Skip to main content

Microbe-Mediated Biotic Stress Management in Plants

  • Chapter
  • First Online:
Plant-Microbe Interactions in Agro-Ecological Perspectives

Abstract

Biotic stress factors have a major impact on plants and cause extensive losses to crop production. Plants possess a range of defenses that can be actively expressed in response to pathogens. The timely activation of these defense responses is important and determines whether plant is able to cope or succumb to the challenge of a pathogen. Plant defense mechanisms which are involved in biotic stress management are classified as innate and induced plant response. Systemic acquired resistance (SAR) and induced systemic resistance (ISR) are two forms of induced resistance; in both types of resistance, prior infection or treatment preconditions plant defenses leading to resistance (or tolerance) against further challenge by a pathogen. Identification of a number of biological and chemical elicitors has to a great extent helped in unraveling the understanding of the biochemical and physiological basis of ISR and SAR. Combining SAR and ISR can provide protection against a number of pathogens including the pathogens that resist through both pathways. The use of pesticides for the control of crop diseases and pests is however inefficient and not eco-friendly. Genetic engineering has enabled the cloning of genes and their insertion into the crop plants to make them resistant to different biotic stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Acharya BR, Assmann SM (2009) Hormone interactions in stomatal function. Plant Mol Biol 69(4):451–462

    Article  CAS  PubMed  Google Scholar 

  • Agrios GN (1997) Significance of plant diseases. In: Plant pathology, 4th edn. Academic Press, San Diego, pp 25–37

    Google Scholar 

  • Akai S (2012) Histology of defense in plants. Plant Pathol 1:391–434

    Google Scholar 

  • AlikamanoÄŸlu S, Yaycılı O, Atak C, Rzakoulieva A (2007) Effect of magnetic field and gamma radiation on Paulowinia tomentosa tissue culture. Biotechnol Biotechnol Equip 21(1):49–53

    Article  Google Scholar 

  • Allen RL, Bittner-Eddy PD, Grenville-Briggs LJ, Meitz JC, Rehmany AP, Rose LE, Beynon JL (2004) Host-parasite coevolutionary conflict between Arabidopsis and downy mildew. Science 306:1957–1960

    Article  CAS  PubMed  Google Scholar 

  • Anderson PK, Cunningham AA, Patel NG, Morales FJ, Epstein PR, Daszak P (2004) Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends Ecol Evol 19:535–544

    Article  PubMed  Google Scholar 

  • Ayres PG, Press MC, Spencer-Phillips PT (1996) Effects of pathogens and parasitic plants on source-sink relationships. Photoassimilate distribution in plants and crops, Malcolm Colin Press. Sheffield. pp: 479–499.

    Google Scholar 

  • Bajaj Y (1970) Effect of gamma-irradiation on growth, RNA, protein, and nitrogen contents of bean callus cultures. Ann Bot 34(5):1089–1096

    Article  CAS  Google Scholar 

  • Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baulcombe DC (1996) Mechanisms of pathogen-derived resistance to viruses in transgenic plants. Plant Cell 8:1833–1844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bebber DP, Gurr SJ (2015) Crop-destroying fungal and oomycete pathogens challenge food security. Fungal Genet Biol 74:62–64

    Article  PubMed  Google Scholar 

  • Benhamou N, Nicole M (1999) Cell biology of plant immunization against microbial infection: the potential of induced resistance in controlling plant diseases. Plant Physiol Biochem 37:703–719

    Article  CAS  Google Scholar 

  • Benson E, Bremner D (2004) Oxidative stress in the frozen plant: a free radical point of view. In: Benson E, Fuller B, Lane N (eds) Life in the frozen state. CRC Press, Boca Raton, pp 205–241

    Chapter  Google Scholar 

  • Bigeard J, Colcombet J, Hirt H (2015) Signaling mechanisms in pattern triggered immunity (PTI). Mol Plant 8:521–539

    Article  CAS  PubMed  Google Scholar 

  • Blatt MR, Grabov A, Brearley J, Hammond-Kosack K, Jones JD (1999) K+ channels of Cf-9 transgenic tobacco guard cells as targets for Cladosporium fulvum Avr9 elicitor-dependent signal transduction. Plant J 19(4):453–462

