondham, pp 779–791

    Google Scholar 

  • Chen LH, Tang XM, Raze W, Li JH, Liu YX, Qiu MH, Zhang FG, Shen QR (2011) Trichoderma harzianum SQR-T037 rapidly degrades allelochemicals in rhizospheres continuously cropped cucumbers. Appl Microbiol Biotechnol 89:1653–1663

    Article  CAS  PubMed  Google Scholar 

  • Chiarini L, Bevivino A, Tabacchioni S, Dalmastri C (1998) Inoculation of Burkholderia cepacia, Pseudomonas fluorescens and Enterobacter sp. on Sorghum bicolor: root colonization and plant growth promotion of dual strain inocula. Soil Biol Biochem 30:81–87

    Article  CAS  Google Scholar 

  • Choudhary DK, Sharma KP, Gaur RK (2011) Biotechnological perspectives of microbes in agro-ecosystems. Biotechnol Lett 33:1905–1910

    Article  CAS  PubMed  Google Scholar 

  • Crozier A, Kamiya Y, Bishop G, Yokota T (2001) Biosynthesis of hormones and elicitors molecules. In: Buchanan BB, Grussem W, Jones RL (eds) Biochemistry and molecular biology of plants. American Society of Plant Biologists, Rockville, pp 850–900

    Google Scholar 

  • de Freitas JR, Banerjee MR, Germida JJ (1997) Phosphate-solubilizing rhizobacteria enhance the growth and yield but not phosphorus uptake of canola (Brassica napus L.) Biol Fertil Soils 24:358–364

    Article  Google Scholar 

  • Dey R, Pal KK, Bhatt DM, Chauhan SM (2004) Growth promotion and yield enhancement of peanut (Arachis hypogea L.) by application of plant growth-promoting rhizobacteria. Microbiol Res 159:371–394

    Article  CAS  PubMed  Google Scholar 

  • Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22:107–149

    Article  CAS  Google Scholar 

  • Dobereiner J (1961) Nitrogen-fixing bacteria of the genus Beijerinckia derx in the rhizosphere of sugar cane. Plant Soil 15:211–216

    Article  Google Scholar 

  • El-Akhal MR, Rincon A, Coba d–l PT, Lucas MM, El MN, Barrijal S, Pueyo JJ (2013) Effects of salt stress and rhizobial inoculation on growth and nitrogen fixation of three peanut cultivars. Plant Biol 15:415–421

    Article  CAS  PubMed  Google Scholar 

  • Figueiredo MVB, Martinez CR, Burity HA, Chanway CP (2007) Plant growth-promoting rhizobacteria for improving nodulation and nitrogen fixation in the common bean (Phaseolus vulgaris L.) World J Microbiol Biotechnol 24(7):1187–1193

    Article  CAS  Google Scholar 

  • Figueiredo MVB, Burity HA, Martinez CR, Chanway CP (2008) Alleviation of water stress effects in common bean (Phaseolus vulgaris L.) by co-inoculation Paenibacillus x Rhizobium tropici. Appl Soil Ecol 40:182–188

    Article  Google Scholar 

  • Franche C, Lindström K, Elmerich C (2009) Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant Soil 321:35–59

    Article  CAS  Google Scholar 

  • Francis I, Holsters M, Vereecke D (2010) The Gram-positive side of plant-microbe interaction. Environ Microbial 12:1–12

    Article  CAS  Google Scholar 

  • Frankenberger WTJ, Arshad M (1995) Phytohormones in soil: microbial production and function. Deker, New York, p 503

    Google Scholar 

  • Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889–892

    Article  CAS  PubMed  Google Scholar 

  • Ghaderi A, Aliasgharzad N, Oustan S, Olsson PA (2008) Efficiency of three Pseudomonas isolates in releasing phosphate from an artificial variable-charge mineral (iron III hydroxide). Soil Environ 27:71–76

    Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Hindawi Publishing Corporation, Scientifica, Waterloo

