Skip to main content

Bacterial Rhizoremediation of Petroleum Hydrocarbons (PHC)

  • Chapter
  • First Online:
Plant-Microbe Interactions in Agro-Ecological Perspectives

Abstract

Crude oil-based products majorly diesel and petrol are one of the major sources of energy today, and their transport across the world frequently results in spillage, contaminating the soil and water. So, it has become a necessity now to go for in situ technologies that can efficiently remediate persistent contaminants from soil in a cost-effective and environmentally friendly method. Currently the chapter gives an idea about rhizoremediation, which is slowly becoming a very promising technique to detoxify the pollutants. Moreover to this the other aspects of rhizoremediation like root exudates and microbial abundance in rhizosphere, effects of weather, time, irrigation, and oxygen requirement on rhizoremediation and finally looking into some soil amendment techniques to improve the process are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Achuba FI (2006) The effect of sub lethal concentrations of crude oil on the growth and metabolism of Cowpea (Vigna unguiculata) seedlings. Environmentalist 26:17–20

    Article  Google Scholar 

  • Adam G, Duncan HJ (2002) Influence of diesel fuel on seed germination. Environ Pollut 120:363–370

    Article  CAS  PubMed  Google Scholar 

  • Adenipekun CO, Oyetunji OJ, Kassim LS (2008) Effect of spent engine oil on the growth parameters and chlorophyll content of Corchorus olitorius Linn. Environmentalist 28:446–450

    Article  Google Scholar 

  • Adenipekun CO, Oyetunji OJ, Kassim LQ (2009) Screening of Abelmoschus esculentus L. moench for tolerance to spent engine oil. J Appl Biosci 20:1131–1137

    Google Scholar 

  • Agamuthu P, Abioye OP, Aziz AA (2010) Phytoremediation of soil contaminated with used lubricating oil using Jatropha curcas. J Hazard Mater 179:891–894

    Article  CAS  PubMed  Google Scholar 

  • Aitchison EW, Kelley SL, Alvarez PJJ, Schnoor JL (2000) Phytoremediation of 1, 4-dioxane by hybrid poplar trees. Water Environ Res 72(3):313–321

    Article  CAS  Google Scholar 

  • Akaninwor JO, Ayeleso AO, Monoga CC (2007) Effect of different concentrations of crude oil (Bonny Light) on major food reserves in guinea corn during germination and growth. Sci Res Essays 2(4):127–131

    Google Scholar 

  • Andrews R, Parks T, Spence K (1980) Some effects of Douglas fir terpenes on certain microorganisms. Appl Environ Microbiol 40:301–304

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aprill W, Sims RC (1990) Evaluation of the use of prairie grasses for stimulating polycyclic aromatic hydrocarbons treatment in soil. Chemosphere 20:253–265

    Article  CAS  Google Scholar 

  • Ataga AE, Adedokun OM (2007) Effects of amendments and bioaugmentation of soil polluted with crude oil, automotive gasoline oil, and spent engine oil on the growth of cowpea (Vigna ungiculata L. Walp). Sci Res Essays 2(5):147–149

    Google Scholar 

  • Atlas RM, Bartha R (1998) Microbial ecology fundamentals and application, 3rd edn. Benjamin/Cummings Publishing Company, London

    Google Scholar 

  • Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32:666–681

    Article  CAS  PubMed  Google Scholar 

  • Badri DV, Chaparro JM, Manter DK, Martinoia E, Vivanco JM (2012) Influence of ATP-binding cassette transporters in root exudation of phytoalexins, signals, and in disease resistance. Front Plant Sci 3:149

    Article  PubMed  PubMed Central  Google Scholar 

  • Badri DV, Chaparro JM, Zhang R, Shen Q, Vivanco JM (2013) Application of natural blends of phytochemicals derived from the root exudates of Arabidopsis to the soil reveal that phenolic-related compounds predominantly modulate the soil microbiome. J Biol Chem 288:4502–4512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  CAS  PubMed  Google Scholar 

  • Bais HP, Broeckling CD, Vivanco JM (2008) Root exudates modulate plant microbe interactions in the rhizosphere. In: Karlovsky P (ed) Secondary metabolites in soil ecology, vol 14. Springer, Berlin, pp 241–252

    Chapter  Google Scholar 

  • Balba MT, Al-Awadhi N, Al-Daher R (1998) Bioremediation of oil contaminated soil: microbiological methods for feasibility assessment and field evaluation. J Microbiol Methods 32:155–164

    Article  CAS  Google Scholar 

  • Barac T, Taghavi S, Borremans B, Provoost A, Oeyen L, Colpaert JV (2004) Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Nature Biotech 22:583–588