    Article  CAS  PubMed  Google Scholar 

  • Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60:379–406

    Article  CAS  PubMed  Google Scholar 

  • Cai R, Lewis J, Yan S, Liu H, Clarke CR, Campanile F, Almeida NF, Studholme DJ, Lindeberg M, Schneider D, Zaccardelli M, Setubal JC, Morales-Lizcano NP, Bernal A, Coaker G, Baker C, Bender CL, Leman S, Vinatzer BA (2011) The plant pathogen Pseudomonas syringae pv. tomato is genetically monomorphic and under strong selection to evade tomato immunity. PLoS Pathog 7(8):e1002130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camehl I, Drzewiecki C, Vadassery Y, Shahollari B, Sherameti I, Forzani C, Munnik T, Hirt H, Oelmüller R (2011) The OXI1 kinase pathway mediates Piriformospora indica-induced growth promotion in Arabidopsis. PLoS Pathog 7:e1002051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Çelik Ö, Atak Ç, Suludere Z (2014) Response of soybean plants to gamma radiation: biochemical analyses and expression patterns of trichome development. Plant Omics 7(5):382–391

    Google Scholar 

  • Chaerle L, De Boever F, Montagu MV, Straeten D (2001) Thermographic visualization of cell death in tobacco and Arabidopsis. Plant Cell Environ 24(1):15–25

    Article  Google Scholar 

  • Chapman EJ, Carrington JC (2007) Specialization and evolution of endogenous small RNA pathways. Nat Rev Genet 8:884–896

    Article  CAS  PubMed  Google Scholar 

  • Chellappan P, Masona MV, Vanitharani R, Taylor NJ, Fauquet CM (2004) Broad spectrum resistance to ssDNA viruses associated with transgene-induced gene silencing in cassava. Plant Mol Biol 56:601–611

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Zheng Z, Huang J, Lai Z, Fan B (2009) Biosynthesis of salicylic acid in plants. Plant Signal Behav 4(6):493–496

    Google Scholar 

  • Chen YC, Kidd BN, Carvalhais LC, Schenk PM (2014) Molecular defense responses in roots and the rhizosphere against Fusarium oxysporum. Plant Signal Behav 9(12):e977710

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Clarke CR, Chinchilla D, Hind SR, Taguchi F, Miki R, Ichinose Y, Martin GB, Leman S, Felix G, Vinatzer BA (2013) Allelic variation in two distinct Pseudomonas syringae flagellin epitopes modulates the strength of plant immune responses but not bacterial motility. New Phytol 200:847–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corthals G, Gygi S, Aebersold R, Patterson S (2000) Identification of proteins by mass spectrometry Proteome research: two-dimensional gel electrophoresis and identification methods, Proteome Research. Springer, Berlin, pp 197–231

    Book  Google Scholar 

  • Cui X, Cao X (2014) Epigenetic regulation and functional exaptation of transposable elements in higher plants. Curr Opin Plant Biol 21:83–88

    Article  CAS  PubMed  Google Scholar 

  • Dahal D, Heintz D, Van Dorsselaer A, Braun H-P, Wydra K (2009) Pathogenesis and stress related, as well as metabolic proteins are regulated in tomato stems infected with Ralstonia solanacearum. Plant Physiol Biochem 47:838–846

    Article  CAS  PubMed  Google Scholar 

  • Das S, DeMason DA, Ehlers JD, Close TJ, Roberts PA (2008) Histological characterization of root-knot nematode resistance in cowpea and its relation to reactive oxygen species modulation. J Exp Bot 59(6):1305–1313

    Article  CAS  PubMed  Google Scholar 

  • Dehgahi R, Zakaria L, Joniyas A, Subramaniam S (2014) Fusarium proliferatum culture filtrate sensitivity of Dendrobium sonia-28‘s PLBs derived regenerated plantlets. Malays J Microbiol 10(4):241–248

    Google Scholar 

  • Dehgahi R, Subramaniam S, Zakaria L, Joniyas A, Firouzjahi FB, Haghnama K, Razinataj M (2015a) Review of research on fungal pathogen attack and plant defense mechanism against pathogen. Int Sci Res Agric Sci 2(8):197–208

    Google Scholar 

  • Dehgahi R, Zakaria L, Mohamad A, Joniyas A, Subramaniam S (2015b) Effects of fusaric acid treatment on the protocorm-like bodies of Dendrobium sonia-28. Protoplasma 15:1–1

    Google Scholar 

  • Desikan R, Griffiths R, Hancock J, Neill S (2002) A new role for an old enzyme: nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana. Proc Natl Acad Sci 99(25):16314–16318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dodds PN, Rathjen JP (2010) Plant immunity: towards an integrated view of plant–pathogen interactions. Nat Rev Genet 11:539–548