    Google Scholar 

  • Glick BR, Penrose DM, Li J (1998) A model for lowering plant ethylene concentration by plant growth promoting rhizobacteria. J Theor Biol 190:63–68

    Article  CAS  PubMed  Google Scholar 

  • Gong M, Wang JD, Zhang J, Yang H (2006) Study of the antifungal ability of Bacillus subtilis strain PY-1 in vitro and identification of its antifungal substance (Iturin A). Acta Biochim Biophys Sin 38:233–240

    Article  CAS  PubMed  Google Scholar 

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant–bacterium signaling processes. Soil Biol Biochem 37:395–412

    Article  CAS  Google Scholar 

  • Guilfoyle TJ, Ulmasov T, Hagen G (1998) The ARF family of transcription factors and their role in plant hormone responsive transcription. Cell Mol Life Sci 54:619–627

    Article  CAS  PubMed  Google Scholar 

  • Gupta A, Gopal M, Tilak KV (2000) Mechanism of plant growth promotion by rhizobacteria. Indian J Exp Biol 38:856–862

    CAS  PubMed  Google Scholar 

  • Halder AK, Chakrabarty PK (1993) Solubilization of inorganic phosphate by Rhizobium. Folia Microbiol 38:325–330

    Article  CAS  Google Scholar 

  • Havlin J, Beaton J, Tisdaleand SL, Osorio NW (1999) Soil fertility and fertilizers. Prentice Hall, Upper Saddle River, p 499

    Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598

    Article  Google Scholar 

  • Henri F, Laurette NN, Annette D, John Q, Wolfgang M, François-Xavier E, Dieudonné N (2008) Solubilization of inorganic phosphates and plant growth promotion by strains of Pseudomonas fluorescens isolated from acidic soils of Cameroon. Afr J Microbiol Res 2:171–178

    Google Scholar 

  • Indiragandhi P, Anandham R, Madhaiyan M, Sa TM (2008) Characterization of plant growth-promoting traits of bacteria isolated from larval guts of diamondback moth Plutella xylostella (Lepidoptera: Plutellidae). Curr Microbiol 56:327–333

    Article  CAS  PubMed  Google Scholar 

  • James EK, Gyaneshwar P, Barraquio WL, Mathan N, Ladha JK (2000) Endophytic diazotrophs associated with rice. In: Ladha JK, Reddy PM (eds) The quest for nitrogen fixation in rice. International Rice Research Institute, Los Banos, pp 119–140

    Google Scholar 

  • Jeffries P, Gianinazzi S, Perotto S, Turnau K, Barea JM (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fertil Soils 37:1–16

    Google Scholar 

  • Kanungo PK, Panda D, Adhya TK, Ramakrishnan B, Rao VR (1997) Nitrogenase activity and nitrogen fixing bacteria associated with rhizosphere of rice cultivars. J Sci Food Agric 73:485–488

    Article  CAS  Google Scholar 

  • Kaymak DC (2010) Potential of PGPR in agricultural innovations. In: Maheshwari DK (ed) Plant growth and health promoting bacteria. Springer, Berlin/Heidelberg

    Google Scholar 

  • Kennedy IR, Islam N (2001) The current and potential contribution of asymbiotic nitrogen requirements on farms: a review. Aust J Exp Agri 41:447–457

    Article  CAS  Google Scholar 

  • Kennedy IR, Tchan Y (1992) Biological nitrogen fixation in no leguminous field crops: recent advances. Plant Soil 141:93–118

    Article  CAS  Google Scholar 

  • Kennedy N, Brodie E, Conolly J, Clipson N (2004a) Impact of lime, nitrogen and plant species on bacterial community structure in grassland microcosms. Environ Microbiol 6:1070–1080

    Article  CAS  PubMed  Google Scholar 

  • Kennedy IR, Choudhury AIMA, KecSkes ML (2004b) Non-symbiotic bacterial diazotrophs in crop-farming systems: can their potential for plant growth promotion be better exploited. Soil Boil Biochem 36(8):1229–1244