    Article  CAS  Google Scholar 

  • Barac T, Weyens N, Oeyen L, Taghavi S, Van der Lelie D, Dubin D, Spliet M, Vangronsveld J (2009) Field note: hydraulic containment of a BTEX plume using poplar trees. Int J Phytoremed 11(5):416–424

    Article  CAS  Google Scholar 

  • Battey NH, Blackbourn HD (1993) The control of exocitosis in plant cells. New Phytol 125:307–308

    Article  CAS  Google Scholar 

  • Bennett LE, Burkhead JL, Hale KL, Terry N, Pilon M, Pilon-Smits EA (2003) Analysis of transgenic Indian mustard plants for phytoremediation of metal-contaminated mine tailings. J Environ Qual 32:432–440

    Article  CAS  PubMed  Google Scholar 

  • Berendsen RL, Pieterse CM, Bakker PAHM (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486

    Article  CAS  PubMed  Google Scholar 

  • Bertin C, Yang X, Weston L (2003) The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 256:67–83

    Article  CAS  Google Scholar 

  • Bulgarelli D, Rott M, Schlaeppi K (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488:91–95

    Article  CAS  PubMed  Google Scholar 

  • Calder J, Lader J (1976) Effect of dissolved aromatic hydrocarbons on the growth of marine bacteria in batch cultures. Appl Environ Microbiol 32:95–101

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chaineau CH, Morel JL, Oudot J (2000) Biodegradation of fuel oil hydrocarbons in the rhizosphere of maize. J Environ Qual 29:569–578

    Article  CAS  Google Scholar 

  • Chupakhina GN, Maslennikov PV (2004) Plant adaptation to oil stress. Russ J Ecol 35:290–295

    Article  CAS  Google Scholar 

  • Collins CD (2007) Implementing phytoremediation of petroleum hydrocarbons. Methods Biotechnol 23:99

    Article  CAS  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clement C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. App Environ Microbiolo 71:4951–4959

    Article  CAS  Google Scholar 

  • Compant S, Clement C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678

    Article  CAS  Google Scholar 

  • Dariush MT, Shahriari MH, Gholamreza SF, Mahdie A, Faeze K (2007) Study of growth and germination of Medicago sativa (Alfalfa) in light crude oil-contaminated soil. Res J Agric Biol Sci 3(1):46–51

    Google Scholar 

  • DeAngelis KM, Brodie EL, DeSantis TZ, Andersen GL, Lindow SE, Firestone MK (2009) Selective progressive response of soil microbial community to wild oat roots. ISME J 3:168–178

    Article  CAS  PubMed  Google Scholar 

  • Diab E (2008) Phytoremediation of oil contaminated desert soil using the rhizosphere effects of some plants. Res J Agric Biol Sci 4:604–610

    CAS  Google Scholar 

  • Dixon RA (2001) Natural products and plant disease resistance. Nature 411:843–847

    Article  CAS  PubMed  Google Scholar 

  • Ebuehi OAT, Abibo IB, Shekwolo PD, Sigismund KI, Adoki A, Okoro IC (2005) Remediation of crude oil contaminated soil by enhanced natural attenuation technique. J Appl Sci Environ 1:103–106

    Google Scholar 

  • Escalante EE, Gallegos MME, Favela TE, Gutierrez RM (2005) Improvement of the hydrocarbon phytoremediation rate by Cyperus laxus Lam. inoculated with a microbial consortium in a model system. Chemosphere 59:405–413

    Article  CAS  Google Scholar 

  • Euliss K, Ho CH, Schwab AP, Rock S, Banks MK (2008) Greenhouse and field assessment of phytoremediation for petroleum contaminants in a riparian zone. Bioresour Technol 99:1961–1971

    Article  CAS  PubMed  Google Scholar 

  • Francova K, Sura M, Macek T, Szekeres M, Bancos S, Demnerova K (2003) Preparation of plants containing bacterial enzyme for the degradation of polychlorinated biphenyls. Fresenius Environ Bull 12:309–313

    CAS  Google Scholar 

  • Frick C, Farrell R, Germida J (1999) Assessment of phytoremediation as an in-situ technique for cleaning oil-contaminated sites. Petroleum Technology Alliance of Canada (PTAC), Calgary

    Google Scholar 

  • Gallego JL, Lpredo RJ, Llamas JF, Vazquez F, Sanchez J (2001) Bioremediation of diesel-contaminated soils: evaluation of potential in situ techniques by study of bacterial degradation. Biodegradation 12:325–335