    Article  CAS  PubMed  Google Scholar 

  • Dong X, Xiong Y, Ling N, Shen Q, Guo S (2014) Fusaric acid accelerates the senescence of leaf in banana when infected by Fusarium. World J Microbiol Biotechnol 30(4):1399–1408

    Article  CAS  PubMed  Google Scholar 

  • Dou D, Zhou JM (2012) Phytopathogen effectors subverting host immunity: different foes, similar battleground. Cell Host Microbe 12:484–495

    Article  CAS  PubMed  Google Scholar 

  • Fan LM, Zhao Z, Assmann SM (2004) Guard cells: a dynamic signaling model. Curr Opin Plant Biol 7(5):537–546

    Article  CAS  PubMed  Google Scholar 

  • Felix G, Duran JD, Volko S, Boller T (1999) Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J 18:265–276

    Article  CAS  PubMed  Google Scholar 

  • Feng F, Zhou JM (2012) Plant-bacterial pathogen interactions mediated by type III effectors. Curr Opin Plant Biol 15:469–476

    Article  PubMed  CAS  Google Scholar 

  • Ferreira RB, Monteiro S, Freitas R, Santos CN, Chen Z, Batista LM, Duarte J, Borges A, Teixeira AR (2007) The role of plant defence proteins in fungal pathogenesis. Mol Plant Pathol 8:677–700

    Article  CAS  PubMed  Google Scholar 

  • Flood J (2010) The importance of plant health to food security. Food Sec 2:215–231

    Article  Google Scholar 

  • Freeman BC, Beattie GA (2008) An overview of plant defenses against pathogens and herbivores. Plant Health Instructor. https://doi.org/10.1094/PHI-I-2008-0226-01

  • Garcıa-Mata C, Lamattina L (2001) Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress. Plant Physiol 126(3):1196–1204

    Article  PubMed  Google Scholar 

  • Garrison WM (1987) Reaction mechanisms in the radiolysis of peptides, polypeptides, and proteins. Chem Rev 87(2):381–398

    Article  CAS  Google Scholar 

  • Gaulin E, Drame N, Lafitte C, Torto-Alalibo T, Martinez Y, Ameline-Torregrosa C, Khatib M, Mazarguil H, Villalba-Mateos F, Kamoun S, Mazars C, Dumas B, Bottin A, Esquerre-Tugaye MT, Rickauer M (2006) Cellulose binding domains of a Phytophthora cell wall protein are novel pathogen-associated molecular patterns. Plant Cell 18:1766–1777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giri B, Mukerji K (2004) Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake. Mycorrhiza 14(5):307–312

    Article  PubMed  Google Scholar 

  • Gygi SP, Rochon Y, Franza BR, Aebersold R (1999) Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19(3):1720–1730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hameed A, Shah TM, Atta BM, Haq MA, Sayed H (2008) Gamma irradiation effects on seed germination and growth, protein content, peroxidase and protease activity, lipid peroxidation in desi and kabuli chickpea. Pak J Bot 40(3):1033–1041

    Google Scholar 

  • Hammerschmidt R (2007) Introduction: definition and some history. In: Walters D, Newton A, Lyon G (eds) Induced resistance for plant defense: a sustainable approach to crop protection. Blackwell Publishing, Oxford, pp 1–8

    Google Scholar 

  • Hammerschmidt R, Kuc J (1995) Induced resistance to disease in plants. Klumer, Dordrecht

    Book  Google Scholar 

  • Hayafune M, Berisio R, Marchetti R, Silipo A, Kayama M, Desaki Y, Arima S, Squeglia F, Ruggiero A, Tokuyasu K, Molinaro A, Kaku H, Shibuya N (2014) Chitin-induced activation of immune signaling by the rice receptor CEBiP relies on a unique sandwich-type dimerization. Proc Natl Acad Sci USA 111:404–413

    Article  CAS  Google Scholar 

  • Hermosa R, Viterbo A, Chet I, Monte E (2012) Plant-beneficial effects of Trichoderma and of its genes. Microbiology 158:17–25

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Yang M, Zhang X (2016) The function of small RNAs in plant biotic stress response. J Integr Plant Biol 58:312–327

    Article  CAS  PubMed  Google Scholar 

  • Hussain B (2015) Modernization in plant breeding approaches for improving biotic stress resistance in crop plants. Turk J Agric For 39:515–530

