Skip to main content

Green Input in Agriculture: An Overview

  • Chapter
  • First Online:
Plant-Microbe Interactions in Agro-Ecological Perspectives

Abstract

Agriculture, the mainstay of every country’s economy, contributes to the overall economic growth, and change in its structure has a subsequent impact on the present socioeconomic life of the population. World population is expected to grow over a third or 2.3 billion people between 2009 and 2050 and nearly this entire forecast to take place in the developing countries. In this stage natural disaster like floods, droughts, climate change, and volatility has played a major role in raising the risk of production deficits. Moreover the increased rate of population growth demands more production of food. Therefore to achieve the increasing demand of agricultural production, a sizable quantity of mineral fertilizers will be needed to accept the challenge. Agricultural fertilizers are indispensable to enhance proper growth and crop yield. To raise the productivity, farmers have been using chemical fertilizers and pesticides. The high input of chemical fertilizers and pesticides makes threats for disproportionate supplement of nutrients to crops and deterioration of soil health and endangers ecosystems, plants, human, and animal lives. Therefore, there is an urgent need for proportionate application of green inputs, viz., microbe-based biofertilizers to stop the adverse effect of chemical fertilizers which would unravel these problems and make the ecosystem healthier and improve the physicochemical properties of the soil. The demand for biofertilizers goes on increasingly due to its eco-friendly nature, and therefore intensive research is needed to improve the quality and activity to achieve food security for the growing population and restore soil health. This book chapter exhibited the necessary information on PGPRs and their immense potentiality on crop development and their future outlook for the economic development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26:1–20

    Article  Google Scholar 

  • Assmus B, Hutzler P, Kirchhof G, Amann R, Lawrence JR, Hartmann A (1995) In situ localization of Azospirillum brasilense in the rhizosphere of wheat with fluorescently labeled, rRNA-targeted oligonucleotide probes and scanning confocal laser microscopy. Appl Environ Microbiol 61:1013–1019

    CAS  PubMed  PubMed Central  Google Scholar 

  • Avis TJ, Gravel V, Antoun H, Tweddell RJ (2008) Multifaceted beneficial effects of rhizosphere microorganisms on plant health and productivity. Soil Biol Biochem 40:1733–1740

    Article  CAS  Google Scholar 

  • Azcon-Aguilar C, Barea JM (1997) Applying mycorrhiza biotechnology to horticulture: significance and potentials. Scientia Horti 68:1–24

    Article  Google Scholar 

  • Barka EA, Nowak J, Clément C (2006) Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans Strain PsJN. Appl Environ Microbiol 72:7246–7252

    Article  CAS  Google Scholar 

  • Bashan Y, de-Bashan LE, Prabhu SR, Hernando JP (2014) Advances in plant growth promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant Soil 378(1):1–33

    Article  CAS  Google Scholar 

  • Bensalim S, Nowak J, Asiedu SK (1998) A plant growth promoting rhizobacterium and temperature effects on performance of 18 clones of potato. Am J Potato Res 75:145–152

    Article  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350

    Article  CAS  PubMed  Google Scholar 

  • Bong CFJ, Sikorowski PP (1991) Effects of cytoplasmic polyhedrosis virus and bacterial contamination on growth and development of the corn earworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae). J Invertebr Pathol 57:406–412

    Article  Google Scholar 

  • Burkett-Cadena M, Kokalis-Burelle N, Lawrence KS, Van-Santen E, Kloepper JW (2008) Suppressiveness of root-knot nematodes mediated by rhizobacteria. Biol Control 47(1):55–59

    Article  Google Scholar 

  • Chen C, Rr B, Benhamou N, Tc P (2000) Defense enzymes induced in cucumber roots by treatment with plant growth-promoting rhizobacteria (PGPR) and Pythium aphanidermatum. Physiol Mol Plant Pathol 56(1):13–23

    Article  CAS  Google Scholar 

  • Cheng Z, Park E, Glick BR (2007) 1-Aminocyclopropane-1-carboxylate (ACC) deaminase from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt. Can J Microbiol 53(7):912–918

    Article  CAS  PubMed  Google Scholar 

  • Chet I, Inbar J (1994) Biological control of fungal pathogens. Appl Biochem Biotechnol 48:37–43

    Article  CAS  PubMed  Google Scholar 

  • Choudhary DK, Johri BN (2009) Interactions of Bacillus spp. and plants with special reference to induced systemic resistance (ISR). Microbiol Res 164(5):493–513

