Skip to main content

Fungi: An Effective Tool for Bioremediation

  • Chapter
  • First Online:

Abstract

Pesticides which are hydrophobic in nature are often adsorbed as well as retained by the soil particles and organic matter, whereas, the water soluble pesticides enter the surface and ground water bodies and can enter drinking water wells causing health problems by entering food chain directly. Currently, one of the most effective and common remediation practices is incineration, but it is associated with a number of disadvantages. One promising alternative treatment strategy to incineration is bioremediation which is to exploit the ability of microorganisms for removing pollutants from contaminated sites. Fungi are among the potential candidates of bioremediation as they are natural decomposers of waste matter and secrete several extracellular enzymes capable of decomposing lignin and cellulose, the two essential components of plant fiber. It is necessary to correctly identify and select the fungal species to target a particular pollutant to achieve a successful mycoremediation. White-rot fungi possess a number of advantages in relation to degradation of insoluble chemicals and toxic environmental pollutants that can be exploited in bioremediation systems. The accessibility and bioavailability of the pollutants serve as a limitation in bioremediation including fungal-mediated bioremediation of pesticides. As a future perspective, there is a need not only to isolate and characterize the novel pesticide mineralizing fungal strains but also to characterize the chemistry, toxicity, and environmental fates of the metabolites produced during fungal biodegradation of pesticides.

This is a preview of subscription content, log in via an institution.

References

  • Abraham WR, Nogales B, Golyshin PN, Pieper DH, Timmis KN (2002) Polychlorinated biphenyl-degrading microbial communities in soils and sediments. Curr Opin Microbiol 5:246–253

    Article  CAS  PubMed  Google Scholar 

  • Adenipekun CO, Lawal R (2012) Uses of mushrooms in bioremediation: a review. Biotechnol Mol Biol Rev 7(3):62–68

    CAS  Google Scholar 

  • Agnihotri NP (1999) Pesticide: safety evaluation and monitoring. All India coordinated Project (AICRP) on Pesticide Residues. Indian Agricultural Research Institute, New Delhi, pp 132–142

    Google Scholar 

  • Amend LJ, Lederman PB (1992) Critical evaluation of PCB remediation technologies. Environ Prog 11:173–177

    Article  CAS  Google Scholar 

  • Arisoy M (1998) Biodegradation of chlorinated organic compounds by white-rot fungi. Bull Environ Contam Toxicol 60:872–876

    Article  CAS  PubMed  Google Scholar 

  • Badawi N, Ronhede S, Olsson S, Kragelund BB, Johnsen AH, Jacobsen OS, Aamand J (2009) Metabolites of the phenylurea herbicides chlorotoluron, diuron, isoproturon and linuron produced by the soil fungus Mortierella sp. Environ Pollut 57:2806–2812

    Article  Google Scholar 

  • Barr BP, Aust D (1994) Mechanisms of white-rot fungi use to degrade pollutant. Environ Sci Technol 28:78–87

    Article  Google Scholar 

  • Bass C, Field LM (2011) Gene amplification and insecticide resistance. Pest Manag Sci 67(8):886–890

    Google Scholar 

  • Bavcon M, Trebese P, Zupancic-Kralj L (2002) Investigations of the determination and transformations of diazinon and malathion under environmental conditions using gas chromatography coupled with a flame ionization detector. Chemosphere 50(5):95–601

    Google Scholar 

  • Bhalerao TS (2012) Bioremediation of endosulfan-contaminated soil by using bioaugmentation treatment of fungal inoculant Aspergillus niger. Turk J Biol 36:561–567

    CAS  Google Scholar 

  • Bhalerao TS, Puranik PR (2007) Biodegradation of organochlorine pesticide, endosulfan, by a fungal soil isolate, Aspergillus niger. Int Biodeterior Biodegrad 59:315–321

    Article  CAS  Google Scholar 

  • Boopathy R (2000) Factors limiting bioremediation technologies. Bioresour Technol 74:63–67