    Article  CAS  Google Scholar 

  • Khalid A, Arshad M, Shaharoona B, Mahmood T (2009) Plant growth promoting rhizobacteria and sustainable agriculture. In: Microbial strategies for crop improvement. Springer, Berlin/Heidelberg, pp 133–160

    Chapter  Google Scholar 

  • Kishore GK, Pande S, Podile AR (2005) Phylloplane bacteria increase seedling emergence, growth and yield of field-grown groundnut (Arachis hypogaea L.) Lett Appl Microbiol 40:260–268

    Article  CAS  PubMed  Google Scholar 

  • Kloepper JW, Schroth MN (1978) Plant growth promoting rhizobacteria on radishes. In: Proceedings of the 4th international conference on plant pathogenic bacteria, Angers, France, pp 879–882

    Google Scholar 

  • Kloepper JW, Schroth MN, Miller TD (1980) Effects of rhizosphere colonization by plant growth-promoting rhizobacteria on potato plant development and yield. Phytopathology 70:1078–1082

    Article  Google Scholar 

  • Kumar V, Behl RK, Narula N (2001) Establishment of phosphate solubilizing strains of Azotobacter chroococcum in the rhizosphere and their effect on wheat cultivars under greenhouse conditions. Microbiol Res 156:87–93

    Article  CAS  PubMed  Google Scholar 

  • Kumar H, Bajpai VK, Dubey RC (2010) Wilt disease management and enhancement of growth and yield of Cajanus cajan (L) var. Manak by bacterial combinations amended with chemical fertilizer. Crop Prot 29:591–598

    Article  Google Scholar 

  • Kuzyakov Y, Domanski G (2000) Carbon input by plants into the soil. J Plant Nutr Soil Sci 163:421–431

    Article  CAS  Google Scholar 

  • Lee S, Pierson B, Kennedy C (2002) Genetics and biochemistry of nitrogen fixation and other factors beneficial to host plant growth in diazotrophic endophytes. In: Vanderleyden J (ed) Proceedings of the ninth international symposium on nitrogen fixation with nonlegumes, Katholique Universiteit, Leuven, Belgium, pp 41–42

    Google Scholar 

  • Leonardo D, Blanca LF, Landa B, Weller DM (2006) Host crop affects rhizosphere colonization and competitiveness of 2, 4-diacetylphloroglucinol-producing Pseudomonas fluorescens. Phytopathology 96:51–762

    Google Scholar 

  • Ligero F, Poreda JL, Gresshoff PM, Caba JM (1999) Nitrate inoculation is in enhanced ethylene biosynthesis in soybean roots as a possible mediator of nodulation control. J Plant Physiol 154:482–488

    Article  CAS  Google Scholar 

  • Liu XM, Feng ZB, Zhang FD, Zhang SQ, He XS (2006) Preparation and testing of cementing and coating nano-subnanocomposites of slow/controlled-release fertilizer. Agric Sci China 5:700–706

    Article  Google Scholar 

  • Lucy M, Reed E, Glick BR (2004) Applications of free living plant growth-promoting rhizobacteria. Rev Antonie Van Leeuwenhoek 86:1–25

    Article  CAS  Google Scholar 

  • Lynch JM (1990) Some consequences of microbial rhizosphere competence for plant and soil. In: Lynch JM (ed) The rhizosphere. Wiley, New York, pp 1–10

    Google Scholar 

  • Malusa E, Vassilev NA (2014) A contribution to set a legal framework for biofertilisers. Appl Microbial Biotechnol 98:6599–6607

    Article  CAS  Google Scholar 

  • Mariano RLR, Kloepper JW (2000) Metodo alternativo de biocontrole: Resistencia sistemica induzida por rizobacterias. Revisao Anual de Patologia de Plantas 8:121–137

    Google Scholar 

  • Martinez-Viveros O, Jorquera MA, Crowley DE, Gajardo G, Mora ML (2010) Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. J Soil Sci Plant Nutr 10:293–319