    Article  CAS  PubMed  Google Scholar 

  • Gallegos-Martínez M, Gomez Santos A, Gonzalez Cruz L, Montes de Oca Garcia MA, Yanez Trujillo L, Zermeno Eguia LA, Gutierrez-Rojas M (2000) Diagnostic and resulting approaches to restore petroleum contaminated soil in a Mexican tropical swamp. Water Sci Technol 42:377–384

    Google Scholar 

  • Gao Y, Ren L, Ling W, Kang F, Zhu X, Sun B (2010) Effects of low molecular weight organic acids on sorption-desorption of phenanthrene in soils. Soil Sci Soc Am J 74:51–59

    Article  CAS  Google Scholar 

  • Gao Y, Yang Y, Ling W, Kong H, Zhu X (2011) Gradient distribution of root exudates and polycyclic aromatic hydrocarbons in rhizosphere soil. Soil Sci Soc Am J 75:1694–1703

    Article  CAS  Google Scholar 

  • Garg P (2012) Energy scenario and vision 2020 in India. J Sustainable Energy Environ 3:7–17

    Google Scholar 

  • Gill C, Ratledge C (1972) Toxicity of n-alkanes, n-alk-l-enes, n-alkan-1-o1s and n-alkyl -l-bromide towards yeasts. J Gen Microbiol 72:165–172

    Article  CAS  Google Scholar 

  • Glick BR (2003) Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21:383–393

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 251:1–7

    Article  CAS  PubMed  Google Scholar 

  • Gransee A, Wittenmayer L (2000) Qualitative and quantitative analysis of water-soluble root exudates in relation to plant species and development. J Plant Nutr Soil Sci 163:381–385

    Article  CAS  Google Scholar 

  • Grimmer G, Brune H, Dettbarn G, Jacob J, Misfeld J, Mohr U, Naujack KW, Timm J, Wenzel HR (1991) Relevance of polycyclic aromatic hydrocarbons as environmental carcinogens. Fresenius J Anal Chem 339:792–795

    Article  CAS  Google Scholar 

  • Gunther T, Dornberger U, Fritsche W (1996) Effects of ryegrass on biodegradation of hydrocarbons. Chemosphere 33:203–215

    Article  CAS  PubMed  Google Scholar 

  • Haichar FZ, Santaella C, Heulin T, Achouak W (2014) Root exudates mediated interactions belowground. Soil Biol Biochem 77:69–80

    Article  CAS  Google Scholar 

  • Haldar S, Sengupta S (2015) Plant-microbe cross-talk in the rhizosphere: insight and biotechnological potential. Open Microbiol J 9:1–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hejl AM, Koster KL (2004) The allelochemical sorgoleone inhibits root H + -ATPase and water uptake. J Chem Ecol 30:2181–2191

    Article  CAS  Google Scholar 

  • Ho CH, Banks MK (2006) Degradation of polycyclic aromatic hydrocarbons in the rhizosphere of Festuca arundinacea and associated microbial community changes. Biorem J 10(3):93–104

    Article  CAS  Google Scholar 

  • Huang XD, El-Alawi Y, Penrose DM, Glick BR, Greenberg BM (2004a) A multi-process phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils. Environ Pollut 130:465–476

    Article  CAS  PubMed  Google Scholar 

  • Huang XD, El-Alawi Y, Penrose DM, Glick BR, Greenberg BM (2004b) Responses of three grass species to creosote during phytoremediation. Environ Pollut 130:453–463

    Article  CAS  PubMed  Google Scholar 

  • Huang XD, El-Alawi Y, Gurska J, Glick BR, Greenberg BM (2005) A multiprocess phytoremediation system for decontamination of persistent total petroleum hydrocarbons (TPHs) from soils. Microchem J 81:139–147

    Article  CAS  Google Scholar 

  • Huang XF, Chaparro JM, Reardon KF, Zhang RF, Shen QR, Vivanco JM (2014) Rhizosphere interactions: root exudates, microbes, and microbial communities. Botany 92:267–275

    Article  Google Scholar 

  • Hutchinson S, Schwab A, Banks M (2003) Biodegradation of petroleum hydrocarbons in the rhizosphere. In: Phytoremediation: transformation and control of contaminants Ch 11. Wiley, Hoboken, pp 355–386

    Chapter  Google Scholar 

  • Hutsch BW, Augustin J, Merbach W (2002) Plant rhizodeposition—an important source for carbon turnover in soils. J Plant Nutr Soil Sci 165:397–407

