Skip to main content

Interaction Between Beneficial Bacteria and Sugarcane

  • Chapter
  • First Online:

Abstract

Eco-friendly sugarcane production is constantly faced with growing demands for increased productivity. Current biotechnology, based on growth promotion through bacterial inoculants, presents us with the opportunity to increase production without an adverse environmental impact. To this end, plant growth-promoting bacteria (PGPB) with their diverse agricultural characteristics, like nitrogen fixation and production of plant regulators, are a good choice in achieving this goal. Characterization of the abilities of different strains will define their potential use, which for the most part is not limited to a single desirable feature. Therefore, our aim was to contribute to the present understanding of the principal activities of PGPB in sugarcane, to provide some simple and common methods for selecting them, and to draw attention to sugarcane breeding for selection of responsive clones for PGPB inoculation.

This is a preview of subscription content, log in via an institution.

Notes

  1. 1.

    The mix of bacteria: BR11335 (Herbaspirillum seropedicae), BR11504 (Herbaspirillum rubrisubalbicans), BR11281T (Gluconacetobacter diazotrophicus), BR11366T (Burkholderia tropica) e BR11145 (Azospirillum amazonense) (Garcia et al. 2013).

  2. 2.

    Embrapa – Empresa Brasileira de Pesquisa Agropecuária (Brazilian Agricultural Research Corporation).

  3. 3.

    Interuniversity Network to the Development of Sucroenergetic Sector—Brazilian breeding program focused on the obtaining of sugarcane genotypes. One of the most important global programs.

References

  • Araujo SC (2008) Realidade e perspectivas para o uso de Azospirillum na cultura do milho. Rev Inf Agron 122:4–6

    Google Scholar 

  • Arencibia AD, Vinagre F, Estevez Y et al (2006) Gluconoacetobacter diazotrophicus elicitate a sugarcane defense response against a pathogenic bacteria Xanthomonas albilineans. Plant Signal Behav 1(5):265–273

    Article  PubMed  PubMed Central  Google Scholar 

  • Ashraf MA, Rasool M, Mirza MS (2011) Nitrogen fixation and indole acetic acid production potential of bacteria isolated from rhizosphere of sugarcane (Saccharum officinarum L.) Adv Biol Res (Rennes) 5:348–355

    CAS  Google Scholar 

  • Baldani J, Caruso L, Baldani VL et al (1997) Recent advances in BNF with non-legume plants. Soil Biol Biochem 29(5):911–922

    Article  CAS  Google Scholar 

  • Baldani JI, Reis VM, Baldani VLD, Döbereiner J (2002) Review: a brief story of nitrogen fixation in sugarcane—reasons for success in Brazil. Funct Plant Biol 29:417–423

    Article  Google Scholar 

  • Barbosa HR, Alterthum F (1992) The role of extracellular polysaccharide in cell viability and nitrogenase activity of Beijerinckia derxii. Can J Microbiol 38(9):986–988

    Article  CAS  Google Scholar 

  • Bashan Y, Bashan LE (2011) How the plant growth-promoting bacterium Azospirillum promotes plant growth: a critical assessment. Adv Agron 108:77–136

    Article  CAS  Google Scholar 

  • Bashan Y, Bustillos JJ, Leyva LA et al (2006) Increase in auxiliary photoprotective photosynthetic pigments in wheat seedlings induced by Azospirillum brasilense. Biol Fertil Soils 42(4):279–285

    Article  CAS  Google Scholar 

  • Bastián F, Cohen A, Piccoli P et al (1998) Production of indole-3-acetic acid and gibberellins A1 and A3 by Acetobacter diazotrophicus and Herbaspirillum seropedicae in chemically-defined culture media. Plant Growth Regul 24(1):7–11

    Article  Google Scholar 

  • Beneduzi A, Costa PB, Parma M et al (2010) Paenibacillus riograndensis sp. nov., a nitrogen-fixing species isolated from the rhizosphere of Triticum aestivum. Int J Syst Evol Microbiol 60:128–133