    Article  Google Scholar 

  • Mishra D, Rajvir S, Mishra U, Kumar SS (2013) Role of bio-fertilizer in organic agriculture. A review Res J Recent Sci 2:39–41

    CAS  Google Scholar 

  • Munoz-Rojas J, Caballero-Mellado J (2003) Population dynamics of Gluconacetobacter diazotrophicus in sugarcane cultivars and its effect on plant growth. Microb Ecol 46:454–464

    Article  CAS  PubMed  Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Ashraf M (2010) Microbial ACC-deaminase; prospects and applications for inducing salt tolerance in plants. Crit Rev Plant Sci 29:360–393

    Article  CAS  Google Scholar 

  • Nautiyal CS, Govindarajan R, Lavania M, Pushpangadan P (2008) Novel mechanisms of modulating natural antioxidants in functional foods: involvement of plant growth promoting rhizobacteria NRRL B-30488. J Agric Food Chem 56:4474–4481

    Article  CAS  PubMed  Google Scholar 

  • Naveed M, Hussain MB, Zahir ZA, Mitter B, Sessitsch A (2014) Drought stress amelioration in wheat through inoculation with Burkholderia phytofirmans strain PsJN. Plant Growth Regul 73:121–131

    Article  CAS  Google Scholar 

  • Neilands JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270:26723–26726

    Article  CAS  PubMed  Google Scholar 

  • Neubauer U, Furrer G, Kayser A, Schulin R (2000) Siderophores, NTA, and citrate: potential soil amendments to enhance heavy metal mobility in phytoremediation. Int J Phytoremediation 2:353–368

    Article  CAS  Google Scholar 

  • Nguyen TH, Deaker R, Kennedy IR, Roughly RJ (2003) The positive yield response of field-grown rice to introduction with a multistrain biofertiliser in the Hanoi area, Vietnam. Symbiosis 35:231–245

    Google Scholar 

  • Nieto KF, Frankenberger WT Jr (1991) Influence of adenine, isopentyl alcohol and Azotobacter chroococcum on the vegetative growth of Zea mays. Plant Soil 135:213–221

    Article  CAS  Google Scholar 

  • Okan Y, Kapulnik Y (1986) Development and function of Azospirillum inoculated roots. Plant Soil 90:3–16

    Article  Google Scholar 

  • Pal M, Karthikeyapandian V, Jain V, Srivastava AC, Raj A, Sengupta UK (2004) Biomass production and nutritional levels of berseem (Trifolium alexandrium) grown under elevated CO2. Agric Ecosyst Environ 101:31–38

    Article  Google Scholar 

  • Pan B, Bai YM, Leibovitch S, Smith DL (1999) Plant growth promoting rhizobacteria and kinetic as ways to promote corn growth and yield in short season areas. Eur J Agron 11:179–186

    Article  CAS  Google Scholar 

  • Perez-Garcia A, Romero D, de-Vicente A (2011) Plant protection and growth simulation by microorganism: Biotechnological applications of Bacillus in agriculture. Curr Open Biotechnol 22:187–193

    Article  CAS  Google Scholar 

  • Pishchik VN, Vorobyev NJ, Chernyaeva LI, Timofeeva SV, Kazhemyakov AP, Alexeev YV (2002) Experimental and mathematical simulation of plant growth promoting rhizobacteria and plant interaction under cadmium stress. Plant Soil 243:173–186

    Article  CAS  Google Scholar 

  • Podile AR, Kishore GK (2006) Plant growth-promoting rhizobacteria. In: Plant associated bacteria. Springer, Dordrecht, pp 195–230

    Chapter  Google Scholar 

  • Ponmurugan P, Gopi C (2006) Distribution pattern and screening of phosphate solubilizing bacteria isolated from different food and forage crops. J Agron 5:600–604

    Article  Google Scholar 

  • Primrose SB (1979) Ethylene and agriculture: the role of the microbe. J Appl Bacteriol 46:1–25

