Skip to main content

Crop Genetic Engineering: An Approach to Improve Fungal Resistance in Plant System

  • Chapter
  • First Online:
Plant-Microbe Interactions in Agro-Ecological Perspectives

Abstract

Fungal disease in crop plants from the past two decades has seen to be increasing which is recognized as a serious threat to food security worldwide. It is difficult for plant to survive under these unfavorable conditions which cause an unprecedented number of fungal and fungal-like diseases which are the most common kind of plant disease. Various approaches such as use of chemical pesticides and other synthetic molecules have been used to control the fungal infections in crop plants. Different transgenic plants have been developed by introducing various genes responsible for resistance in opposition to fungal pathogens. Genes of the enzymes responsible for cell wall degradation are frequently applied to generate transgenic plants for fungal resistance. This chapter mainly emphasizes on how transgenic approach helps to confer plant resistance toward fungal diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abdel-Monaim MF (2013) Improvement of biocontrol of damping-off and root rot/wilt of faba bean by salicylic acid and hydrogen peroxide. Mycobiology 41:47–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abdel-Monaim MF, Abdel-Gaid MA, Armanious HA (2012) Effect of chemical inducers on root rot and wilt diseases, yield and quality of tomato. Int J Agric Sci 7:211–220

    Google Scholar 

  • Abdullah MSA, Jacques FM, Hogg GS (2016) Fusarium: molecular diversity and intrinsic drug resistance. PLoS Pathog 12(4):e1005464

    Article  Google Scholar 

  • Agriculture Today: The National Agriculture Magazine (2012)

    Google Scholar 

  • Asha BB, Chandra NS, Udayashankar AC, Srinivas C, Niranjana SR (2011) Biological control of Fusarium wilt of tomato. Int J Microbiol Res 3:79–84

    Article  Google Scholar 

  • Bajpai VK, Kang SC (2012) In vitro and in vivo inhibition of plant pathogenic fungi by essential oil and extracts ofMagnolia liliiflora. Desr J Agric Sci Technol 14:845–856

    Google Scholar 

  • Bakhsh K (2013) Economic and environmental impacts of Bt cotton: Evidence from Pakistan. SANDEE Working Paper 79–13.

    Google Scholar 

  • Boland GJ, Hall R (1994) Index of plant hosts ofSclerotinia sclerotiorum. Can J Plant Pathol 16:93–108

    Article  Google Scholar 

  • Boxi SS, Mukherjee K, Paria S (2016) Ag doped hollow TiO2 nanoparticles as an effective green fungicide againstFusarium solani andVenturia inaequalis phytopathogens. Nanotechnology 27:85–103

    Article  Google Scholar 

  • Burgess LW, Knight TE, Tesoriero L, Phan HT (2008) Diagnostic manual for plant diseases in Vietnam. ACIAR, Canberra, pp 126–133

    Google Scholar 

  • Carling DE (1996) Grouping inRhizoctonia solani by the anastomosis reaction. In: Sneh B, Jabaji-Hare S, Neate S, Dijst G (eds) Rhizoctonia species: taxonomy, molecular biology, ecology, pathology, and disease control. Kluwer, New York, pp 35–47

    Google Scholar 

  • Coca M, Bortolotti C, Rufat M, Penas G, Eritja R, Tharreau D, Martinezdel PA, Messeguer J, Segundo SB (2004) Transgenic rice plants expressing the antifungal AFP protein fromAspergillus giganteus show enhanced resistance to the rice blast fungusMagnaporthe grisea. Plant Mol Biol 54:245–259

    Article  CAS  PubMed  Google Scholar 

  • Coca M, Penas G, Gómez J, Campo S, Bortolotti C, Messeguer J, San Segundo B (2006) Enhanced resistance to the rice blast fungusMagnaporthe grisea conferred by expression of acecropin A gene in transgenic rice. Planta 223:392–406

    Article  CAS  PubMed  Google Scholar 

  • Datta K, Tu J, Oliva N, Ona I, Velazhahan R, Mew TW, Muthukrishnan S, Datta SK (2001) Enhanced resistance to sheath blight by constitutive expression of infection related rice chitinase in transgenic elite indica rice cultivars. Plant Sci 160:405–414

    Article  CAS  PubMed  Google Scholar 

  • Devine GJ, Furlong MJ (2007) Insecticide use: contexts and ecological consequences. Agric Hum Values 24:281–306