    Article  CAS  PubMed  Google Scholar 

  • Clemson HGIC (2007) Organic pesticides and biopesticides, Clemson extension, home and garden information center. Clemson University, Clemson

    Google Scholar 

  • Cocking EC (2000) Helping plants get more nitrogen from air. Eur Rev 8(2):193–200

    Article  Google Scholar 

  • Commare RR, Nandakumar R, Kandan A, Suresh S, Bharathi M, Raguchander T, Samiyappan R (2002) Pseudomonas fluorescens based bio-formulation for the management of sheath blight disease and leaffolder insect in rice. Crop Prot 21(8):671–677

    Article  Google Scholar 

  • Compant S, Reiter B, Sessitsch A, Nowak J, Clément C (2005) Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain 45. PsJN. Appl Environ Microbiol 71:1685–1693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crowley DE, Kraemer SM (2007) Function of siderophores in the plant rhizosphere. R. Pinton (Ed.), et al The rhizosphere, biochemistry and organic substances at the soil-plant interface, CRC Press, Boca Raton, pp. 73–109

    Google Scholar 

  • de Souza JT, Arnould C, Deulvot C, Lemanceau P, Gianinazzi-Pearson V, Raaijmakers JM (2003) Effect of 2,4-diacetylphloroglucinol on pythium: cellular responses and variation in sensitivity among propagules and species. Phytopathology 93(8):966–975

    Article  PubMed  Google Scholar 

  • Dobereiner J (1992) History and new perspectives of diazotrophs in association with non-leguminous plants. Symbiosis 13:1–13

    Google Scholar 

  • Dodd IC, Belimov AA, Sobeih WY, Safronova VI, Grierson D, Davies WJ (2004) Will modifying plant ethylene status improve plant productivity in water-limited environments? In: Fischer T, Turner N, Angus J, McIntyre L, Robertson M, Borrell A, Lloyd A (eds) Proceedings of the 4th international crop science congress, Brisbane, Australia, 26 September–1 October 2004. The Regional Institute Ltd., Gosford, NSW, Australia

    Google Scholar 

  • Doornbos RF, Van Loon LC, Peter AHM, Bakker A (2012) Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere. Rev Sustain Dev 32:227–243

    Article  Google Scholar 

  • Dowling DN, O’Gara F (1994) Metabolites of Pseudomonas involved in the biocontrol of plant disease. Trends Biotechnol 12:133–141

    Article  CAS  Google Scholar 

  • Dutta S (2012) Biopesticides and fertilizers: novel substitutes of their chemical alternatives. J Environ Res Dev 6(3A):773–778

    Google Scholar 

  • Elahi KM (2008) Social forestry, exotic trees and monga. The daily star published 6 September 2008. http://www.thedailystar.net/news-detail-53438

  • Etesami HA, Alikhani HA, Akbari A (2009) Evaluation of plant growth hormones production (IAA) ability by Iranian soils rhizobial strains and effects of superior strains application on wheat growth indexes. World Appl Sci J 6:1576–1584

    CAS  Google Scholar 

  • Fitches E, Edwards MG, Mee C, Grishin E, Gatehouse AMR, Edwards JP, Gatehouse JA (2004) Fusion proteins containing insectspecific toxins as pest control agents: snowdrop lectin delivers fused insecticidal spider venom toxin to insect haemolymph following oral ingestion. J Insect Physiol 50:61–71

    Google Scholar 

  • Frankowski Lorito M, Scala F, Schmidt R, Berg G, Bahl H (2001) Purification and properties of two chitinolytic enzymes of Serratia plymuthica HRO-C48. Arch Microbiol 176:421–426

    Article  PubMed  Google Scholar 

  • Fridlender M, Inbar J, Chet I (1993) Biological control of soil borne plant pathogens by a β-1,3 glucanase-producing Pseudomonas cepacia. Soil Biol Biochem 25:1211–1221

    Article  CAS  Google Scholar 

  • Galal OA, Samahy FM (2012) Genetical effects of using silica nanoparticles as biopesticide on Drosophila melanogaster. Egypt J Cytol 41:87–106

    Google Scholar 

  • Garibay SV, Jyoti K (2003) Market opportunities and challenges for Indian organic products. Study funded by Swiss state secretariat of economic affairs, February 2003