    Article  CAS  Google Scholar 

  • Huxtable CHA, Sawicki AJ Streat J 1997 Rehabilitation of open-cut coal mines using native grasses, final report to the Australian Coal Association Research Project (ACARP), ACARP Report No. C3054. AMIRA. Melbourne

    Google Scholar 

  • Inceoglu O, Abu Al-Soud W, Salles JF, Semenov AV, Van Elsas JD (2011) Comparative analysis of bacterial communities in a potato field as determined by pyrosequencing. PLoS ONE 6. https://doi.org/10.1371/journal.pone. 0023321

  • Indian Petroleum & Natural Gas Statistics (2015–2016) Ministry of petroleum and natural gas. www.indiaenvironmentportal.org.in

    Google Scholar 

  • Issoufi I, Rhykerd RL, Smiciklas KD (2006) Seedling growth of agronomic crops in crude oil contaminated soil. J Agron Crop Sci 192:310–317

    Article  Google Scholar 

  • Jing W, Zhongzhi Z, Youming S, Wei H, Feng H, Hongguang S (2008) Phytoremediation of petroleum polluted soil. J Petrol Sci 5:167–171

    Article  CAS  Google Scholar 

  • Kaimi E, Mukaidani T, Miyoshi S, Tamaki M (2007) Screening of twelve plant species for phytoremediation of petroleum hydrocarbon contaminated soil. Plant Prod Sci 10(2):211–218

    Article  CAS  Google Scholar 

  • Kang BG, Kim WT, Yun HS, Chang SC (2010) Use of plant growth promoting rhizobacteria to control stress responses of plant roots. Plant Biotechnol Rep 4:179–183

    Article  Google Scholar 

  • Kawahigashi H (2009) Transgenic plants for phytoremediation of herbicides. Curr Opin Biotechnol 20:225–230

    Article  CAS  PubMed  Google Scholar 

  • Koo SY, Hong SH, Ryu HW, Cho KS (2010) Plant growth-promoting trait of rhizobacteria isolated from soil contaminated with petroleum and heavy metals. J Microbiol Biotechnol 20:587–593

    CAS  PubMed  Google Scholar 

  • Kuiper I, Lagendijk E, Bloemberg G, Lugtenberg BJ (2004) Rhizoremediation: a beneficial plant-microbe interaction. Mol Plant Interact 17:6–15

    Article  CAS  Google Scholar 

  • LeFevre GH, Hozalski RM, Novak PJ (2013) Root exudate enhanced contaminant desorption: an abiotic contribution to the rhizosphere effect. Environ Sci Technol 47:11545–11553

    Article  CAS  PubMed  Google Scholar 

  • Leigh MB, Fletcher JS, Fu XO, Schmitz FJ (2002) Root turnover: an important source of microbial substrates in rhizosphere remediation of recalcitrant contaminants. Environ Sci Technol 36:1579–1583

    Article  CAS  PubMed  Google Scholar 

  • Ling W, Ren L, Gao Y, Zhu X, Sun B (2009) Impact of low-molecular-weight organic acids on the availability of phenanthrene and pyrene in soil. Soil Biol Biochem 41:2187–2195

    Article  CAS  Google Scholar 

  • Ling W, Sun R, Gao X, Xu R, Li H (2015) Low-molecular-weight organic acids enhance desorption of polycyclic aromatic hydrocarbons from soil. Eur J Soil Sci 66:339–347

    Article  CAS  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  • Lynch JM (1990) The rhizosphere. In: Experimental microbial ecology. Blackwell Scientific Publications, Oxford, pp 395–411

    Google Scholar 

  • Marschner P, Crowley D, Rengel Z (2011) Rhizosphere interactions between microorganisms and plants govern iron and phosphorus acquisition along the root axis model and research methods. Soil Biol Biochem 43:883–894

    Article  CAS  Google Scholar 

  • Martin BC, George SJ, Price CA, Ryan MH, Tibbett M (2014) The role of root exuded low molecular weight organic anions in facilitating petroleum hydrocarbon degradation: current knowledge and future directions. Sci Total Environ 472:642–653

    Article  CAS  PubMed  Google Scholar 

  • Mastretta C, Barac T, Vangronsveld J, Newman L, Taghavi S, Van Der Lelie D (2006) Endophytic bacteria and their potential application to improve the phytoremediation of contaminated environments. Biotechnol Genet Eng Rev 23:175–207

    Article  CAS  PubMed  Google Scholar 

  • Mendes R, Kruijt M, de Bruijn I (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097–1100