    Article  CAS  Google Scholar 

  • Radzki W, Gutierrez MFJ, Algar E (2013) Bacterial siderophores efficiently provide iron to iron-starved tomato plants in hydroponics culture. Antonie Van Leeuwenhoek 104:321–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142–149

    Article  CAS  PubMed  Google Scholar 

  • Reeves TG, Waddington SR, Ortiz-Monasterio I, Banziger M, Cassadey K (2002) Removing nutritional limits to maize and wheat production: a developing country perspective. In: Kennedy IR, Choudhury ATMA (eds) Biofertilizers in action. Rural Industries Research and Development Corporation, Canberra, pp 11–36

    Google Scholar 

  • Reis VM, Baldani JI, Baldani VLD, Döberener J (2000) Biological dinitrogen fixation in the graminae and palm trees. Crit Rev Plant Sci 19:227–247

    Article  CAS  Google Scholar 

  • Reyes E, Garcia-Castro I, Esquivelm F, Hornedo J, Cortes-Funes H, Solovera J, Alvarez-Mon M (1999) Granulocyte colony-stimulating factor (G-CSF) transiently suppresses mitogen-stimulated T-cell proliferative response. Br J Cancer 80(1/2):229–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riggs PG, Chelius MK, Iniguez AL, Kaeppler SM, Triplet EW (2001) Enhanced maize productivity by inoculation with diazotrophic bacteria. Aust J Plant Physiol 28:829–836

    Google Scholar 

  • Roos W (1984) Relationship between proton extrusion and fluxes of ammonium ions and organic acids in Penicillium cyclopium. J Gen Microbiol 130:1007–1014

    CAS  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Kloepper JW, Pare PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saharan BS, Nehra V (2011) Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res 21:1–30

    Google Scholar 

  • Sarma RK, Saikia RR (2014) Alleviation of drought stress in mung bean by strain Pseudomonas aeruginosa GGRK21. Plant Soil 377:111–126

    Article  CAS  Google Scholar 

  • Scharf PC (2001) Soil and plant tests to predict optimum nitrogen rates for corn. J Plant Nutr 24:805–826

    Article  CAS  Google Scholar 

  • Seldin L (1984) Bacillus azotofixans sp. nov. a nitrogen fixing species from Brazilian soils and grass roots. Int J Syst Bacteriol 34:451–456

    Article  CAS  Google Scholar 

  • Shaharoona B, Arshad M, Zahir ZA, Khalid A (2006) Performance of Pseudomonas spp. Containing ACC-deaminase for improving growth and yield of maize (Zea mays L.) in the presence of nitrogenous fertilizer. Soil Biol Biochem 38:2971–2975

    Article  CAS  Google Scholar 

  • Sharma K, Dak G, Agrawal A, Bhatnagar M, Sharma R (2007) Effect of phosphate solubilizing bacteria on the germination of Cicer arietinum seeds and seedling growth. J Herb Med Toxicol 1:61–63

    Google Scholar 

  • Silo-Suh LA, Lethbridge BJ, Raffel SJ (1994) Biological activities of two fungistatic antibiotics produced by Bacillus cereus UW85. Appl Environ Microbiol 60:2023–2030

    CAS  PubMed  PubMed Central  Google Scholar 

  • Silva VN, Silva LESF, Figueiredo MVB (2006) Atuacao de rizobios com rizobacterias promotoras de crescimento em plantas na cultura do caupi (Vigna unguiculata L. Walp). Acta Sci Agron 28:407–412

    Google Scholar 

  • Simonet P, Normand P, Moiroud A (1990) Identification of Frankia strains in nodules by hybridization of polymerase chain reaction products with strain-specific oligonucleotide probes. Arch Microbiol 153:235–240

    Article  CAS  PubMed  Google Scholar 

  • Sinha R, Goel R, Johri BN (2001) Molecular markers in rhizosphere microbiology. In: Maheshwari DK, Dubey RC (eds) Innovative approaches in microbiology. Bishen Singh Mahendra Pal Sing, Dehra Dun, p 255