    Article  Google Scholar 

  • Dunlap CA, Schisler DA, Price NP, Vaughn SF (2011) Cyclic lipopeptide profile of threeBacillus subtilis strains; antagonists of Fusarium head blight. J Microbiol 49:603–609

    Article  CAS  PubMed  Google Scholar 

  • Fiers M, Edel-Hermann V, Chatot C, Hingrat YL, Alabouvette C (2012) Steinberg potato soil-borne diseases. Agron Sustain Dev 32:93–132

    Article  Google Scholar 

  • Forrer HR, Musa T, Schwab F, Jenny E, Bucheli TD, Wettstein FE, Vogelgsang S (2014) Fusarium head blight control and prevention of mycotoxin in wheat with botanicals and tannic acid. Toxins 6:830–849

    Article  PubMed  PubMed Central  Google Scholar 

  • Hajipour MJ, Fromm KM, Ashkarran AA, Aberasturi DJD, Larramendi IRD, Rojo T, Serpooshan V, Parak WJ, Mahmoudi M (2012) Antibacterial properties of nanoparticles. Trends Biotechnol 30:499–511

    Article  CAS  PubMed  Google Scholar 

  • Hammami I, Triki MA, Rebai A (2011) Purification and characterization of the novel bacteriocin bac IH7 with antifungal and antibacterial properties. J Plant Pathol 93:443–454

    Google Scholar 

  • Hammami I, Siala R, Jridi M, Ktari N, Nasri M, Triki MA (2013) Partial purification and characterization of chiIO8, a novel antifungal chitinase produced byBacillus cereus IO8. J Appl Microbiol 9:1364–5072

    Google Scholar 

  • Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96

    Article  CAS  Google Scholar 

  • Kapoor IJ (1988) Fungi involved in tomato wilt syndrome in Delhi, Maharashtra and Tamil nadu. Indian Phytopathol 41:208–213

    Google Scholar 

  • Kim JS, Kuk E, KY Y, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK, Lee YS, Jeong DH, Cho MH (2007) Antimicrobial effects of silver nanoparticles Nanomed. Nanotechnol Biol Med 3:95–101

    Article  CAS  Google Scholar 

  • Kiran KR, Jagadeesh KS, Krishnaraj PU, Patil MS (2008) Enhanced growth promotion of Tomato and nutrient uptake by plant growth promoting rhizobacterial isolates in presence of Tobacco Mosaic Virus pathogen. J Agric Sci 21:309–311

    Google Scholar 

  • Kishimoto K, Nishizawa Y, Tabei Y, Hibi T, Nakajima M, Akutsu K (2002) Detailed analysis of rice chitinase gene expression in transgenic cucumber plants showing different levels of disease resistance to gray mold (Botrytis cinerea). Plant Sci 162:655–662

    Article  CAS  Google Scholar 

  • Kos M, Van Loon JJA, Dicke M, Vet LEM (2009) Transgenic plants as vital components of integrated pest management. Trends Biotechnol 27:621–627

    Article  CAS  PubMed  Google Scholar 

  • Kumar KK, Poovannan K, Nandakumar R, Thamilarasi K, Geetha C, Jayashree N, Kokiladevi E, Raja JAJ, Samiyappan R, Sudhakar D, Balasubramanian P (2003) A high throughput functional expression assay system for a defense gene conferring transgenic resistance on rice against the sheath blight pathogen,Rhizoctonia solani. Plant Sci 165:969–976

    Article  CAS  Google Scholar 

  • Lemaux PG (2008) Genetically engineered plants and foods: a scientist’s analysis of the issues (Part I). Annu Rev Plant Biol 59:771–812

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, Alvarez PJJ (2008) Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res 42:4591–4602

    Article  CAS  PubMed  Google Scholar 

  • Mondal KK, Bhattacharya RC, Koundal KR, Chatterjee SC (2007) Transgenic Indian mustard (Brassica juncea) expressing tomato glucanase leads to arrested growth ofAlternaria brassicae. Plant Cell Rep 26:247–252

    Article  CAS  PubMed  Google Scholar 

  • Moore R, Vodopich DS (1998) Botany http:/www.mycolog.com/fifthloc.html

  • Morsy KM (2005) Induced resistance against damping-off, root rot and wilt diseases of lentil. Egypt J Phytopathol 33:53–63