    Article  Google Scholar 

  • Ijaz S, Khan AI (2012) Genetic pathways of disease resistance and plants-pathogens interactions. Mol Pathogens 3(4):19–26

    Google Scholar 

  • Inamullah A, Isoda A (2005) Adaptive responses of soybean and cotton to water stress. I. transcription changes in relation to stomatal area and stomatal conductance. Plant Prod Sci 8:16–26

    Article  Google Scholar 

  • Jansen MA, Van Den Noort RE (2000) Ultraviolet-B radiation induces complex alterations in stomatal behaviour. Physiol Plant 110(2):189–194

    Article  CAS  Google Scholar 

  • Jashni MK, Mehrabi R, Collemare J, Mesarich CH, de Wit PJGM (2015) The battle in the apoplast: further insights into the roles of proteases and their inhibitors in plant–pathogen interactions. Front Plant Sci 6:584

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiao J, Zhou B, Zhu X, Gao Z, Liang Y (2013) Fusaric acid induction of programmed cell death modulated through nitric oxide signalling in tobacco suspension cells. Planta 238(4):727–737

    Article  CAS  PubMed  Google Scholar 

  • Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  CAS  PubMed  Google Scholar 

  • Katiyar-Agarwal S, Jin H (2010) Role of small RNAs in host-microbe interactions. Annu Rev Phytopathol 48:225–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kern MF, Maraschin SDF, Endt DV, Schrank A, Vainstein MA, Pasquali G (2010) Expression of a chitinase gene from Metarhizium anisopliae in tobacco plants confers resistance against Rhizoctonia solani. Appl Biochem Biotechnol 160:1933–1946

    Article  CAS  PubMed  Google Scholar 

  • Kessler A, Baldwin IT (2002) Plant responses to insect herbivory: the emerging molecular analysis. Annu Rev Plant Biol 53:299–328

    Article  CAS  PubMed  Google Scholar 

  • Kiirika L, Stahl F, Wydra K (2013) Phenotypic and molecular characterization of resistance induction by single and combined application of chitosan and silicon in tomato against Ralstonia solanacearum. Physiol Mol Plant Pathol 81:1–12

    Article  CAS  Google Scholar 

  • Kiong ALP, Lai AG, Hussein S, Harun AR (2008) Physiological responses of Orthosiphon stamineus plantlets to gamma irradiation. Am Eurasian J Sustain Agric 2(2):135–149

    Google Scholar 

  • Kiraly L, Barnaz B, Kiralyz Z (2007) Plant resistance to pathogen infection: forms and mechanisms of innate and acquired resistance. J Phytopathol 155:385–396

    Article  CAS  Google Scholar 

  • Knoester M, Pieterse CMJ, Bol JF, van Loon LC (1999) Systemic resistance in Arabidopsis induced by rhizobacteria requires ethylene-dependent signaling at the site of application. Mol Plant-Microbe Interact 12:720–727

    Article  CAS  PubMed  Google Scholar 

  • Knogge W (1996) Fungal infection of plants. Plant Cell 8(10):1711–1722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovacs E, Keresztes A (2002) Effect of gamma and UV-B/C radiation on plant cells. Micron 33(2):199–210

    Article  CAS  PubMed  Google Scholar 

  • Krishna V, Kumar KG, Pradeepa K, Kumar S, Kumar RS (2013) Biochemical markers assisted screening of Fusarium wilt resistant Musa paradisiaca (L.) cv. puttabale micropropagated clones. Indian J Exp Biol 51:531–542

    PubMed  Google Scholar 

  • Kuc J (1982) Induced immunity to plant diseases. Bioscience 32:854–860

    Article  Google Scholar 

  • Kume T, Matsuda T (1995) Changes in structural and antigenic properties of proteins by radiation. Radiat Phys Chem 46(2):225–231

    Article  CAS  Google Scholar 

  • Kunze G, Zipfel C, Robatzek S, Niehaus K, Boller T, Felix G (2004) The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. Plant Cell 16:3496–3507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langham M, Glover K (2005) Effects of Wheat streak mosaic virus (genus: Tritimovirus; family: Potyviridae) on spring wheat. Phytopathology 95(6):556

    Google Scholar 

  • Liu H, Ma Y, Chen N, Guo S, Liu H, Guo X, Chong K, Xu Y (2014a) Overexpression of stress-inducible OsBURP16, the beta-subunit of polygalacturonase 1, decreases pectin contents and cell adhesion, and increases abiotic stress sensitivity in rice. Plant Cell Environ 37:1144–1158