    Google Scholar 

  • Gentili F, Jumpponen A (2006) Potential and possible uses of bacterial and fungal biofertilizers. In: Rai M (ed) Hanbook of microbial biofertilizers. Food Products Press, New York, pp 1–28

    Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Hindawi Publishing Corporation, Scientifica 963401

    Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Google Scholar 

  • Glick BR, Karaturovic DM, Newell PC (1995) A novel procedure for rapid isolation of plant growth promoting Pseudomonas. Can J Microbiol 41:533–536

    Article  CAS  Google Scholar 

  • Glick BR, Patten CL, Holguin G, Penrose DM (1999) Biochemical and genetic mechanisms used by plant growth promoting bacteria. Imperical College Press, London, pp 187–189

    Book  Google Scholar 

  • Glick BR, Cheng Z, Czarny J, Duan J (2007) Promotion of plant growth by ACC deaminase-producingsoil bacteria. Eur J Plant Pathol 119:329–339

    Article  CAS  Google Scholar 

  • Gosh N (2004) Promoting bio-fertilizers in Indian agriculture. http://www.ipni.net/ipniweb/portal.nsf/0/94cfd5a0ed0843028525781c0065437e/$FILE/12%20South%20Asia.Ghosh.Promoting%20Biofertilizers%20in%20India%20Agri.pdf

  • Graham PH (1988) Principles and application of soil microbiology, pp 322–345

    Google Scholar 

  • Gramkow AW, Perecmanis S, Sousa RLB, Noronha EF, Felix CR, Nagata T, Ribeiro M (2010) Insecticidal activity of two proteases against Spodoptera frugiperda larvae infected with recombinant baculoviruses. Virol J 7:143

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grichko VP, Glick BR (2001) Amelioration of flooding stress by ACC deaminase-containing plant growth-promoting bacteria. Plant Physiol Biochem 39:11–17

    Article  CAS  Google Scholar 

  • Gull I, Hafeez FY, Saleem M, Malik KA (2004) Phosphorous uptake and growth promotion of chickpea by co-inoculation of mineral phosphate solubilising bacteria and a mixed rhizobial culture. Aust J Exp Agri 44:623–628

    Article  CAS  Google Scholar 

  • Gupta S, Dikshit AK (2010) Biopesticides: an eco-friendly approach for pest control. J Biopest 3(1):186–188

    Google Scholar 

  • Gupta A, Gopal M, Tilak KVBR (2000) Mechanism of plant growth promotion by rhizobacteria. Indian J Exp Biol 38:856–862

    CAS  PubMed  Google Scholar 

  • Gupta G, Parihar SS, Ahirwar NK, Snehi SK, Singh V (2015) Plant growth promoting Rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. J Microb Biochem Technol 7:96–102

    Google Scholar 

  • Haas D, Defago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3(4):307–319

    Article  CAS  PubMed  Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species-opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2(1):43–56

    Article  CAS  PubMed  Google Scholar 

  • Hashem M, Abo-Elyousr KA (2011) Management of the root-knot nematode Meloidogyne incognita on tomato with combinations of different biocontrol organisms. Crop Prot 30(3:285–292

    Article  Google Scholar 

  • Hill DS, Stein JI, Torkewitz NR, Morse AM, Howell CR, Pachlatko JP, Becker JO, Ligon JM (1994) Cloning of genes involved in the synthesis of pyrrolnitrin from Pseudomonas fluorescens and role of pyrrolnitrin synthesis in biological control of plant disease. Appl Environ Microbiol 60(1):78–85

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iavicoli A, Boutet E, Buchela A, Métraux JP (2003) Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with P. fluorescens CHA0. Mol Plant-Microbe Interact 16:851–858

    Article  CAS  PubMed  Google Scholar 

  • Kaminek M, Motyka V, Vankova R (1997) Regulation of cytokinin content in plant cells. Physiol Plant 101:689–700

    Article  CAS  Google Scholar 

  • Kandpal V (2014) Biopestcides. Inter J Environ Res Dev 4(2):191–196

    Google Scholar 

  • Karthiba L, Saveetha K, Suresh S, Raguchander T, Saravanakumar D, Samiyappan R (2010) PGPR and entomopathogenic fungus bioformulation for the synchronous management of leaffolder pest and sheath blight disease of rice. Pest Manag Sci 66:555–564

