Skip to main content

Rhizoremediation of Environmental Contaminants Using Microbial Communities

  • Chapter
  • First Online:
Plant-Microbe Interactions in Agro-Ecological Perspectives

Abstract

Over last few decades, the contamination of water and soil has become a major threat to ecosystem and human health. Bioremediation is an attractive tool to overcome the challenges posed by the traditional methods such as incineration and excavation. Recently, phytoremediation has been widely used to remediate the pollutants (such as organic and inorganic) from the environment, but certain compounds and heavy metals tend to inhibit the growth of the plants. In this chapter, we have emphasized on most accepted bioremediation process known as rhizoremediation, which involves the mutualism between microorganisms and plants that degrades the recalcitrant compounds present in the soil and makes eco-friendly environment. Furthermore, we discussed the important factors such as temperature, pH, and organic matter present in the soil, which affects the growth and metabolism of not only the organism but also the plants, interaction between plant and microorganisms, and role of endophytic and rhizobacteria in bioremediation of heavy metals and organic pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Afzal M, Yousaf S, Reichenauer TG, Sessitsch A (2012) The inoculation method affects colonization and performance of bacterial inoculant strains in the phytoremediation of soil contaminated with diesel oil. Int J Phytoremediation 14:35–47

    Article  PubMed  Google Scholar 

  • Alberty RA (2006) Biochemical reactions at specified temperature and various pHs. In: Biochemical thermodynamics. Wiley, Hoboken, pp 43–70

    Chapter  Google Scholar 

  • Andria V, Reichenauer TG, Sessitsch A (2009) Expression of alkane monooxygenase (alkB) genes by plant-associated bacteria in the rhizosphere and endosphere of Italian ryegrass (Lolium multiflorum L.) grown in diesel contaminated soil. Environ Pollut 157:3347–3350. Barking Essex 1987

    Article  CAS  PubMed  Google Scholar 

  • Anokhina TO, Kochetkov VV, Zelenkova NF, Balakshina VV, Boronin AM (2004) Biodegradation of phenanthrene by Pseudomonas bacteria bearing rhizospheric plasmids in model plant-microbial associations. Prikl Biokhim Mikrobiol 40:654–658

    CAS  PubMed  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  CAS  PubMed  Google Scholar 

  • Barac T, Taghavi S, Borremans B, Provoost A, Oeyen L, Colpaert JV, Vangronsveld J, van der Lelie D (2004) Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Nat Biotechnol 22:583–588

    Article  CAS  PubMed  Google Scholar 

  • Berg G, Krechel A, Ditz M, Sikora RA, Ulrich A, Hallmann J (2005) Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiol Ecol 51:215–229

    Article  CAS  PubMed  Google Scholar 

  • Brazil GM, Kenefick L, Callanan M, Haro A, de Lorenzo V, Dowling DN, O’Gara F (1995) Construction of a rhizosphere pseudomonad with potential to degrade polychlorinated biphenyls and detection of bph gene expression in the rhizosphere. Appl Environ Microbiol 61:1946–1952

    CAS  PubMed  PubMed Central  Google Scholar 

  • Capdevila S, Martínez-Granero FM, Sánchez-Contreras M, Rivilla R, Martín M (2004) Analysis of Pseudomonas fluorescens F113 genes implicated in flagellar filament synthesis and their role in competitive root colonization. Microbiol Read Engl 150:3889–3897

    Article  CAS  Google Scholar 

  • Caplan JA (1993) The worldwide bioremediation industry: prospects for profit. Trends Biotechnol 11:320–323

    Article  CAS  PubMed  Google Scholar 

  • Charnay M-P, Tuis S, Coquet Y, Barriuso E (2005) Spatial variability in 14C-herbicide degradation in surface and subsurface soils. Pest Manag Sci 61:845–855

    Article  CAS  PubMed  Google Scholar 

  • Chaudhry Q, Blom-Zandstra M, Gupta S, Joner EJ (2005) Utilising the synergy between plants and rhizosphere microorganisms to enhance breakdown of organic pollutants in the environment. Environ Sci Pollut Res Int 12:34–48

    Article  CAS  PubMed  Google Scholar 

  • Chen S-H, Aitken MD (1999) Salicylate stimulates the degradation of high-molecular weight polycyclic aromatic hydrocarbons by Pseudomonas saccharophila P15. Environ Sci Technol 33:435–439