    Article  CAS  PubMed  Google Scholar 

  • Liu WD, Liu JL, Triplett L, Leach JE, Wang GL (2014b) Novel insights into rice innate immunity against bacterial and fungal pathogens. Annu Rev Phytopathol 52:213–241

    Article  CAS  PubMed  Google Scholar 

  • Lotze MT, Zeh HJ, Rubartelli A, Sparvero LJ, Amoscato AA, Washburn NR, Devera ME, Liang X, Tor M, Billiar T (2007) The grateful dead: damage-associated molecular pattern molecules and reduction/oxidation regulate immunity. Immunol Rev 220:60–81

    Article  CAS  PubMed  Google Scholar 

  • Maleck K, Levine A, Eulgem T, Morgan A, Schmid J, Law ton KA, Dangl JL, Dietrich RA (2000) The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nat Genet 26:403–410

    Article  CAS  PubMed  Google Scholar 

  • Malinovsky FG, Fangel JU, Willats WGT (2014) The role of the cell wall in plant immunity. Front Plant Sci 5:178

    Article  PubMed  PubMed Central  Google Scholar 

  • Margesin R, Neuner G, Storey K (2007) Cold-loving microbes, plants, and animals—fundamental and applied aspects. Naturwissenschaften 94(2):77–99

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto K, Ohta T, Tanaka T (2005) Dependence of stomatal conductance on leaf chlorophyll concentration and meteorological variables. Agric For Meterol 132(1):44–57

    Article  Google Scholar 

  • McDowell JM, Dangl JL (2000) Signal transduction in the plant immune response. Trends Biol Sci 25:79–82

    Article  CAS  Google Scholar 

  • Mehri N, Fotovat R, Saba J, Jabbari F (2009) Variation of stomata dimensions and densities in tolerant and susceptible wheat cultivars under drought stress. J Food Agric Environ 7:167–170

    Google Scholar 

  • Melotto M, Underwood W, Koczan J, Nomura K, He SY (2006) Plant stomata function in innate immunity against bacterial invasion. Cell 126(5):969–980

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7(9):405–410

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Shulaev V, Lam E (1995) Coordinated activation of programmed cell death and defense mechanisms in transgenic tobacco plants expressing a bacterial proton pump. Plant Cell 7:29–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monaghan J, Zipfel C (2012) Plant pattern recognition receptor complexes at the plasma membrane. Curr Opin Plant Biol 15(4):349–357

    Article  CAS  PubMed  Google Scholar 

  • Moon S, Song KB (2001) Effect of γ-irradiation on the molecular properties of ovalbumin and ovomucoid and protection by ascorbic acid. Food Chem 74(4):479–483

    Article  CAS  Google Scholar 

  • Murkute A, Sharma S, Singh S (2006) Studies on salt stress tolerance of citrus rootstock genotypes with arbuscular mycorrhizal fungi. Hortic Sci 33:70–76

    Google Scholar 

  • Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JD (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–439

    Article  CAS  PubMed  Google Scholar 

  • Nurnberger T, Kemmerling B (2009) Pathogen-associated molecular patterns (PAMP) and PAMP-triggered immunity. In: Parker J (ed) Molecular aspects of plant disease resistance. Annual plant reviews, vol 34. Wiley, Oxford, pp 16–47

    Google Scholar 

  • Oerke EC (2006) Crop losses to pests. J Agric Sci 144:31–43

    Article  Google Scholar 

  • Onaga G, Wydra K (2016) Advances in plant tolerance to biotic stresses, plant genomics, Ibrokhim Y. Abdurakhmonov (ed) InTech. DOI: https://doi.org/10.5772/64351.