    Article  CAS  PubMed  Google Scholar 

  • Kennedy GG (2008) Integration of insect-resistant genetically modified crops within IPM programs. Progress Biol Control 5:1–26

    Google Scholar 

  • Khan AA, Jilani G, Akhtar MS, Saqlan Naqvi SM, Rasheed M (2009) Phosphorus solubilizing bacteria: mechanisms and their role in crop production. J Agri Biol Sci 1(1):48–58

    Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Enhanced plant growth by siderophores produced by plant growth promoting rhizobacteria. Nature (London) 286:885–886

    Article  CAS  Google Scholar 

  • Kohler J, Hernández JA, Caravaca F, Roldán A (2009) Induction of antioxidant enzymes is involved in the greater effectiveness of a PGPR versus AM fungi with respect to increasing the tolerance of lettuce to severe salt stress. Environ Exp Bot 65(2–3):245–252

    Article  CAS  Google Scholar 

  • Kumar S (2012) Biopesticides: a need for food and environment safety. J Biofertil Biopestici 3:e107. https://doi.org/10.4172/2155-6202.1000e107

    Google Scholar 

  • Kumar S, Singh A (2015) Biopesticides: present status and the future prospects. J Fertil Pestic 6:e129. https://doi.org/10.4172/jbfbp.1000e129

    Article  Google Scholar 

  • Kundan R, Pant G, Jado N, Agrawal PK (2015) Plant growth promoting rhizobacteria: mechanism and current prospective. J Fertil Pestic 6(2):155

    Article  Google Scholar 

  • Lee ET, Kim SD (2001) An antifungal substance, 2, 4-diacetylphloroglucinol, produced from antagonistic bacterium Pseudomonas fluorescens 2112 against Phytophthora capsici. Kor Appl Microbiol Biotechnol 29:37–42

    CAS  Google Scholar 

  • Lim HS, Kim YS, Kim SD (1991) Pseudomonas stutzeri YPL-1 genetic transformation and antifungal mechanism against Fusarium solani, an agent of plant root rot. Appl Environ Microbiol 57:510–516

    CAS  PubMed  PubMed Central  Google Scholar 

  • Loper JE, Gross H (2007) Genomic analysis of antifungal metabolite production by Pseudomonas fluorescens Pf-5. Eur J Plant Pathol 119:265–278

    Article  CAS  Google Scholar 

  • Lovatt J (2008) Plant growth regulators: general information. UCIPM Pest Management Guidelines: Citrus UC ANR Publication 3441. http://ipm.ucanr.edu/PMG/r107900111.html

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  • Maheshwari DK, Dubey RC, Aeron A, Kumar B, Kumar S (2012) Integrated approach for disease management and growth enhancement of Sesamum indicum L. utilizing Azotobacter chroococcum TRA2 and chemical fertilizer. World J Microbiol Biotechnol 28:3015–3024

    Article  CAS  PubMed  Google Scholar 

  • Maksimov IV, Abizgil’dina RR, Pusenkova LI (2011) Plant growth promoting rhizobacteria as alternative to chemical crop protectors from pathogens (review). Appl Biochem Microbiol 47:333–345

    Article  CAS  Google Scholar 

  • Maurhofer M, Keel C, Schnider U, Voisard C, Haas D, Défago G (1992) Influence of enhanced antibiotic production in Pseudomonas fluorescens strain CHA0 on its disease suppressive capacity. Phytopathology 82:190–195

    Article  CAS  Google Scholar 

  • Maurhofer M, Hase C, Meuwly P, Métraux JP, Défago G (1994) Induction of systemic resistance of tobacco to tobacco necrosis virus by the root-colonizing Pseudomonas fluorescens strain CHA0: influence of the gacA gene and of pyoverdine production. Phytopathology 84:139–146

    Article  CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (1999) Effect of wild-type and mutant plant growth-promoting rhizobacteria on the rooting of mung been cuttings. J Plant Growth Regul 18:49–53

    Article  CAS  PubMed  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572

    Article  CAS  PubMed  Google Scholar 

  • Mazid M, Khan TA (2014) Future of bio-fertilizers in Indian agriculture: an overview. Inter J Agri Food Res 3:10–23

    Google Scholar 

  • Meena MK, Gupta S, Datta S (2016) Antifungal potential of PGPR, their growth promoting activity on seed germination and seedling growth of winter wheat and genetic variabilities among bacterial isolates. Int J Curr Microbiol App Sci 5(1):235–243