    Article  CAS  Google Scholar 

  • Chen W, Tang Y, Mori K, Wu X (2012) Distribution of culturable endophytic bacteria in aquatic plants and their potential for bioremediation in polluted waters. Aquat Biol 15:99–110

    Article  Google Scholar 

  • Child R, Miller CD, Liang Y, Narasimham G, Chatterton J, Harrison P, Sims RC, Britt D, Anderson AJ (2007a) Polycyclic aromatic hydrocarbon-degrading Mycobacterium isolates: their association with plant roots. Appl Microbiol Biotechnol 75:655–663

    Article  CAS  PubMed  Google Scholar 

  • Child R, Miller CD, Liang Y, Sims RC, Anderson AJ (2007b) Pyrene Mineralization by sp. Strain KMS in a Barley Rhizosphere. J Environ Qual 36:1260–1265

    Article  CAS  PubMed  Google Scholar 

  • Chouychai W, Thongkukiatkul A, Upatham S, Lee H, Pokethitiyook P, Kruatrachue M (2009) Plant-enhanced phenanthrene and pyrene biodegradation in acidic soil. J Environ Biol 30:139–144

    CAS  PubMed  Google Scholar 

  • Chouychai W, Thongkukiatkul A, Upatham S, Pokethitiyook P, Kruatrachue M, Lee H (2012) Effect of corn plant on survival and phenanthrene degradation capacity of Pseudomonas sp. UG14LR in two soils. Int J Phytoremediation 14:585–595

    Article  CAS  PubMed  Google Scholar 

  • Clemens S, Palmgren MG, Krämer U (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci 7:309–315

    Article  CAS  PubMed  Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    Article  CAS  PubMed  Google Scholar 

  • Dams RI, Paton GI, Killham K (2007) Rhizoremediation of pentachlorophenol by Sphingobium chlorophenolicum ATCC 39723. Chemosphere 68:864–870

    Article  CAS  PubMed  Google Scholar 

  • Das N, Chandran P (2010) Microbial Degradation of Petroleum Hydrocarbon Contaminants: an Overview. Biotechnol Res Int 2011:e941810

    Google Scholar 

  • de Weert S, Vermeiren H, Mulders IHM, Kuiper I, Hendrickx N, Bloemberg GV, Vanderleyden J, De Mot R, Lugtenberg BJJ (2002) Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens. Mol Plant-Microbe Interact MPMI 15:1173–1180

    Article  PubMed  Google Scholar 

  • Dimkpa C, Weinand T, Asch F (2009) Plant-rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ 32:1682–1694

    Article  CAS  PubMed  Google Scholar 

  • Doty SL (2008) Enhancing phytoremediation through the use of transgenics and endophytes. New Phytol 179:318–333

    Article  CAS  PubMed  Google Scholar 

  • Doty SL, Oakley B, Xin G, Kang JW, Singleton G, Khan Z, Vajzovic A, Staley JT (2009) Diazotrophic endophytes of native black cottonwood and willow. Symbiosis 47:23–33

    Article  CAS  Google Scholar 

  • Dua M, Singh A, Sethunathan N, Johri A (2002) Biotechnology and bioremediation: successes and limitations. Appl Microbiol Biotechnol 59:143–152

    Article  CAS  PubMed  Google Scholar 

  • Gai CS, Lacava PT, Quecine MC, Auriac M-C, Lopes JRS, Araújo WL, Miller TA, Azevedo JL (2009) Transmission of Methylobacterium mesophilicum by Bucephalogonia xanthophis for paratransgenic control strategy of Citrus variegated chlorosis. J Microbiol 47:448–454

    Article  PubMed  Google Scholar 

  • Ganesan V (2012) Rhizoremediation: a pragmatic approach for remediation of heavy metal-contaminated soil. In: Zaidi A, Wani P, Khan M (eds) Toxicity of heavy metals to legumes and bioremediation. Springer, Vienna

    Google Scholar 

  • Gerhardt KE, Huang X-D, Glick BR, Greenberg BM (2009) Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Sci 176:20–30

    Article  CAS  Google Scholar 

  • Germaine KJ, Liu X, Cabellos GG, Hogan JP, Ryan D, Dowling DN (2006) Bacterial endophyte-enhanced phytoremediation of the organochlorine herbicide 2,4-dichlorophenoxyacetic acid. FEMS Microbiol Ecol 57:302–310