    Article  CAS  Google Scholar 

  • Casara KP, Vecchiato AB, Lourencetti C, Pinto AA, Dores EF (2012) Environmental dynamics of pesticides in the drainage area of the Sao Lourenco River headwaters, Mato Grosso state, Brazil. J Braz Chem Soc 23(9):1719–1731

    Article  CAS  Google Scholar 

  • Deng W, Lin D, Yao K, Yuan H, Wang Z, Li J, Zou L, Han X, Zhou K, He L, Hu X, Liu S (2015) Characterization of a novel β-cypermethrin-degrading Aspergillus niger YAT strain and the biochemical degradation pathway of β-cypermethrin. Appl Microbiol Biotechnol 99(19):8187–8198

    Article  CAS  PubMed  Google Scholar 

  • Diez MC (2010) Biological aspects involved in the degradation of organic pollutants. J Soil Sci Plant Nutr 10:244–267

    Article  Google Scholar 

  • Donoso C, Becerra J, Martínez M, Garrido N, Silva M (2008) Degradative ability of 2,4,6-tribromophenol by saprophytic fungi Trametes versicolor and Agaricus augustus isolated from Chilean forestry. World J Microbiol Biotechnol 24:961–968

    Article  CAS  Google Scholar 

  • Evans C, Hedger J (2001) Degradation of cell wall polymers. In: Gadd G (ed) Fungi in bioremediation. Cambridge University Press, Cambridge, pp 1–26

    Google Scholar 

  • Fenner K, Canonica S, Wackett LP, Elsner M (2013) Evaluating pesticide degradation in the environment: blind spots and emerging opportunities. Science 341:752–758

    Article  CAS  PubMed  Google Scholar 

  • Field JA, De Jong E, Feijoo-Costa G, De Bont JAM (1993) Screening for ligninolytic fungi applicable to the biodegradation of xenobiotics. Trends Biotechnol 11:44–48

    Article  CAS  Google Scholar 

  • Finley SD, Broadbelt LJ, Hatzimanikatis V (2010) In silico feasibility of novel biodegradation pathways for 1,2,4-Trichlorobenzene. BMC Syst Biol 4(7):4–14

    Google Scholar 

  • Frazar C (2000) The bioremediation and phytoremediation of pesticide contaminated sites, national network of environmental studies (NNEMS) fellow, Washington, DC.

    Google Scholar 

  • Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156(3):609–643

    Article  CAS  PubMed  Google Scholar 

  • Gan J, Koskinen WC (1998) Pesticide fate and behaviour in soil at elevated concentrations. In: Kearney PC (ed) Pesticide remediation in soils and water. John Wiley and Sons, Chichester, pp 59–84

    Google Scholar 

  • Gilbert-Lopez B, Garcia-Reyesa JF, Fernandez-Alba AR, Molina-Diaz A (2010) Evaluation of two sample treatment methodologies for large-scale pesticide residue analysis in olive oil by fast liquid chromatography–electrospray mass spectrometry. J Chromatogr A 1217:3736–3747

    Article  CAS  PubMed  Google Scholar 

  • Hamman S (2004) Bioremediation capabilities of white- rot fungi. Biodegradation 52:1–5

    Google Scholar 

  • Hatakka A (2001) Biodegradation of lignin. In: Steinbüchel A (ed) Biopolymers.Vol 1: Hofrichter M, Steinbuchel A. (eds) Lignin, Humic Substances and Coal. Wiley- VCH, Weinheim, pp 129–180

    Google Scholar 

  • Höhener P, Hunkeler D, Hess A, Bregnard T, Zeyer J (1998) Methodology for the evaluation of engineered in situ bioremediation: lessons from a case study. J Microbiol Methods 32:179–192

    Google Scholar 

  • Hussain S, Siddique T, Arshad M, Saleem M (2009) Bioremediation and phytoremediation of pesticides: recent advances. Crit Rev Environ Sci Technol 39(10):843–907