    Article  Google Scholar 

  • Meziane H, Vander SI, van Loon LC, Höfte M, Bakker PAHM (2005) Determinants of P. putida WCS358 involved in induced systemic resistance in plants. Mol Plant Pathol 6:177–185

    Article  PubMed  Google Scholar 

  • Mia Baset MA, Shamsuddin ZH (2010) Nitrogen fixation and transportation by Rhizobacteria: a scenario of Rice and banana. Int J Bot 6:235–242

    Google Scholar 

  • Mondal D, Barat S, Mukhopadhyay MK (2007) Toxicity of neem pesticides on a fresh water loach, Lepidocephalichthys guntea (Hamilton Buchanan) of Darjeeling district in West Bengal. J Environ Biol 28(1):119–122

    CAS  PubMed  Google Scholar 

  • Muhammad AA, Muhammad A, Ahmad Z, Arif M, Ali Q, Rasool M (2013) Plant growth promoting rhizobacteria and sustainable agriculture: a review. Afr J Microbiol Res 7(9):704–709

    Google Scholar 

  • Nawaz M, Mabubu JI, Hua H (2016) Current status and advancement of biopesticides: Microbial and botanical pesticides. J Entomol Zool Stud 4(2):241–246

    Google Scholar 

  • Nieto KF, Frankenberger WT Jr (1989) Biosynthesis of cytokinins by Azotobacter chroococcum. Soil Biol Biochem 21:967–972

    Article  CAS  Google Scholar 

  • O’Brien KP, Franjevic S, Jones J (2009) Green chemistry and sustainable agriculture: the role of biopesticides http://advancinggreenchemistry.org/wp-content/uploads/Green-Chem-and-Sus.-Ag.-the-Role-of-Biopesticides.pdf

  • Ongena M, Daayf F, Jacques P, Thonart P, Benhamou N, Paulitz TC, Cornelis P, Koedam N, Belanger RR (1999) Protection of cucumber against Pythium root rot by fluorescent pseudomonads: predominant role of induced resistance over siderophores and antibiosis. Plant Pathol 48:66–76

    Article  Google Scholar 

  • Oostendorp M, Sikora RA (1990) In-vitro interrelationships between rhizosphere bacteria and Heterodera schachtii. Rev Nematol 13:269–274

    Google Scholar 

  • Parada M, Vinardell J, Ollero F, Hidalgo A, Gutiérrez R (2006) Sinorhizobium fredii HH103 mutants affected in capsular polysaccharide (KPS) are impaired for nodulation with soybean and Cajanus cajan. Mol Plant-Microbe Interact 19:43–52

    Article  CAS  PubMed  Google Scholar 

  • Patel AK, Ahire JA, Pawar SP, Chaudhari BL (2010) Evaluation of probiotic characteristics of siderophorogenic Bacillus spp. isolated from dairy waste. Appl Biochem Biotechnol 160:140–155

    Article  CAS  PubMed  Google Scholar 

  • Patil S, Bheemaraddi MC, Shivannavar CT, Gaddad SM (2014) Biocontrol activity of siderophore producing Bacillus subtilis CTS-G24 against wilt and dry root rot causing fungi in chickpea. J Agri Vet Sci 7(9):63–68

    Google Scholar 

  • Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42:207–220

    Article  CAS  PubMed  Google Scholar 

  • Pawan W (2001) An overview of the IPSN Program in India paper presented at regional workshop on Integrated Plant Nutrition System (IPNS) development & rural poverty alleviation, Bangkok, 18–20 September

    Google Scholar 

  • Pii Y, Mimmo T, Tomasi N, Terzano R, Cesco S, Crecchio C (2015) Microbial interactions in the rhizosphere: beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. a review. Biol Fertil Soils 51(4):403–415

    Article  CAS  Google Scholar 

  • Planning Commission (2002) Tenth Five Year Plan, Planning Commission, Government of India, New Delhi

    Google Scholar 

  • Prasanna L, Eijsink VG, Meadow R, Gaseidnes S (2013) A novel strain of Brevibacillus laterosporus produces chitinases that contribute to its biocontrol potential. Appl Microbiol Biotechnol 97(4):1601–1611

    Article  CAS  PubMed  Google Scholar 

  • Qingwen Z, Ping L, Gang W, Qingnian C (1998) The biochemical mechanism of induced resistance of cotton to cotton bollworm by cutting off young seedling at plumular axis. Acta Phytophylacica Sinica 25:209–212