    Article  CAS  PubMed  Google Scholar 

  • Miya RK, Firestone MK (2001) Enhanced phenanthrene biodegradation in soil by slender oat root exudates and root debris. J Environ Qual 30:1911–1918

    Article  CAS  PubMed  Google Scholar 

  • Muratova A, Hubner TH, Narula N, Wand H, Turkovskaya O, Kuschk P, Jahn R, Merbach W (2003) Rhizosphere microflora of plants used for the phytoremediation of bitumen contaminated soil. Microbiol Res 158:151–161

    Article  CAS  PubMed  Google Scholar 

  • Muratova AY, Dmitrieva T, Panchenko L, Turkovskaya O (2008) Phytoremediation of oil-sludge contaminated soil. Int J Phytoremed 10(6):486–502

    Article  CAS  Google Scholar 

  • Neal AL, Ahmad S, Gordon-Weeks R, Ton J (2012) Benzoxazinoids in root exudates of maize attract Pseudomonas putida to the rhizosphere. PLoS One 7:35498

    Article  CAS  Google Scholar 

  • Nedunuri K, Govindaraju R, Banks M, Schwab A, Chen Z (2000) Evaluation of phytoremediation for field-scale degradation of total petroleum hydrocarbons. J Environ Eng 126:483

    Article  CAS  Google Scholar 

  • Neumann G (2007) Root exudates and nutrient cycling. In: Marschner P, Rengel Z (eds) Nutrient cycling in terrestrial ecosystems, vol 10. Springer, Berlin, pp 123–157

    Chapter  Google Scholar 

  • Newman LA, Reynolds CM (2004) Phytodegradation of organic compounds. Curr Opin Biotechnol 15(3):225–230

    Article  CAS  PubMed  Google Scholar 

  • Nwaoguikpe RN (2011) The effect of crude oil spill on the ascorbic acid content of some selected vegetable species: Spinacea oleraceae, Solanum melongena and Talinum triangulare in an oil polluted soil. Pak J Nutr 10:274–281

    Article  Google Scholar 

  • Odjegba VJ, Sadiq AO (2002) Effects of spent engine oil on the growth parameters, chlorophyll and protein levels of Amaranthus hybridus L. Environmentalist 22:23–28

    Article  Google Scholar 

  • Ogbo EM (2009) Effects of diesel fuel contamination on seed germination of four crop plants – Arachis hypogaea, Vigna unguiculata, Sorghum bicolor and Zea mays. Afr J Biotechnol 8:250–253

    CAS  Google Scholar 

  • Ogboghodo IA, Iruaga EK, Osemwota OI, Chokor JU (2004) An assessment of the effects of crude oil pollution on soil properties, germination and growth of maize (Zea mays) using two crude oil types-Forcados light and Escravos light. Environ Monit Assess 96:143–152

    Article  CAS  PubMed  Google Scholar 

  • Ogbonna DN, Iwegbue CMA, Sokari TG, Akoko IO (2007) Effect of bioremediation on the growth of Okro (Abelmoshus esculetus) in the Niger Delta soils. Environmentalist 27:303–309

    Article  Google Scholar 

  • Okoh AI (2006) Biodegradation alternative in the cleanup of petroleum hydrocarbon pollutants. Biotechnol Mol Biol Rev 1:38–50

    Google Scholar 

  • Olson PE, Fletcher JS (2000) Ecological recovery of vegetation at a former industrial sludge basin and its implications to phytoremediation. Environ Sci Pollut Res 7:1–10

    Article  Google Scholar 

  • Olson P, Reardon K, Pilon SE (2003) Ecology of rhizosphere bioremediation (Chapter 10). In McCutcheon S, Schnoor J (eds) Phytoremediation: transformation and control of contaminants. Wiley, Hoboken, pp 317–353

    Google Scholar 

  • Omotayo AE, Shonubi OO, Towuru EG, Babalola SE, Ilori MO (2014) Rhizoremediation of hydrocarbon-contaminated soil by Paspalum vaginatum (Sw.) and its associated bacteria. Int Research J Microbiol (IRJM) 5:1–7

    Google Scholar 

  • Palmroth MT, Koskinen PEP, Pichtel J, Vaajasaari K, Joutti A, Tuhkanen TA, Puhakka JA (2006) Field-scale assessment of phytotreatment of soil contaminated with weathered hydrocarbons and heavy metals. J Soils Sediments 6:128–136

    Article  CAS  Google Scholar 

  • Parrish ZD, Banks MK, Schwab AP (2004) Effectiveness of phytoremediation as a secondary treatment for polycyclic aromatic hydrocarbons (PAHs) in composted soil. Int J Phytoremed 6(2):119–137