    Article  CAS  PubMed  Google Scholar 

  • Gkorezis P, Daghio M, Franzetti A, van Hamme DJ, Sillen W, Vangronsveld J (2016) The interaction between plants and bacteria in the remediation of petroleum hydrocarbons: an environmental perspective. Front Microbiol:7

    Google Scholar 

  • Gunderson JJ, Knight JD, Van Rees KCJ (2007) Impact of ectomycorrhizal colonization of hybrid poplar on the remediation of diesel-contaminated soil. J Environ Qual 36:927–934

    Article  CAS  PubMed  Google Scholar 

  • Heitzer A, Sayler GS (1993) Monitoring the efficacy of bioremediation. Trends Biotechnol 11:334–343

    Article  CAS  PubMed  Google Scholar 

  • Hoagland RE, Zablotowicz RM, Locke MA (1994) Propanil metabolism by rhizosphere microflora. In: Bioremediation through Rhizosphere Technology. American Chemical Society, Washington, DC, pp 160–183

    Chapter  Google Scholar 

  • Hong SH, Ryu H, Kim J, Cho K-S (2011) Rhizoremediation of diesel-contaminated soil using the plant growth-promoting rhizobacterium Gordonia sp. S2RP-17. Biodegradation 22:593–601

    Article  CAS  PubMed  Google Scholar 

  • Hontzeas N, Zoidakis J, Glick BR, Abu-Omar MM (2004) Expression and characterization of 1-aminocyclopropane-1-carboxylate deaminase from the rhizobacterium Pseudomonas putida UW4: a key enzyme in bacterial plant growth promotion. Biochim Biophys Acta 1703:11–19

    Article  CAS  PubMed  Google Scholar 

  • Huang X-D, El-Alawi Y, Gurska J, Glick BR, Greenberg BM (2005) A multi-process phytoremediation system for decontamination of persistent total petroleum hydrocarbons (TPHs) from soils. Microchem J 81:139–147

    Article  CAS  Google Scholar 

  • Jacobsen CS (1997) Plant protection and rhizosphere colonization of barley by seed inoculated herbicide degrading Burkholderia (Pseudomonas) cepacia DBO1(pRO101) in 2,4-D contaminated soil. Plant Soil 189:139–144

    Article  CAS  Google Scholar 

  • Johnson DL, Maguire KL, Anderson DR, McGrath SP (2004) Enhanced dissipation of chrysene in planted soil: the impact of a rhizobial inoculum. Soil Biol Biochem 36:33–38

    Article  CAS  Google Scholar 

  • Jones DL (1998) Organic acids in the rhizosphere – a critical review. Plant Soil 205:25–44

    Article  CAS  Google Scholar 

  • Kamath R, Rentz JA, Schnoor JL, Alvarez PJJ (2004) Phytoremediation of hydrocarbon-contaminated soils: principles and applications. In: Vazquez-Duhalt R, Quintero-Ramirez R (eds) Studies in Surface Science and Catalysis. Elsevier, Amsterdam/New York, pp 447–478

    Google Scholar 

  • Kamaludeen SPB, Ramasamy K (2008) Rhizoremediation of metals: harnessing microbial communities. Indian J Microbiol 48(1):80–88

    Google Scholar 

  • Kareem AM, Ismail S, Kundan K, Mohamed H, Om PD (2016) Potential biotechnological strategies for the cleanup of heavy metals and metalloids. Front Plant Sci 7

    Google Scholar 

  • Kavamura VN, Esposito E (2010) Biotechnological strategies applied to the decontamination of soils polluted with heavy metals. Biotechnol Adv 28:61–69

    Article  CAS  PubMed  Google Scholar 

  • Kent AD, Triplett EW (2002) Microbial communities and their interactions in soil and rhizosphere ecosystems. Annu Rev Microbiol 56:211–236

    Article  CAS  PubMed  Google Scholar 

  • Khan AG, Kuek C, Chaudhry TM, Khoo CS, Hayes WJ (2000) Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere 41:197–207

    Article  CAS  PubMed  Google Scholar 

  • Khan MS, Zaidi A, Wani PA, Oves M (2009) Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ Chem Lett 7(1):1–19

    Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286(5776):885–886

    Google Scholar 

  • Kuiper I, Bloemberg GV, Lugtenberg BJ (2001) Selection of a plant-bacterium pair as a novel tool for rhizostimulation of polycyclic aromatic hydrocarbon-degrading bacteria. Mol Plant-Microbe Interact MPMI 14:1197–1205