    Google Scholar 

  • Mullet J (1990) Designing crops for resistance to environmental stress. AgBiotech News Info 2:435–436

    Google Scholar 

  • Nishizawa Y, Saruta M, Nakazono K, Nishio Z, Soma M, Yoshida T, Nakajima E, Hibi T (2003) Characterization of transgenic rice plants over-expressing the stress-inducibleβ-glucanase geneGns1. Plant Mol Biol 51:143–152

    Article  CAS  PubMed  Google Scholar 

  • Pagnussatt FA, Del-Ponte EM, Garda-Buffon J, BadialeFurlong E (2014) Inhibition ofFusarium graminearum growth and mycotoxin production by phenolic extract fromSpirulina sp. Pestic Biochem Physiol 108:21–26

    Article  CAS  PubMed  Google Scholar 

  • Pandey KK, Gupta RC (2013) Virulence analysis ofFusarium oxysporum f. sp. Lycopersici causing tomato wilt in India. J Mycol Plant Pathol 43:409–413

    Google Scholar 

  • Parmeter JR (1970)Rhizoctonia Solani, biology and pathology. University of California Press, London, p 255

    Google Scholar 

  • Pennisi E (2010) Armed and dangerous. Science 327:804–805

    Article  CAS  PubMed  Google Scholar 

  • Petti C, Reiber K, Ali SS, Berney M, Doohan FM (2012) Auxin as a player in the biocontrol of Fusarium head blight disease of barley and its potential as a disease control agent. BMC Plant Biol 12:224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pound GS (1951) Effect of air temperature on incidence and development of the early blight disease of tomato. Phytopathology 41:35–127

    Google Scholar 

  • Prabhu AS, Prasada R (1966) Pathological and epidemiological studies on leaf blight of wheat caused byAlternaria triticina. Indian Phytopathol 19:95–112

    Google Scholar 

  • Prasada R, Prabhu AS (1962) Leaf blight of wheat caused by a new species of Alternaria. Indian Phytopathol 15(3–4):292–293

    Google Scholar 

  • Raffi M, Mehrwan S, Bhatti TM, Akhter JI, Hameed A, Yawar W, Hasan MM (2010) Investigations into the antibacterial behavior of copper nanoparticles againstEscherichia coli. Ann Microbiol 60:75–80

    Article  CAS  Google Scholar 

  • Rinehart TA, Copes WE, Toda T, Cubeta MA (2004) Genetic characterization of binucleateRhizoctonia species causing web blight on Azalea in Mississippi and Alabama. Plant Dis 91(5):616–623.5

    Article  Google Scholar 

  • Rohini VK, Rao KS (2001) Transformation of peanut (Arachis hypogaea L.) with tobacco chitinase gene: variable response of transformants to leaf spot disease. Plant Sci 160:889–898

    Article  CAS  PubMed  Google Scholar 

  • Sabriye Y, Yusuf Y, Isa K (2011) Evaluation of bacteria for biological control of early blight disease of tomato. Afr J Biotechnol 10(9):1573–1577

    Google Scholar 

  • Saleh NM, Hussan AK, Sabir LJ, Aish AA (2009) Evaluation the efficacy of baking yeast, some nutrients and salicylic acid to controlMacrophomina phaseolina. Iraqi J Agric Sci 40:9–16

    Google Scholar 

  • Sally AM, Randal CR, Richard MR (2006)Fusarium Verticillium wilts of tomato, potato, Pepper and Eggplant. The Ohio State University Extension, Columbus

    Google Scholar 

  • Schoneberg A, Musa T, Voegele RT, Vogelgsang S (2015) The potential of antagonistic fungi for control ofFusarium graminearum andFusarium crookwellense varies depending on the experimental approach. J Appl Microbiol 118:1165–1179

    Article  CAS  PubMed  Google Scholar 

  • Schultz T, Jim C, Master G (2007) WSU County Extension, SJC

    Google Scholar 

  • Sherf AF, MacNab AA (1986) Vegetable diseases and their control. John Wiley and Sons, New York

    Google Scholar 

  • Singh DN, Singh NK, Srivastava S (1999) Biochemical and morphological characters in relation to Alternaria blight resistance in rape seed mustard. Ann Agric Res 20:472–477

    Google Scholar 

  • Stephen AF, Andre KG (2003)Fusarium oxysporum. Department of Plant Pathology, CTAHR University of Hawaii at Manoa 2A-FUOXY