  • Passardi F, Longet D, Penel C, Dunand C (2004) The class III peroxidase multigenic family in rice and its evolution in land plants. Phytochemistry 65(13):1879–1893

    Article  CAS  PubMed  Google Scholar 

  • Pearce RS (2001) Plant freezing and damage. Ann Bot 87(4):417–424

    Article  CAS  Google Scholar 

  • Pei ZM, Murata Y, Benning G, Thomine S, Klüsener B, Allen GJ, Schroeder JI et al (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406:731–734

    Article  CAS  PubMed  Google Scholar 

  • Pieterse CMJ, Van Wees SCM, Hoffland E, Van Pelt JA, Van Loon LC (1996) Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression. Plant Cell 8:1225–1237

    Google Scholar 

  • Pieterse CMJ, Van Wees SCM, Van Pelt JA, Knoester M, Laan R, Gerrits H, Weisbeek PJ, Van Loon LC (1998) A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10:1571–1580

    Google Scholar 

  • Pieterse CMJ, Ton J, van Loon LC (2002) Cross-talk between plant defence signaling pathways: boost or burden? Agri Biotech Net 3:1–18

    Google Scholar 

  • Pieterse CM, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SC (2012) Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 28:489–521

    Article  CAS  PubMed  Google Scholar 

  • Pshibytko N, Zenevich L, Kabashnikova L (2006) Changes in the photosynthetic apparatus during Fusarium wilt of tomato. Russ J Plant physiol 53(1):25–31

    Article  CAS  Google Scholar 

  • Rentel MC, Lecourieux D, Ouaked F, Usher SL, Petersen L, Okamoto H, Knight H, Peck SC, Grierson CS, Hirt H, Knight MR (2004) OXI1 kinase is necessary for oxidative burst-mediated signaling in Arabidopsis. Nature 427:858–861

    Article  CAS  PubMed  Google Scholar 

  • Rivas S, Thomas CM (2005) Molecular interactions between tomato and the leaf mold pathogen Cladosporium fulvum. Annu Rev Phytopathol 43:395–436

    Article  CAS  PubMed  Google Scholar 

  • Rizhsky L, Mittler R (2001) Inducible expression of bacterioopsin in transgenic tobacco and tomato plants. Plant Mol Biol 46:313–323

    Article  CAS  PubMed  Google Scholar 

  • Rodiyati A, Arisoesilaningsih E, Isagi Y, Nakagoshi N (2004) Responses of Cyperus brevifolius (Rottb.) Hassk. and Cyperus kyllingia Endl. to varying soil water availability. Environ Exp Bot 53:259–269

    Article  Google Scholar 

  • Ross AF (1961) Systemic acquired resistance induced by localized virus infections in plants. Virology 14:340–358

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Lozano JM, Porcel R, Azcón C, Aroca R (2012) Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies. J Exp Bot 63(11):4033–4044

    Article  CAS  PubMed  Google Scholar 

  • Sanghera GS, Wani SH, Singh G, Kashyap PL, Singh NB (2011) Designing crop plants for bioticstresses using transgenic approach. Int J Plant Res 24:1–25

    Google Scholar 

  • Schacht T, Unger C, Pich A, Wydra K (2011) Endo- and exopolygalacturonases of Ralstonia solanacearum are inhibited by polygalacturonase-inhibiting protein (PGIP) activity in tomato stem extracts. Plant Physiol Biochem 49:377–387

    Article  CAS  PubMed  Google Scholar 

  • Schenk PM, Kazan K, Wilson I, Anderson JP, Richmond T, Somerville SC, Manners JM (2000) Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc Natl Acad Sci U S A 97(21):11655–11660

    Google Scholar 

  • Schwessinger B, Zipfel C (2008) News from the frontline: recent insights into PAMP-triggered immunity in plants. Curr Opin Plant Biol 11:389–395

    Article  CAS  PubMed  Google Scholar 

  • Sheng M, Tang M, Chen H, Yang B, Zhang F, Huang Y (2008) Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza 18(6–7):287–296

    Article  CAS  PubMed  Google Scholar 

  • Shimizu T, Nakano T, Takamizawa D, Desaki Y, Ishii-Minami N, Nishizawa Y, Minami E, Okada K, Yamane H, Kaku H, Shibuya N (2010) Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice. Plant J 64:204–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shohael A, Ali M, Yu K, Hahn E, Islam R, Paek K (2006) Effect of light on oxidative stress, secondary metabolites and induction of antioxidant enzymes in Eleutherococcus senticosus somatic embryos in bioreactor. Process Biochem 41(5):1179–1185

    Article  CAS  Google Scholar 

  • Siddique Z, Akhtar KP, Hameed A, Sarwar N, Imran-Ul-Haq Khan SA (2014) Biochemical alterations in leaves of resistant and susceptible cotton genotypes infected systemically by cotton leaf curl Burewala virus. J Plant Interact 9(1):702–711

    Article  CAS  Google Scholar 

  • Singh VK, Upadhyay RS (2014) Fusaric acid induced cell death and changes in oxidative metabolism of Solanum lycopersicum L. Bot Stud 55(1):1–11

    Article  CAS  Google Scholar 

  • Stephenson TJ (2011) Characterization of the TaNFY family of transcription factors in wheat. Thesis submitted to Queensland University of Technology.