    Google Scholar 

  • Qureshi MA, Ahmed ZA, Akhtar N, Iqbal A, Mujeeb F, Shakir MA (2012) Role of phosphate solubilizing bacteria (PSB) in enhancing P availability and promoting cotton growth. J Animal Plant Sci 22(1):204–210

    CAS  Google Scholar 

  • Rai M (2006) Organic farming: potentials and strategies; Available on: htp://www.icar.org.in/dgspmr/03062005.htm

  • Raja N (2013) Biopesticides and biofertilizers: ecofriendly sources for sustainable agriculture. J Biofertil Biopestici 4:e112. https://doi.org/10.4172/2155-6202.1000e112

    Article  Google Scholar 

  • Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142–149

    Article  CAS  PubMed  Google Scholar 

  • Ramamoorthy V, Raguchander T, Samiyappan R (2002) Induction of defense-related proteins in tomato roots treated with Pseudomonas fluorescens Pf1 and Fusarium oxysporum f. sp. lycopersici. Plant Soil 239(1):55–68

    Article  CAS  Google Scholar 

  • Ramirez LEF, Mellado JC (2005) PGPR: Biocontrol and Biofertilization. Springer, Dordrecht, pp 143–172

    Google Scholar 

  • Reddy BP, Reddy MS, Kumar KVK (2009) Characterization of antifungal metabolites of Pseudomonas fluorescens and their effect on mycelia growth of Magnaporthe grisea and Rhizoctonia solani. Inter J PharmTech Res 1(4):1490–1493

    Google Scholar 

  • Revathi K, Chandrasekaran R, Thanigaivel A, Kirubakaran SA, Satish-Naraayanan S, Senthil-Nathan S (2013) Effects of Bacillus subtilis metabolites larval Aedes aegypti L. Pestic Biochem Physiol 107:369–376

    Article  CAS  PubMed  Google Scholar 

  • Rivas R, Peix A, Mateos PF, Trujillo ME, Martínez-Molina E, Velázquez E (2007) Biodiversity of populations of phosphate solubilizing rhizobia that nodulates chickpea in different Spanish soils. In: First International meeting on microbial phosphate solubilization, Developments in plant and soil Science, vol 102. Springer, Dordrecht, pp 23–33

    Chapter  Google Scholar 

  • Ryu CM, Farag MA, CH H, Reddy MS, Wei HX, Kloepper JW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadhana B (2014) Arbuscular mycorrhizal fungi (AMF) as a biofertilizer–a review. Inter J Curr Microb Appl Sci 3(4):384–400

    Google Scholar 

  • Santhi A, Sivakumar V (1995) Biocontrol potential of Pseudomonas fluorescens (Migula) against root-knot nematode, Meloidogyne incognita on tomato. J Biol Control 9:113–115

    Google Scholar 

  • Saravanakumar D, Samiyappan R (2007) ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants. J Appl Microbiol 102:1283–1292

    Article  CAS  PubMed  Google Scholar 

  • Saravanakumar D, Muthumeena K, Lavanya N, Suresh S, Rajendran L, Raguchander T, Samiyappan R (2007) Pseudomonas–induced defence molecules in rice plants against leaffolder (Cnaphalocrocis medinalis) pest. Pest Manag Sci 63:714–721

    Article  CAS  PubMed  Google Scholar 

  • Schnider U, Blumer C, Troxler J, Défago G, Haas D (1994) In: Ryder MH, Stephens PM, Bowen GD (eds) Improving plant productivity with rhizosphere bacteria. CSIRO, Adelaide, pp 120–121

    Google Scholar 

  • Schulz TJ, Thelen KD (2008) Soybean seed inoculant and fungicidal seed treatment effects on soybean. Crop Sci 48:1975–1983

    Article  CAS  Google Scholar 

  • Senthil-Nathan S (2015) A review of biopesticides and their mode of action against insect pests. Environ Sustain. https://doi.org/10.1007/978-81-322-2056-5_3

  • Shali A, Ghasemi S, Ahmadian G, Ranjbar G, Dehestani A, Khalesi N, Motallebi E, Vahed M (2010) Bacillus pumilus SG2 chitinases induced and regulated by chitin, show inhibitory activity against Fusarium graminearum and Bipolaris sorokiniana. Phytoparasitica 38(2):141–147