    Article  CAS  Google Scholar 

  • Parrish ZD, Banks MK, Schwab AP (2005) Effect of root death and decay on dissipation of polycyclic aromatic hydrocarbons in the rhizosphere of yellow sweet clover and tall fescue. J Environ Qual 34:207–216

    Article  CAS  PubMed  Google Scholar 

  • Pilon SE (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    Article  CAS  Google Scholar 

  • Pires ACC, Cleary DFR, Almeida A (2012) Denaturing gradient gel electrophoresis and barcoded pyrosequencing reveal unprecedented archaeal diversity in mangrove sediment and rhizosphere samples. Appl Environ Microbiol 78:5520–5528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pradhan SP, Conrad JR, Paterek JR, Srivastava VJ (1998) Potential of phytoremediation for treatment of PAHs in soil at MGP sites. Soil Sedim Cotam 7:467–480

    Article  CAS  Google Scholar 

  • Radwan SS, Sorkhoh NA, El-Nemr IM (1995) Oil biodegradation around roots. Nature 376:382

    Article  Google Scholar 

  • Radwan SS, Narjes D, El-Nemr IM (2005) Enhancing the growth of Vicia faba plants by microbial inoculation to improve their phytoremediation potential for oily desert areas. Int J Phytoremed 7(1):19–32

    Article  CAS  Google Scholar 

  • Rangel AF, Rao IM, Horst WJ (2007) Spatial aluminium sensitivity of root apices of two common bean (Phaseolus vulgaris L.) genotypes with contrasting aluminum resistance. J Exp Bot 58:3895–3904

    Article  CAS  PubMed  Google Scholar 

  • Rentz J, Chapman B, Alvarez P, Schnoor J (2004) Stimulation of hybrid poplar growth in petroleum-contaminated soils through oxygen addition and soil nutrient amendments. Int J Phytoremed 5:57–72

    Article  Google Scholar 

  • Robert FM, Sun WH, Toma M, Jones RK, Tang CS (2008) Interactions among buffelgrass, phenanthrene and phenanthrene-degrading bacteria in gnotobiotic microcosms. J Environ Sci Health A 43:1035–1041

    Article  CAS  Google Scholar 

  • Robson DB, Germida JJ, Farrell RE, Knight JD (2004) Hydrocarbon tolerance correlates with seed mass and relative growth rate. Biorem J 8(3–4):185–199

    Article  CAS  Google Scholar 

  • Roesch LFW, Fulthorpe RR, Riva A (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J 1:283–290

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ryan P, Delhaize E, Jones D (2001) Function and mechanism of organic anion exudation from plant roots. Annu Rev Plant Biol 52:527–560

    Article  CAS  Google Scholar 

  • Sathishkumar M, Binupriya A, Baik S, Yun S (2008) Biodegradation of crude oil by individual bacterial strains and a mixed bacterial consortium isolated from hydrocarbon contaminated areas. Clean 36:92–96

    CAS  Google Scholar 

  • Sharifi M, Sadeghi Y, Akbarpour M (2007) Germination and growth of six plant species on contaminated soil with spent oil. Int J Environ Sci Technol 4(4):463–470

    Article  CAS  Google Scholar 

  • Shukla KP, Sharma S, Singh NK, Singh V, Tiwari K, Singh AS (2011) Nature and role of root exudates: efficacy in bioremediation. Afr J Biotechnol 10:9717–9724

    Google Scholar 

  • Sikkema J, Bont J, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59:201–222

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singer A (2006) The chemical ecology of pollutant biodegradation: bioremediation and phytoremediation from mechanistic and ecological perspectives. In: Mackova M, Dowling D, Macek T (eds) Phytoremediation, Rhizoremediation, vol 9A. Springer, Dordrecht, pp 5–21

    Chapter  Google Scholar 

  • Smith MJ, Flowers TH, Duncan HJ, Alder J (2006) Effects of polycyclic aromatic hydrocarbons on germination and subsequent growth of grasses and legumes in freshly contaminated soil and soil with aged PAHs residues. Environ Pollut 141:519–525

    Article  CAS  PubMed  Google Scholar 

  • Snape I, Riddle MJ, Stark JS, Cole CM, King CK, Duquesne S, Gore DB (2001) Management and remediation of contaminated sites at Casey Station, Antarctica. Polar Rec 37:199–214

    Article  Google Scholar 

  • Somers E, Vanderleyden J, Srinivasan M (2004) Rhizosphere bacterial signalling: a love parade beneath our feet. Crit Rev Microbiol 30:205–240