    Article  CAS  PubMed  Google Scholar 

  • Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJJ (2004) Rhizoremediation: A beneficial plant-microbe interaction. Mol Plant-Microbe Interact 17:6–15

    Article  CAS  PubMed  Google Scholar 

  • Leigh MB, Fletcher JS, Fu X, Schmitz FJ (2002) Root turnover: an important source of microbial substrates in rhizosphere remediation of recalcitrant contaminants. Environ Sci Technol 36:1579–1583

    Article  CAS  PubMed  Google Scholar 

  • Lodewyckx C, Vangronsveld J, Porteous F, Moore ERB, Taghavi S, Mezgeay M, Lelie D v d (2002) Endophytic bacteria and their potential applications. Crit Rev Plant Sci 21:583–606

    Article  Google Scholar 

  • Lugtenberg BJ, Dekkers L, Bloemberg GV (2001) Molecular determinants of rhizosphere colonization by Pseudomonas. Annu Rev Phytopathol 39:461–490

    Article  CAS  PubMed  Google Scholar 

  • Macek T, Macková M, Káš J (2000) Exploitation of plants for the removal of organics in environmental remediation. Biotechnol Adv 18:23–34

    Article  CAS  PubMed  Google Scholar 

  • Martin BC, George SJ, Price CA, Ryan MH, Tibbett M (2014) The role of root exuded low molecular weight organic anions in facilitating petroleum hydrocarbon degradation: current knowledge and future directions. Sci Total Environ 472:642–653

    Article  CAS  PubMed  Google Scholar 

  • Master ER, Mohn WW (2001) Induction of bphA, encoding biphenyl dioxygenase, in two polychlorinated biphenyl-degrading bacteria, psychrotolerant Pseudomonas strain Cam-1 and mesophilic Burkholderia strain LB400. Appl Environ Microbiol 67:2669–2676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mastronicolis SK, German JB, Megoulas N, Petrou E, Foka P, Smith GM (1998) Influence of cold shock on the fatty-acid composition of different lipid classes of the food-borne pathogenListeria monocytogenes. Food Microbiol 15:299–306

    Article  CAS  Google Scholar 

  • McGuinness M, Dowling D (2009) Plant-associated bacterial degradation of toxic organic compounds in soil. Int J Environ Res Public Health 6:2226–2247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meagher RB (2000) Phytoremediation of toxic elemental and organic pollutants. Curr Opin Plant Biol 3:153–162

    Article  CAS  PubMed  Google Scholar 

  • Moore FP, Barac T, Borremans B, Oeyen L, Vangronsveld J, van der Lelie D, Campbell CD, Moore ERB (2006) Endophytic bacterial diversity in poplar trees growing on a BTEX-contaminated site: the characterisation of isolates with potential to enhance phytoremediation. Syst Appl Microbiol 29:539–556

    Article  CAS  PubMed  Google Scholar 

  • Mosa KA, Saadoun I, Kumar K, Helmy M, Dhankher OP (2016) Potential biotechnological strategies for the cleanup of heavy metals and metalloids. Front Plant Sci 7

    Google Scholar 

  • Muratova AY, Golubev SN, Merbach W, Turkovskaya OV (2009) Biochemical and physiological peculiarities of the interactions between Sinorhizobium meliloti and Sorghum bicolor in the presence of phenanthrene. Microbiology 78:308–314

    Article  CAS  Google Scholar 

  • Muratova AY, Bondarenkova AD, Panchenko LV, Turkovskaya OV (2010) Use of integrated phytoremediation for cleaning-up of oil-sludge-contaminated soil. Appl Biochem Microbiol 46:789–794

    Article  CAS  Google Scholar 

  • Perrin-Ganier C, Schiavon F, Morel J-L, Schiavon M (2001) Effect of sludge-amendment or nutrient addition on the biodegradation of the herbicide isoproturon in soil. Chemosphere 44(4):887–892

    Google Scholar 

  • Prabhu AA, Dhaneshwar AD, Mrudula CM, Kannan N (2014) Evaluation of process parameters for biosorption of chromium (VI) using full factorial design and response surface methodology. Environ Sci Indian J:9

    Google Scholar 

  • Radwan S, Sorkhoh N, el-Nemr I (1995) Oil biodegradation around roots. Nature 376:302