    Article  Google Scholar 

  • Sharma A, Johri BN (2003) Growth promoting influence of siderophore-producing Pseudomonas strains GRP3A and PRS9 in maize (Zea mays L.) under iron limiting conditions. Microbiol Res 158(3):243–248

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Johri BN, Sharma AK, Glick BR (2003) Plant growth-promoting bacterium Pseudomonas sp. strain GRP3 influences iron acquisition in mung bean (Vigna radiata L. Wilzeck). Soil Biol Biochem 35:887–894

    Article  CAS  Google Scholar 

  • Sharma A, Shankhdhar D, Shankhdhar SC (2013) Enhancing grain iron content of rice by the applicationof plant growth promoting rhizobacteria. Plant Soil Environ 59:89–94

    CAS  Google Scholar 

  • Shilev S (2013) Soil rhizobacteria regulating the uptake of nutrients and undesirable elements by plants. In: Arora NK (ed) Plant microbe symbiosis: fundamentals and advances. Springer, India, pp 147–150

    Chapter  Google Scholar 

  • Sikora RA (1992) Management of the antagonistic potential in agricultural ecosystems for the biological control of plant parasitic nematodes. Annu Rev Phytopathol 30:245–270

    Article  Google Scholar 

  • Sikora RA, Hoffmann-Hergarten S (1992) Importance of plant health-promoting rhizobacteria for the control of soil-borne fungal diseases and plant parasitic nematodes. Arab J Plant Prot 10:53–58

    Google Scholar 

  • Simmons J (2011) The three rights: food, choice, sustainability. Elanco Animal Health. All rights reserved

    Google Scholar 

  • Singh N, Varma A (2015) Antagonistic activity of siderophore producing rhizobacteria isolated from the semi-arid regions of Southern India. Int J Curr Microbiol App Sci 4(9):501–510

    Google Scholar 

  • Singleton P, Keyser H, Sande E (2002) Development and evaluation of liquid inoculants. In: Herridge D (ed) Inoculants and nitrogen fixation of legumes in Vietnam. ACIAR Proceedings 109e. Centre for International Agricultural Research, Canberra, pp 52–66

    Google Scholar 

  • Sneh B, Dupler M, Elad Y, Baker R (1984) Chlamydospore germination of Fusarium oxysporum f. sp. cucumerinum as affected by fluorescent and lytic bacteria from Fusarium-suppressive soil. Phytopathology 74:1115–1124

    Article  Google Scholar 

  • Souza R, Meyer J, Schoenfeld R, Costa PB, Passaglia LMP (2014) Characterization of plant growth-promoting bacteria associated with rice cropped in iron-stressed soils. Ann Microbiol 65:951–964

    Article  CAS  Google Scholar 

  • Spiegel Y, Cohn E, Galper S, Sharon E, Chet I (1991) Evaluation of a newly isolated bacterium, Pseudomonas chitinolytica sp. nov., for controlling the root-knot nematode Meloidogyne javanica. Biocontrol Sci Tech 1:115–125

    Article  Google Scholar 

  • Stock CA, Mcloughlin TJ, Klein JA, Adang MJ (1990) Expression of a Bacillus thuringiensis crystal proteins gene in Pseudomonas cepacia 526. Can J Microbiol 36:879–884

    Article  CAS  Google Scholar 

  • Sullia SB (1991) Use of vesicular-arbuscular mycorrhiza (VAM) as bio-fertilizer for horticultural plants in developing countries. Curr Plant Sci Biotechnol Agri 12:49–53

    Article  Google Scholar 

  • Szilagyi-Zecchin VJ, Ikeda AC, Hungria M, Adamoski D, Kava-Cordeiro V, Glienke C, Galli-Terasawa LV (2014) Identification and characterization of endophytic bacteria from corn (Zea mays L.) roots with biotechnological potential in agriculture. AMB Express 4:2–9

    Article  CAS  Google Scholar 

  • Tariq M, Hameed S, Yasmeen T, Zahid M (2014) Molecular characterization and identification of plant growth promoting endophytic bacteria isolated from the root nodules of pea (Pisum sativum L.) World J Microbiol Biotechnol 30:719–725

    Article  CAS  PubMed  Google Scholar 

  • Taurian T, Anzuay MS, Angelini JG, Tonelli ML, Luduena L, Pena D, Ibanez F, Fabra A (2010) Phosphate-solubilizing peanut associated bacteria: screening for plant growth-promoting activities. Plant Soil 329:421–431