    Article  CAS  Google Scholar 

  • Jeon CO, Madsen EL (2012) In situ microbial metabolism of aromatic-hydrocarbon environmental pollutants. Curr Opin Biotechnol 24:474–481

    Google Scholar 

  • Ji G, Silver S (1995) Bacterial resistance mechanisms for heavy metals of environmental concern. J Ind Microbiol 14:61–75

    Article  CAS  PubMed  Google Scholar 

  • Kadimaliev DA, Revin VV, Atykyan NA, Nadezhina OS, Parshin AA (2011) The role of laccase and peroxidase of Lentinus (Panus) tigrinus fungus in biodegradation of high phenol concentrations in liquid medium. Appl Biochem Microbiol 47(1):66–71

    Article  CAS  Google Scholar 

  • Kamei I, Takagi K, Kondo R (2011) Degradation of endosulfan and endosulfan sulfate by white-rot fungus Trametes hirsute. J Wood Sci 57:317–322

    Article  CAS  Google Scholar 

  • Kearney P, Wauchope R (1998) Disposal options based on properties of pesticides in soils and water. In: Kearney P, Roberts T (eds) Pesticide remediation in soil and water. Wiley Series in Agrochemicals and Plant Protection, Chichester, pp 35–57

    Google Scholar 

  • Kirk TK, Farrell RL (1987) Enzymatic combustion: the microbial degradation of lignin. Annu Rev Microbiol 41:465–505

    Article  CAS  PubMed  Google Scholar 

  • Kookana RS, Baskaran S, Naidu R (1998) Pesticide fate and behavior in Australian soils in relation to contamination and management of soil and water: a review. Aust J Soil Res 36:715–764

    Article  CAS  Google Scholar 

  • Kullman SW, Matsumura F (1996) Metabolic pathways utilized by Phanerochaete chrysosporium for degradation of the cyclodiene pesticide endosulfan. Appl Environ Microbiol 62:593–600

    Google Scholar 

  • Kulshreshtha S, Mathur N, Bhatnagar P (2014) Mushroom as a product and their role in mycoremediation. AMB Express 4:29

    Article  PubMed  PubMed Central  Google Scholar 

  • Lamar RT, White RB (2001) Mycoremediation: commercial status and recent developments. In: Magar VS et al (eds) Proc. Sixth Int. Symp. on In situ and on-site bioremediation, vol 6, San Diego, pp 263–278

    Google Scholar 

  • Lau KL, Tsang YY, Chiu SW (2003) Use of spent mushroom compost to bioremediate PAH- contaminated samples. Chemosphere 52:1539–1546

    Article  CAS  PubMed  Google Scholar 

  • León -Santiesteban HH, Wrobel K, Revah S, Tomasini A (2016) Pentachlorophenol removal by Rhizopus oryzae CDBB-H-1877 using sorption and degradation mechanisms. J Chem Technol Biotechnol 91(1):65–71

    Article  Google Scholar 

  • Liu YY, Chung YC, Xiong Y (2001) Purification and characterization of a dimethoate-degrading enzyme of Aspergillus niger ZHY256 isolated from sewage. Appl Environ Microbiol 67:3746–3749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maloney S (2001) Pesticide degradation. In: Gadd G (ed) Fungi in bioremediation. Cambridge University Press, Cambridge

    Google Scholar 

  • Matsubara M, Lynch JM, De Leij FAAM (2006) A simple screening procedure for selecting fungi with potential for use in the bioremediation of contaminated land. Enzym Microb Technol 39(7):1365–1372

    Google Scholar 

  • Megharaj M, Ramakrishnan B, Venkateswarlu K, Sethunathan N, Naidu R (2011) Bioremediation approaches for organic pollutants: a critical perspective. Environ Int 37(8):1362–1375