    Article  CAS  PubMed  Google Scholar 

  • Ramadass K, Megharaj M, Venkateswarlu K, Naidu R (2016) Soil bacterial strains with heavy metal resistance and high potential in degrading diesel oil and n-alkanes. Int J Environ Sci Technol 13(12):2863–2874

    Google Scholar 

  • Ramos C, Mølbak L, Molin S (2000) Bacterial activity in the rhizosphere analyzed at the single-cell level by monitoring ribosome contents and synthesis rates. Appl Environ Microbiol 66:801–809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasmussen G, Olsen RA (2004) Sorption and biological removal of creosote-contaminants from groundwater in soil/sand vegetated with orchard grass (Dactylis glomerata). Adv Environ Res 8:313–327

    Article  CAS  Google Scholar 

  • Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9

    Article  CAS  PubMed  Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–668

    Article  CAS  PubMed  Google Scholar 

  • Schnoor JL, Licht LA, McCutcheon SC, Wolfe NL, Carreira LH (1995) Phytoremediation of organic and nutrient contaminants. Environ Sci Technol 29:318A–323A

    Article  CAS  PubMed  Google Scholar 

  • Schroll R, Becher HH, Dörfler U, Gayler S, Grundmann S, Hartmann HP, Ruoss J (2006) Quantifying the effect of soil moisture on the aerobic microbial mineralization of selected pesticides in different soils. Environ Sci Technol 40:3305–3312

    Article  CAS  PubMed  Google Scholar 

  • Schwitzguébel J-P, Aubert S, Grosse W, Laturnus F (2002) Sulphonated aromatic pollutants. Limits of microbial degradability and potential of phytoremediation. Environ Sci Pollut Res Int 9:62–72

    Article  PubMed  Google Scholar 

  • Segura A, Ramos JL (2013) Plant–bacteria interactions in the removal of pollutants. Curr Opin Biotechnol 24:467–473

    Article  CAS  PubMed  Google Scholar 

  • Seshadri B, Bolan NS, Naidu R (2015) Rhizosphere-induced heavy metal(loid) transformation in relation to bioavailability and remediation. J Soil Sci Plant Nutr 15(2):524–548

    Google Scholar 

  • Sheng XF, Gong JX (2006) Increased degradation of phenanthrene in soil by Pseudomonas sp. GF3 in the presence of wheat. Soil Biol Biochem 38:2587–2592

    Article  CAS  Google Scholar 

  • Siddique T, Okeke BC, Arshad M, Frankenberger WT (2002) Temperature and pH effects on biodegradation of hexachlorocyclohexane isomers in water and a soil slurry. J Agric Food Chem 50:5070–5076

    Article  CAS  PubMed  Google Scholar 

  • Silby MW, Levy SB (2004) Use of in vivo expression technology to identify genes important in growth and survival of Pseudomonas fluorescens Pf0-1 in soil: discovery of Expressed Sequences with Novel Genetic Organization. J Bacteriol 186:7411–7419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singer AC, Gilbert ES, Luepromchai E, Crowley DE (2000) Bioremediation of polychlorinated biphenyl-contaminated soil using carvone and surfactant-grown bacteria. Appl Microbiol Biotechnol 54:838–843

    Article  CAS  PubMed  Google Scholar 

  • Singer AC, Crowley DE, Thompson IP (2003) Secondary plant metabolites in phytoremediation and biotransformation. Trends Biotechnol 21:123–130

    Article  CAS  PubMed  Google Scholar 

  • Singh BK, Millard P, Whiteley AS, Murrell JC (2004) Unravelling rhizosphere-microbial interactions: opportunities and limitations. Trends Microbiol 12:386–393

    Article  CAS  PubMed  Google Scholar 

  • Soleimani M, Afyuni M, Hajabbasi MA, Nourbakhsh F, Sabzalian MR, Christensen JH (2010) Phytoremediation of an aged petroleum contaminated soil using endophyte infected and non-infected grasses. Chemosphere 81:1084–1090

    Article  CAS  PubMed  Google Scholar 

  • Song Y, Song X, Zhang W, Zhou Q, Sun T (2004) Issues concerned with the bioremediation of contaminated soils. Huan Jing Ke Xue Huanjing Kexue 25:129–133

    PubMed  Google Scholar 

  • Stępniewska Z, Kuźniar A (2013) Endophytic microorganisms – promising applications in bioremediation of greenhouse gases. Appl Microbiol Biotechnol 97:9589–9596