    Google Scholar 

  • Sticher L, Mauch-Mani B, traux J-PM´ (1997) Systemic acquired resistance. Annu Rev Phytopathol 35:235–270

    Article  CAS  PubMed  Google Scholar 

  • Svábová L, Lebeda A, Kitner M, Sedlárová M, Petrivalsky M, Dostálová R, Griga M et al (2011) Comparison of the effects of Fusarium solani filtrates in vitro and in vivo on the morphological characteristics and peroxidase activity in pea cultivars with different susceptibility. J Plant Pathol 93(1):19–30

    Google Scholar 

  • Swarupa V, Ravishankar K, Rekha A (2014) Plant defense response against Fusarium oxysporum and strategies to develop tolerant genotypes in banana. Planta 239(4):735–751

    Article  CAS  PubMed  Google Scholar 

  • Taguchi F, Takeuchi K, Katoh E, Murata K, Suzuki T, Marutani M, Kawasaki T, Eguchi M, Katoh S, Kaku H, Yasuda C, Inagaki Y, Toyoda K, Shiraishi T, Ichinose Y (2006) Identification of glycosylation genes and glycosylated amino acids of flagellin in Pseudomonas syringae pv. tabaci. Cell Microbiol 8:923–938

    Article  CAS  PubMed  Google Scholar 

  • Takai R, Isogai A, Takayama S, Che F (2008) Analysis of flagellin perception mediated by flg22 receptor OsFLS2 in rice. Mol Plant-Microbe Interact 21:1635–1642

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi K, Taguchi F, Inagaki Y, Toyoda K, Shiraishi T, Ichinose Y (2003) Flagellin glycosylation island in Pseudomonas syringae pv. glycinea and its role in host specificity. J Bacteriol 185:6658–6665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuda K, Katagiri F (2010) Comparing signaling mechanisms engaged in pattern-triggered and effector-triggered immunity. Curr Opin Plant Biol 13:459–465

    Article  CAS  PubMed  Google Scholar 

  • Uknes S, Mauch-Mani B, Moyer M, Potter S, Williams S, Dincher S, Chandler D, Slusarenko A, Ward E, Ryals J (1992) Acquired resistance in Arabidopsis. Plant Cell 4:645–656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vallad GE, Goodman RM (2004) Systemic acquired resistance and induced systemic resistance in conventional agriculture. Crop Sci 44:1920–1934

    Article  Google Scholar 

  • Van Hulten M, Pelser M, Van Loon LC, Pieterse CMJ, Ton J (2006) Costs and benefits of priming for defense in Arabidopsis. Proc Natl Acad Sci U S A 103:5602–5607

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Loon LC (2007) Plant responses to plant growth-promoting rhizobacteria. Eur J Plant Pathol 119:243–254

    Article  CAS  Google Scholar 

  • Van Loon LC, Glick BR (2004) Increased plant fitness by rhizobacteria. In: Sandermann H (ed) Molecular ecotoxicology of plants. Springer, Berlin, pp 177–205

    Chapter  Google Scholar 

  • Van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    Article  PubMed  Google Scholar 

  • Van Loon LC, Rep M, Pieterse CM (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44:135–162

    Article  PubMed  CAS  Google Scholar 

  • Van Wees SCM, van der Ent S, Pieterse CMJ (2008) Plant immune responses triggered by beneficial microbes. Curr Opin Plant Biol 11:443–448

    Article  PubMed  CAS  Google Scholar 

  • Variyar PS, Limaye A, Sharma A (2004) Radiation-induced enhancement of antioxidant contents of soybean (Glycine max Merrill). Agric Food Chem 52(11):3385–3388

    Article  CAS  Google Scholar 

  • Vaucheret H (2006) Post-transcriptional small RNA pathways in plants: Mechanisms and regulations. Genes Dev 20:759–771

    Article  CAS  PubMed  Google Scholar 

  • Walling LL (2000) The myriad plant responses to herbivores. J Plant Growth Regul 19:195–216

    CAS  PubMed  Google Scholar 

  • Walters DR, Newton AC, Lyon GD (2005) Induced resistance: helping plants to help themselves. Biologist 52:28–33