    Article  CAS  PubMed  Google Scholar 

  • Stevens JL, Northcott GL, Stern GA, Tomy GT, Jones KC (2003) PAHs, PCBs, PCNs, organochlorine pesticides, synthetic musks, and polychlorinated n-alkanes in UK sewage sludge: survey results and implications. Environ Sci Technol 37:462–467

    Article  CAS  PubMed  Google Scholar 

  • Taghavi S, Barac T, Greenberg B, Borremans B, Vangronsveld J, Van Der Lelie D (2005) Horizontal gene transfer to endogenous endophytic bacteria from poplar improves phytoremediation of toluene. Appl Environ Microbiol 71:8500–8505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanee F, Akonye L (2009) Effectiveness of Vigna unguiculata as a phytoremediation plant in the remediation of crude oil polluted soil for Cassava (Manihot esculenta; Crantz) cultivation. J Appl Sci Environ Manag 13:43–47

    Google Scholar 

  • Techer D, Laval GP, Henry S, Bennasroune A, Formanek P, Martinez CC, D'Innocenzo M, Muanda F, Dicko A, Rejsek K (2011) Contribution of Miscanthus giganteus root exudates to the biostimulation of PAH degradation: an in vitro study. Sci Total Environ 409:4489–4495

    Article  CAS  PubMed  Google Scholar 

  • Torres-Cortes G, Millan V, Fernandez-Gonzalez AJ (2012) Bacterial community in the rhizosphere of the cactus species Mammillaria carnea during dry and rainy seasons assessed by deep sequencing. Plant Soil 357:275–288

    Article  CAS  Google Scholar 

  • Trofimov SY, Rozanova MS (2003) Transformation of soil properties under the impact of oil pollution. Eurasian Soil Sci 36:82–87

    Google Scholar 

  • U.S. Army Corps of Engineers (2003) Agriculturally based bioremediation of petroleum-contaminated soils and shallow groundwater in pacific island ecosystems. CH2M Hill.

    Google Scholar 

  • Uroz S, Buee M, Murat C, Frey-Klett P, Martin F (2010) Pyrosequencing reveals a contrasted bacterial diversity between oak rhizosphere and surrounding soil. Environ Microbiol 2:281–288

    Article  CAS  Google Scholar 

  • Van Hamme J, Singh A, Ward O (2003) Recent advances in petroleum microbiology. Microbiol Mol Biol Rev 67:503–549

    Article  CAS  Google Scholar 

  • Vancura V, Hovadik A (1965) Roots exudates of plants II. Composition of roots exudates of some vegetables. Plant Soil 22:21–32

    Article  CAS  Google Scholar 

  • Vega-Jarquin C, Dendooven L, Magana-Plaza I, Thalasso F, Ramos-Valdivia A (2001) Biotransformation of n-hexadecane by cell suspension cultures of Cinchona robusta and Dioscorea composita. Environ Toxicol Chem 20:2670–2675

    Article  CAS  PubMed  Google Scholar 

  • Vouillamoz J, Milke MW (2001) Effect of compost in phytoremediation of diesel-contaminated soils. Water Sci Technol 43:291–295

    CAS  PubMed  Google Scholar 

  • Vwioko DE, Fashemi DS (2005) Growth response of Ricinus communis L (Castor Oil) in spent lubricating oil polluted soil. J Appl Sci Environ Manag 9(2):73–79

    Google Scholar 

  • Walker J, Seesman DPA, Colwell RR (1975) Effect of South Louisiana crude oil and No. 2 fuel oil on growth of heterotrophic microorganisms, including proteolytic, lipolytic, chitinolytic and cellulolytic bacteria. Environ Pollut 9:13–33

    Article  CAS  Google Scholar 

  • Walton BT, Anderson TA, Guthrie EA (1995) Bioremediation in the biosphere. Reply to comments. Environ Sci Technol 29:552

    Article  CAS  PubMed  Google Scholar 

  • Weinert N, Piceno Y, Ding GC (2011) PhyloChip hybridization uncovered an enormous bacterial diversity in the rhizosphere of different potato cultivars: many common and few cultivar-dependent taxa. FEMS Microbiol Ecol 75:497–506

    Article  CAS  PubMed  Google Scholar 

  • Weston LA, Ryan PR, Watt M (2012) Mechanisms for cellular transport and release of allelochemicals from plant roots into the rhizosphere. J Exp Bot 63:3445–3454

    Article  CAS  PubMed  Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511

    Article  CAS  PubMed  Google Scholar 

  • White JC, Mattina MI, Lee WY, Eitzer BD, Iannucci BW (2003) Role of organic acids in enhancing the desorption and uptake of weathered p,p′-DDE by Curbita pepo. Environ Pollut 124:71–80