    Google Scholar 

  • Nawaz K, Hussain K, Choudary N, Majeed A, Ilyas U, Ghani A, Lin F, Ali K, Afghan S, Raza G, Lashari MI (2011) Eco-friendly role of biodegradation against agricultural pesticides hazards. Afr J Microbiol Res 5(3):177–183

    Google Scholar 

  • Nerud F, Baldrian J, Gabriel J, Ogbeifun D (2003) Nonenzymic degradation and decolorization of recalcitrant compounds. In: Sasek V et al (eds) The utilization of bioremediation to reduce soil contamination: problems and solutions. Kluwer Academis Publishers, Dordrecht/London, pp 29–48

    Google Scholar 

  • Nwachukwu EO, Osuji JO (2007) Bioremedial degradation of some herbicides by indigenous white rot fungus, Lentinus subnudus. J Plant Sci 2:619–624

    Article  CAS  Google Scholar 

  • Nyakundi WO, Magoma G, Ochora J, Nyende AB (2011) Biodegradation of diazinon and methomyl pesticides by white rot fungi from selected horticultural farms in rift valley and Central Kenya. J Appl Technol Environ Sanit 1(2):107–124

    CAS  Google Scholar 

  • Paul D, Pandey G, Pandey J, Jain RK (2005) Accessing microbial diversity for bioremediation and environmental restoration. Trends Biotechnol 23(3):135–142

    Article  CAS  PubMed  Google Scholar 

  • Pinto AP, Serrano C, Pires T, Mestrinho E, Dias L, Teixeira DM, Caldeira AT (2012) Degradation of terbuthylazine difenoconazole and pendimethalin pesticides by selected fungi cultures. Sci Total Environ 435:402–410

    Article  PubMed  Google Scholar 

  • Pizzul L, Castillo MDP, Stenström J (2009) Degradation of glyphosate and other pesticides by ligninolytic enzymes. Biodegred 20:751–759

    Article  CAS  Google Scholar 

  • Pointing SB (2001) Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol 51:20–33

    Google Scholar 

  • Purnomo AS, Putra SR, Shimizu K, Kondo R (2014) Biodegradation of heptachlor and heptachlor epoxide-contaminated soils by white-rot fungal inocula. Environ Sci Pollut Res 21(19):11305–11312

    Article  CAS  Google Scholar 

  • Rajendran P, Muthukrishnan J, Gunasekaran P (2003) Microbes in heavy metal remediation. Indian J Exp Biol 41(9):935–944

    CAS  PubMed  Google Scholar 

  • Ramakrishnan B, Megharaj M, Venkateswarlu K, Sethunathan N, Naidu R (2011) Mixtures of environmental pollutants: effects on microorganisms and their activities in soils. Rev Environ Contam Toxicol 211:63–120

    CAS  PubMed  Google Scholar 

  • Reddy C, Mathew Z (2001) Bioremediation potential of white rot fungi. In: Gadd G (ed) Fungi in bioremediation. Cambridge University Press, Cambridge

    Google Scholar 

  • Rhodes CJ (2012) Feeding and healing the world: through regenerative agriculture and permaculture. Sci Prog 95(4):345–446

    Article  CAS  PubMed  Google Scholar 

  • Rhodes CJ (2013) Applications of bioremediation and phytoremediation. Sci Prog 96(4):417–427

    Article  CAS  PubMed  Google Scholar 

  • Riya P, Jagatpati T (2012) Biodegradation and bioremediation of pesticides in soil: its objectives, classification of pesticides, factors and recent developments. World J Sci Technol 2(7):36–41

    Google Scholar 

  • Sasec V, Cajthaml T (2014) Mycoremediation: current status and perspectives. Int J Med Mushrooms 7(3):360–361

    Article  Google Scholar 

  • Sasek V (2003) Why mycoremediations have not yet come into practice. In: Sasek V, Glaser JA, Baveye P (eds) The utilization of bioremediation to reduce soil contaminants: problems and solutions, 19th edn. Kluwer Academic, Dordrecht, pp 247–263