    Article  CAS  Google Scholar 

  • Tewari S, Arora NK (2014) Multifunctional exopolysaccharides from Pseudomonas aeruginosa PF23 involved in plant growth stimulation, biocontrol and stress amelioration in sunflower under saline conditions. Curr Microbiol 69:484–494

    Article  CAS  PubMed  Google Scholar 

  • Toyoda H, Utsumi R (1991) Method for the prevention of Fusarium diseases and microorganisms used for the same. US Patent No. 4, 988, p 586

    Google Scholar 

  • Vandenbergh PA, Gonzalez CF (1984) Method for protecting the growth of plants employing mutant siderophore producing strains of Pseudomonas putida. U.S. Patent #4,479,936

    Google Scholar 

  • Van Peer R, Niemann GJ, Schippers B (1991) Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS417r. Phytopathology 81:728–734

    Article  Google Scholar 

  • Verma M, Brar SK, Tyagi RD, Surampalli RY, Valero JR (2007) Antagonistic fungi, Trichoderma spp: panoply of biological control. Biochem Eng J 37(1):1–20

    Article  Google Scholar 

  • Vikram A, Hamzehzarghani H (2008) Effect of phosphate solubilizing bacteria on nodulation and growth parameters of greengram (Vigna radiate L. Wilczec). Res J Microbiol 3:62–72

    Article  Google Scholar 

  • Vimala P, Lalithakumari D (2003) Characterization of exopolysaccharide (EPS) produced by Leuconostoc sp. V 41. Asian J Microbiol Biotechnol Environ Sci 5(2):161–165

    CAS  Google Scholar 

  • Vinale F, Marra R, Scala F, Ghisalberti EL, Lorito M, Sivasithamparam K (2006) Major secondary metabolites produced by two commercial Trichoderma strains active against different phytopathogens. Letters. Appl Microbiol 43(2):143–148

    Article  CAS  Google Scholar 

  • Voisard C, Keel C, Haas D, Dèfago G (1989) Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. EMBO J 8:351–358

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vora MS, Shelat HN, Vyas RV (2008) Liquid biofertilizers: a new vistas. In: Vora MS, Shelat HN, Vyas RV (eds) Handbook of biofertilizers and microbial pesticides. Satish serial publishing house, New Delhi, pp 87–90

    Google Scholar 

  • Wandersman C, Delepelaire P (2004) Bacterial iron sources: from siderophores to hemophores. Annu Rev Microbiol 58:611–647

    Article  CAS  PubMed  Google Scholar 

  • Wang YH, Irving HR (2011) Developing a model of plant hormone interactions. Plant Signal Behav 6(4):494–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei G, Kloepper JW, Tuzun S (1991) Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant growth-promoting rhizobacteria. Phytopathology 81:1508–1512

    Article  Google Scholar 

  • Weller DM (2007) Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 years. Phytopathology 97:250–256

    Article  PubMed  Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511

    Article  CAS  PubMed  Google Scholar 

  • Xiao L, Xie Chi C, Cai J, Lin ZJ, Chen YH (2009) Identification and characterization of a chitinase-produced Bacillus showing significant antifungal activity. Curr Microbiol 58(5):528–533

    Article  CAS  PubMed  Google Scholar 

  • Zahran HH (2001) Rhizobia from wild legumes: diversity, taxonomy, ecology, nitrogen fixation and biotechnology. J Biotechnol 91:143–153

    Article  CAS  PubMed  Google Scholar 

  • Zaidi A (1999) Synergistic interactions of nitrogen fixing microorganisms with phosphate mobilizing microorganisms. Ph.D. Thesis, Aligarh Muslim University, Aligarh, India

    Google Scholar 

  • Zhang S, Moyne AL, Reddy MS, Kloepper JW (2002) The role of salicylic acid in induced systemic resistance elicited by plant growth-promoting rhizobacteria against blue mold of tobacco. Biol Control 25:288–296

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brijmohan Singh Bhau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Phukon, P., Baruah, J., Sarmah, D.K., Bhau, B.S. (2017). Green Input in Agriculture: An Overview. In: Singh, D., Singh, H., Prabha, R. (eds) Plant-Microbe Interactions in Agro-Ecological Perspectives. Springer, Singapore. https://doi.org/10.1007/978-981-10-6593-4_11

Download citation

Publish with us

Policies and ethics