    Article  PubMed  PubMed Central  Google Scholar 

  • Suresh B, Ravishankar GA (2004) Phytoremediation–a novel and promising approach for environmental clean-up. Crit Rev Biotechnol 24:97–124

    Article  CAS  PubMed  Google Scholar 

  • Tang JC, Wang RG, Niu XW, Wang M, Chu HR, Zhou QX (2010) Characterisation of the rhizoremediation of petroleum-contaminated soil: effect of different influencing factors. Biogeosciences 7:3961–3969

    Article  CAS  Google Scholar 

  • Teng Y, Wang X, Li L, Li Z, Luo Y (2015) Rhizobia and their bio-partners as novel drivers for functional remediation in contaminated soils. Front Plant Sci 6:32

    Article  PubMed  PubMed Central  Google Scholar 

  • Thijs S, Sillen W, Weyens N, Vangronsveld J (2017) Phytoremediation: state-of-the-art and a key role for the plant microbiome in future trends and research prospects. Int J Phytoremediation 19:23–38

    Article  CAS  PubMed  Google Scholar 

  • Truu J, Truu M, Espenberg M, Nõlvak H, Juhanson J (2015) Phytoremediation and plant-assisted bioremediation in soil and treatment wetlands: a review. Open Biotechnol J 9:85–92

    Article  Google Scholar 

  • Tyagi M, da Fonseca MMR, de Carvalho CCCR (2011) Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation 22:231–241

    Article  CAS  PubMed  Google Scholar 

  • Uslu G, Tanyol M (2006) Equilibrium and thermodynamic parameters of single and binary mixture biosorption of lead (II) and copper (II) ions onto Pseudomonas putida: effect of temperature. J Hazard Mater 135(1-3):87–93

    Google Scholar 

  • Walton BT, Anderson TA (1990) Microbial degradation of trichloroethylene in the rhizosphere: potential application to biological remediation of waste sites. Appl Environ Microbiol 56:1012–1016

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wenzel WW (2009) Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant Soil 321:385–408

    Article  CAS  Google Scholar 

  • Weyens N, van der Lelie D, Artois T, Smeets K, Taghavi S, Newman L, Carleer R, Vangronsveld J (2009a) Bioaugmentation with engineered endophytic bacteria improves contaminant fate in phytoremediation. Environ Sci Technol 43:9413–9418

    Article  CAS  PubMed  Google Scholar 

  • Weyens N, van der Lelie D, Taghavi S, Newman L, Vangronsveld J (2009b) Exploiting plant-microbe partnerships to improve biomass production and remediation. Trends Biotechnol 27:591–598

    Article  CAS  PubMed  Google Scholar 

  • Weyens N, Croes S, Dupae J, Newman L, van der Lelie D, Carleer R, Vangronsveld J (2010) Endophytic bacteria improve phytoremediation of Ni and TCE co-contamination. Environ Pollut 158:2422–2427. Barking Essex 1987

    Article  CAS  PubMed  Google Scholar 

  • Weyens N, Thijs S, Popek R, Witters N, Przybysz A, Espenshade J, Gawronska H, Vangronsveld J, Gawronski SW (2015) The role of plant–microbe interactions and their exploitation for phytoremediation of air pollutants. Int J Mol Sci 16:25576–25604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yousaf S, Ripka K, Reichenauer TG, Andria V, Afzal M, Sessitsch A (2010) Hydrocarbon degradation and plant colonization by selected bacterial strains isolated from Italian ryegrass and birdsfoot trefoil. J Appl Microbiol 109:1389–1401

    Article  CAS  PubMed  Google Scholar 

  • Yu XZ, Wu SC, Wu FY, Wong MH (2011) Enhanced dissipation of PAHs from soil using mycorrhizal ryegrass and PAH-degrading bacteria. J Hazard Mater 186:1206–1217

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The authors would like to thank the Department of Biosciences and Bioengineering, IIT Guwahati, for providing all the support for successfully completing the chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veeranki Venkata Dasu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Prabhu, A.A., Chityala, S., Jayachandran, D., Naik, N., Dasu, V.V. (2017). Rhizoremediation of Environmental Contaminants Using Microbial Communities. In: Singh, D., Singh, H., Prabha, R. (eds) Plant-Microbe Interactions in Agro-Ecological Perspectives. Springer, Singapore. https://doi.org/10.1007/978-981-10-6593-4_17

Download citation

Publish with us

Policies and ethics