    Chapter  Google Scholar 

  • Scott C, Pandey G, Hartley CJ, Jackson CJ, Cheesman MJ, Taylor MC, Pandey R, Khurana JL, Teese M, Coppin CW, Weir KM, Jain RK, Lal R, Russell RJ, Oakeshott JG (2008) The enzymatic basis for pesticide bioremediation. Indian J Microbiol 48:65–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh H (2006) Mycoremediation: fungal bioremediation. Wiley, Hoboken

    Book  Google Scholar 

  • Singh DK (2008) Biodegradation and bioremediation of pesticide in soil: concept, method and recent developments. Indian J Microbiol 48:35–40

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh G et al (2014) Reoxidation of biogenic reduced uranium: a challenge toward bioremediation. Crit Rev Environ Sci Technol 44(4):391–415

    Article  CAS  Google Scholar 

  • Stamets P (2005) Mycelium running: how mushrooms can help save the world. Ten Speed Press, Berkley

    Google Scholar 

  • Strandberg B, Strandberg L, Bergqvist P, Falandysz J, Rappe C (1998) Concentrations and biomagnification of 17 chlordane compounds and other organochlorines in harbor porpoise (Phocoena phocoena) and herring from the southern Baltic Sea. Chemosphere 37:2513–2523

    Article  CAS  PubMed  Google Scholar 

  • Sullia SB (2004) Environmental Applications of Biotechnology. Asian J Microbiol Biotechnol Environ Sci 4:65–68

    Google Scholar 

  • Tigini V, Prigione V, Toro SD, Fava F, Giovanna CV (2009) Isolation and characterisation of polychlorinated biphenyl (PCB) degrading fungi from a historically contaminated soil. Microb Cell Factories 8:1–14

    Article  Google Scholar 

  • Van Herwijnen R, Van de Sande BF, Van der Wielen FWM, Springael D, Govers HAJ, Parsons JR (2003) Influence of phenanthrene and fluoranthene on the degradation of fluorine and glucose by Sphingomonas sp. strain LB126 in chemostat cultures. FEMS Microbiol Ecol 46:105–111

    Google Scholar 

  • Verdin AA, Sahraoui LHR, Durand R (2004) Degradation of benzo(a)pyrene by mitosporic fungi and extracellular oxidative enzymes. Int Biodeterior Biodegrad 53:65–70

    Article  CAS  Google Scholar 

  • Wasi S, Jeelani G, Ahmad M (2008) Biochemical characterization of a multiple heavy metal, pesticides and phenol resistant Pseudomonas fluorescens strain. Chemosphere 71:1348–1355

    Article  CAS  PubMed  Google Scholar 

  • Wasi S, Tabrez S, Ahmad M (2011) Suitability of immobilized Pseudomonas fluorescens SM1 strain for remediation of phenols, heavy metals and pesticides from water. Water Air Soil Pollut 220:89–99

    Article  CAS  Google Scholar 

  • Xiao P, Mori T, Kamei I, Kiyota H, Takagi K, Kondo R (2011) Novel metabolic pathways of organochlorine pesticides dieldrin and aldrin by the white rot fungi of the genus Phlebia. Chemosphere 85(2):218–224

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Chiao C (2002) Novel Approaches for remediation of pesticide pollutants. Int J Environ Pollut 18(5):423–433

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors are thankful to ICAR (AMAAS) for sanction of project “Degradation and effective utilization of agrowastes through technologies involving mushrooms or macrofungi.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachin Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, S., Wali, A., Gupta, M., Annepu, S.K. (2017). Fungi: An Effective Tool for Bioremediation. In: Singh, D., Singh, H., Prabha, R. (eds) Plant-Microbe Interactions in Agro-Ecological Perspectives. Springer, Singapore. https://doi.org/10.1007/978-981-10-6593-4_24

Download citation

Publish with us

Policies and ethics