    Article  CAS  PubMed  Google Scholar 

  • White P, Wolf D, Thoma G, Reynolds C (2006) Phytoremediation of alkylated polycyclic aromatic hydrocarbons in a crude oil-contaminated soil. Water Air Soil Pollut 169:207–220

    Article  CAS  Google Scholar 

  • Widdowson MA, Shearer S, Andersen RG, Novak JT (2005) Remediation of polycyclic aromatic hydrocarbon compounds in groundwater using poplar trees. Environ Sci Technol 39(6):1598–1605

    Article  CAS  PubMed  Google Scholar 

  • Wiltse CC, Rooney WL, Chen Z, Schwab AP, Banks MK (1998) Greenhouse evaluation of agronomic and crude oil phytoremediation potential among alfalfa genotypes. J Environ Qual 27:169–173

    Article  CAS  Google Scholar 

  • Xie XM, Liao M, Yang J, Chai JJ, Fang S, Wang RH (2012) Influence of root-exudates concentration on pyrene degradation and soil microbial characteristics in pyrene contaminated soil. Chemosphere 88:1190–1195

    Article  CAS  PubMed  Google Scholar 

  • Xue K, Wu L, Deng Y, He Z, Van Nostrand J, Robertson PG, Schmidt TM, Zhou J (2013) Functional gene differences in soil microbial communities from conventional, low-input, and organic farmlands. Appl Environ Microbiol 79:1284–1292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Ratte D, Smets B, Pignatello J, Grasso D (2001) Mobilization of soil organic matter by complexing agents and implications for polycyclic aromatic hydrocarbon desorption. Chemosphere 43:1013–1021

    Article  CAS  PubMed  Google Scholar 

  • Yi H, Crowley DE (2007) Biostimulation of PAH degradation with plants containing high concentrations of linoleic acid. Environ Sci Technol 41:4382–4388

    Article  CAS  PubMed  Google Scholar 

  • Yoshitomi KJ, Shann JR (2001) Corn (Zea mays l.) root exudates and their impact on C-14-pyrene mineralization. Soil Biol Biochem 33:1769–1776

    Article  CAS  Google Scholar 

  • Yousaf S, Ripka K, Reichenauer TG, Andria V, Afzal M, Sessitsch A (2010) Hydrocarbon degradation and plant colonization by selected bacterial strains isolated from Italian ryegrass and birdsfoot trefoil. J Appl Microbiol 109(4):1389–1401

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Maier WJ, Miller RM (1997) Effect of rhamnolipids on the dissolution, bioavailability, and biodegradation of phenanthrene. Environ Sci Technol 31:2211–2217

    Article  CAS  Google Scholar 

  • Zhang J, Yin R, Lin XG, Liu WW, Chen RR, Li XZ (2010) Interactive effect of biosurfactant and microorganism to enhance phytoremediation for removal of aged polycyclic aromatic hydrocarbons from contaminated soils. J Health Sci 56:257–266

    Article  CAS  Google Scholar 

  • Zhang N, Wang D, Liu Y, Li S, Shen Q, Zhang R (2014) Effects of different plant root exudates and their organic acid components on chemotaxis, biofilm formation and colonization by beneficial rhizosphere-associated bacterial strains. Plant Soil 374:689–700

    Article  CAS  Google Scholar 

  • Zhao ZH, Wang LG, Jiang X, Wang F (2006) Influence of three low-molecular-weight organic acids on the release behavior of Hchs from red soil. China Environ Sci 26:324–327

    CAS  Google Scholar 

  • Zhu K, Chen H, Nan Z (2010) Phytoremediation of loose soil contaminated by organic compounds. NATO Sci Peace Secur:159–176

    Google Scholar 

  • Zhu K, Rock CO (2008) RhlA converts b-hydroxyacyl-acyl carrier protein intermediates in fatty acid synthesis to the b-hydroxydecanoyl-b-hydroxydecanoate component of rhamnolipids in Pseudomonas aeruginosa. J Bacteriol 190:3147–3154

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jai Godheja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Godheja, J., Shekhar, S.K., Modi, D.R. (2017). Bacterial Rhizoremediation of Petroleum Hydrocarbons (PHC). In: Singh, D., Singh, H., Prabha, R. (eds) Plant-Microbe Interactions in Agro-Ecological Perspectives. Springer, Singapore. https://doi.org/10.1007/978-981-10-6593-4_20

Download citation

Publish with us

Policies and ethics