    Google Scholar 

  • Wang M, Xiong Y, Ling N, Feng X, Zhong Z, Shen Q, Guo S (2013) Detection of the dynamic response of cucumber leaves to fusaric acid using thermal imaging. Plant Physiol Biochem 66:68–76

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Ling N, Dong X, Liu X, Shen Q, Guo S (2014) Effect of fusaric acid on the leaf physiology of cucumber seedlings. Eur J Plant Pathol 138(1):103–112

    Article  CAS  Google Scholar 

  • Ward ER, Uknes SJ, Williams SC, Dincher SS, Wiederhold DL, Alexander DC, Ahl-Goy P, Metraux JP, Ryals JA (1991) Coordinate gene activity in response to agents that induce systemic acquired resistance. Plant Cell 3(10):1085–1094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weintraub PG, Jones P (2010) Phytoplasmas: genomes, plant hosts and vectors. CABI, Wallingford

    Google Scholar 

  • Wilkinson S, Davies WJ (2010) Drought, ozone, ABA and ethylene: new insights from cell to plant to community. Plant Cell Environ 33(4):510–525

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson VM, Gould G (1996) Food irradiation: a reference guide: Woodhead Publishing in Science and Technology. Abington Hall, Abington. Cambridge CBl 6AH. p 180

    Google Scholar 

  • Wu L, Zhou H, Zhang Q, Zhang J, Ni F, Liu C, Qi Y (2010) DNA methylation mediated by a microRNA pathway. Mol Cell 38:465–475

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi Y, Huffaker A, Bryan AC, Tax FE, Ryan CA (2010) PEPR2 is a second receptor for the Pep1 and Pep2 peptides and contributes to defense responses in Arabidopsis. Plant Cell 22:508–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan Z, Reddy MS, Yyu C-M, McInroy JA, Wilson M, Kloepper JW (2002) Induced systemic protection against tomato late blight by plant growth-promoting rhizobacteria. Phytopathology 92:1329–1333

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Huang H (2014) Roles of small RNAs in plant disease resistance. J Integr Plant Biol 56:962–970

    Article  CAS  PubMed  Google Scholar 

  • Yao N, Tada Y, Park P, Nakayashiki H, Tosa Y, Mayama S (2001) Novel evidence for apoptotic cell response and differential signals in chromatin condensation and DNA cleavage in victorin-treated oats. Plant J 28(1):13–26

    Article  CAS  PubMed  Google Scholar 

  • Yordanova RY, Christov KN, Popova LP (2004) Antioxidative enzymes in barley plants subjected to soil flooding. Environ Exp Bot 51(2):93–101

    Article  CAS  Google Scholar 

  • Zamore PD, Haley B (2005) Ribo-gnome: The big world of small RNAs. Science 309:1519–1524

    Article  CAS  PubMed  Google Scholar 

  • Zelicourt A, Yousif M, Heribert H (2013) Rhizosphere Microbes as Essential Partners for Plant Stress Tolerance. Mol Plant 6(2):242–245

    Article  PubMed  CAS  Google Scholar 

  • Zeng W, Melotto M, He SY (2010) Plant stomata: a checkpoint of host immunity and pathogen virulence. Curr Opin Biotechnol 21(5):599–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Gao S, Zhou X, Chellappan P, Chen Z, Zhang X, Fromuth N, Coutino G, Coffey M, Jin H (2011) Bacteria-responsive microRNAs regulate plant innate immunity by modulating plant hormone networks. Plant Mol Biol 75:93–105

    Article  CAS  PubMed  Google Scholar 

  • Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones JD, Boller T, Felix G (2006) Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125:749–760

    Article  CAS  PubMed  Google Scholar 

  • Zvereva AS, Pooggin MM (2012) Silencing and innate immunity in plant defense against viral and non-viral pathogens. Viruses 4:2578–2597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

We would like to express our special thanks to the Indian Council of Agricultural Research (ICAR), Government of India, for providing financial support. We acknowledge the help extended by Dr. A.K. Saxena, Director, ICAR, National Bureau of Agriculturally Important Microorganisms (ICAR-NBAIM), to carry out the proposed activity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kannojia, P. et al. (2017). Microbe-Mediated Biotic Stress Management in Plants. In: Singh, D., Singh, H., Prabha, R. (eds) Plant-Microbe Interactions in Agro-Ecological Perspectives. Springer, Singapore. https://doi.org/10.1007/978-981-10-6593-4_26

Download citation

Publish with us

Policies and ethics