    Google Scholar 

  • Son JS, Sumayo M, Hwang YJ, Kim BS, Ghim SY (2014) Screening of plant growth promoting rhizobacteria as elicitor of systemic resistance against grey leaf spot dieses in pepper. Appl Soil Ecol 73:1–8

    Article  Google Scholar 

  • Suman PR, Jain VK, Arman A (2010) Role of nanomaterials in symbiotic fungus growth enhancement. Curr Sci 99:1189–1191

    Google Scholar 

  • Sundara B, Natarajan V, Hari K (2002) Influence of phosphorus solubilizing bacteria on the changes in soil available phosphorus and sugarcane yields. Field Crop Res 77:43–49

    Article  Google Scholar 

  • Tao G, Tian S, Cai M, Xie G (2008) Phosphate solubilizing and mineralizing abilities of bacteria isolated from soils. Pedosphere 18:515–523

    Article  CAS  Google Scholar 

  • Tarafdar A, Raliya R, Wang WN, Biswas P, Tarafdar JC (2013) Green synthesis of TiO2 nanoparticle using Aspergillus tubingensis. Adv Sci Eng Med 5:943–949

    Article  CAS  Google Scholar 

  • Tenuta M (2003) http://www.umanitoba.ca/afs/agronomists_conf/2003/pdf/tenuta_rhiz obac-teria.pdf

  • Tran Van V, Berge O, Ke SN, Balandreau J, Heulin T (2000) Repeated beneficial effects of rice inoculation with a strain of Burkholderia vietnamiensis on early and late yield components in low fertility sulphate acid soils of Vietnam. Plant Soil 218:273–284

    Article  Google Scholar 

  • Van Veen JA, Van Overbeek LS, Van Elsas JD (1997) Fate and activity of microorganisms introduced into soil. Microbiol Mol Biol Rev 16(2):121–135

    Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Waddington SR (1998) Organic matter management: from science to practice. Soil Fertil 62:24–25

    Google Scholar 

  • Williams RL, Kennedy IR (2002) A model for testing the effectiveness of biofertiliser for Australian rice production. In: Choudhury ATMA, Kennedy IR (eds) Biofertilisers in action. Rural Industries Research and Development Corporation, Canberra, pp 112–114

    Google Scholar 

  • Yang X, Chen L, Yong X, Shen Q (2011) Formulations can affect rhizosphere colonization and biocontrol efficiency of Trichoderma harzianum SQR-T037 against Fusarium wilt of cucumbers. N Biol Fertil Soils 47:239–248

    Article  Google Scholar 

  • Yazdani M, Bahmanyar MA, Pirdashti H, Esmaili MA (2009) Effect of Phosphate solubilization microorganisms (PSM) and plant growth promoting rhizobacteria (PGPR) on yield and yield components of Corn (Zea mays L.) Proc World Acad Sci Eng Technol 37:90–92

    Google Scholar 

  • Zaidi A (1999) Synergistic interactions of nitrogen fixing microorganisms with phosphate mobilizing microorganisms. Ph.D. thesis, Aligarh Muslim University, Aligarh, India

    Google Scholar 

  • Zhang F, Dashti N, Hynes RK, Smith DL (1996) Plant growth-promoting rhizobacteria and soybean Glycine max (L.) Merr. Nodulation and fixation at suboptimal root zone temperatures. Ann Bot 7:453–459

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhijeet S. Kashyap .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kashyap, A.S., Pandey, V.K., Manzar, N., Kannojia, P., Singh, U.B., Sharma, P.K. (2017). Role of Plant Growth-Promoting Rhizobacteria for Improving Crop Productivity in Sustainable Agriculture. In: Singh, D., Singh, H., Prabha, R. (eds) Plant-Microbe Interactions in Agro-Ecological Perspectives. Springer, Singapore. https://doi.org/10.1007/978-981-10-6593-4_28

Download citation

Publish with us

Policies and ethics