    Google Scholar 

  • Sudhamoy M, Nitupama M, Adinpunya M (2009) Salicylic acid induced resistance toFusarium oxysporum f. sp.lycopersici in tomato. Plant Physiol Biochem 47:642–649

    Article  Google Scholar 

  • Takatsu Y, Nishizawa Y, Hibi T, Akutsu K (1999) Transgenic chrysanthemum (Dendranthema grandiflorum (Ramat.) Kitamura) expressing a rice chitinase gene shows enhanced resistance to gray mold (Botrytis cinerea). Sci Hortic 82:13–123

    Article  Google Scholar 

  • Terakawa T, Takaya N, Horiuchi H, Koike M, Takagi M (1997) A fungal chitinase gene fromRhizopus oligosporus confers antifungal activity to transgenic tobacco. Plant Cell Rep 16:439–443

    CAS  Google Scholar 

  • Thangavelu R, Palaniswani A, Velazhahan R (2003) Mass production of Trichoderma harzianum for managing Fusarium wilt of banana. Agric Ecosyst Environ 103:259–263

    Article  Google Scholar 

  • Verma M, Brar S, Tyagi R, Surampalli R, Valero J (2007) Antagonistic fungi,Trichoderma. spp.:panoply of biological control. Biochem Engl J 37:1–20

    Article  Google Scholar 

  • Waggoner PE, Horsfall JG (1969) Epidem: A Simulator of Plant Disease written for a Computer. Bulletin No. 698. New Haven, Connecticut: Connecticut Agri Exper Stat

    Google Scholar 

  • World population prospects: analyzing the 1996 UN population projections. (1996) Source: Laxenburg, Austria, International Institute for Applied Systems Analysis. IIASA Working Paper No. 96–146

    Google Scholar 

  • Wrobel-Kwiatkowska M, Lorenc-Kukula K, Starzycki M, Oszmianski J, Kepczynska E, Szopa J (2004) Expression of a-1, 3-glucanase in flax causes increased resistance to fungi. Physiol Mol Plant Pathol 65:245–256

    Article  CAS  Google Scholar 

  • Xiaotian M, Lijiang W, Chengcai AN, Huayi Y, Zhangliang C (2000) Resistance to rice blast(Pyricularia oryzae) caused by the expression of trichosanthin gene in transgenic rice plants transferred throughAgrobacterium method. Chin Sci Bull 45:1774–1778

    Article  Google Scholar 

  • Yamamoto T, Iketani H, Ieki H, Nishizawa Y, Notsuka K, Hibi T, Hayashi T, Matsuta N (2000) Transgenic grapevine plants expressing a rice chitinase with enhanced resistance to fungal pathogens. Plant Cell Rep 19:639–646

    Article  CAS  Google Scholar 

  • Yang HT, Tang WH, Ryder M (1999)Trichoderma and biological control of plant diseases. Shan Dong Sci 12:7–15

    Google Scholar 

  • Yasa I, Lkhagvajav N, Koizhaiganova M, Celik E, Sarı O (2012) Assessment of antimicrobial activity of nanosized Ag doped TiO2 colloids. World J Microbiol Biotechnol 28:2531–2539

    Article  CAS  PubMed  Google Scholar 

  • Zheng A, Lin R, Zhang D, Qin P, Xu L, Ai P, Ding L, Wang Y, Chen Y, Liu Y, Sun Z, Feng H, Liang X, Fu R, Tang C, Li Q, Zhang J, Xie Z, Deng Q, Li S, Wang S, Zhu J, Wang L, Liu H, Li P (2013) The evolution and pathogenic mechanisms of the rice sheath blight pathogen. Nat Commun 4:1424

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Saquib Mahmood gratefully acknowledges the Department of Biotechnology for financial supports and Dr. Nita Lakra also acknowledge UGC for providing Dr. D.S. Kothari fellowship and Jawaharlal Nehru University (JNU), New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalid Anwar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mahmood, S., Lakra, N., Marwal, A., Sudheep, N.M., Anwar, K. (2017). Crop Genetic Engineering: An Approach to Improve Fungal Resistance in Plant System. In: Singh, D., Singh, H., Prabha, R. (eds) Plant-Microbe Interactions in Agro-Ecological Perspectives. Springer, Singapore. https://doi.org/10.1007/978-981-10-6593-4_23

Download citation

Publish with us

Policies and ethics