    Article  CAS  PubMed  Google Scholar 

  • Beneduzi A, Moreira F, Costa PB et al (2013) Diversity and plant growth promoting evaluation abilities of bacteria isolated from sugarcane cultivated in the South of Brazil. Appl Soil Ecol 63:94–104

    Article  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28(4):1327–1350

    Article  CAS  PubMed  Google Scholar 

  • Blackburn F (1984) Sugar-cane, 1st edn. Longman, London/New York. 414 p

    Google Scholar 

  • Boddey RM, Urquiaga S, Reis V et al (1991) Biological nitrogen fixation associated with sugar cane. In: Nitrogen Fixation, Springer Netherlands, p 105–111

    Google Scholar 

  • Boddey RM, Reis VM, Urquiaga S et al (1995) N2 fixation in sugar cane: the role of Acetobacter diazotrophicus. In: Nitrogen fixation: fundamentals and applications. Springer, Dordrecht, pp 641–646

    Chapter  Google Scholar 

  • Boddey RM, Urquiaga S, Alves BJR, Reis V (2003) Endophytic nitrogen fixation in sugarcane: present knowledge and future applications. Plant Soil 252:139–149

    Article  CAS  Google Scholar 

  • Bonnett G, Casu R, Rae A et al (2004) Identification of genes contributing to high sucrose accumulation in sugarcane. In: 4th International Crop Science Congress, Austrália, 2004. Anais…. The Regional Institute Ltd, Australia

    Google Scholar 

  • Calija V, Higgins AJ, Jackson PA et al (2001) An operations research approaches to the problem of the sugarcane selection. Ann Oper Res, Netherlands 108:123–142

    Article  Google Scholar 

  • Canhoto JM (2010) Biotecnologia vegetal da clonagem de plantas à transformação genética. Imprensa da Universidade de Coimbra/Coimbra University Press, Coimbra

    Book  Google Scholar 

  • Cesnik R, Miocque JJY (2004) Melhoramento da cana-de- açúcar. Embrapa, Brasília

    Google Scholar 

  • Chauhan H, Bagyaraj DJ, Sharma A (2013) Plant growth-promoting bacterial endophytes from sugarcane and their potential in promoting growth of the host under field conditions. Exp Agric 49:43–52. https://doi.org/10.1017/S0014479712001019

    Article  Google Scholar 

  • Chaves VA (2014) Desenvolvimento inicial e acúmulo de nutrientes em três variedades de cana-de-açúcar inoculadas com bactérias diazotróficas. Dissertation, Universidade Federal Rural do Rio de Janeiro

    Google Scholar 

  • Cheavegatti-Gianotto A, Abreu HMC, Arruda P et al (2011) Sugarcane (Saccharum X officinarum): a reference study for the regulation of genetically modified cultivars in Brazil. Trop Plant Biol 4(1):62–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung H, Park M, Madhaiyan M et al (2005) Isolation and characterization of phosphate solubilizing bacteria from the rhizosphere of crop plants of Korea. Soil Biol Biochem 37(10):1970–1974

    Article  CAS  Google Scholar 

  • Companhia Nacional de Abastecimento (CONAB) (2016) Acompanhamento da safra brasileira de cana-de-açúcar. Available http://www.conab.gov.br/conteudos.php?a=1252&t=2&Pagina_objcmsconteudos=2#A_objcmsconteudos. Accessed 10 Dec 2016

  • Conselho de Informações sobre Biotecnologia (CIB) (2009) Guia da cana-de- açúcar: Avanço científico beneficia o país. CIB, 20p

    Google Scholar 

  • Costa DP, Dias ACF, Durrer A et al (2014) Composição diferencial das comunidades bacterianas na rizosfera de variedades de cana-de-açúcar. Revista Brasileira de Ciência do Solo 38(6):1694–1702

    Article  Google Scholar 

  • Daros E, Oliveira RA, Barbosa GVS (2015) 45 anos de variedades RB de cana-de-açúcar, 1st edn. Editora Graciosa, Curitiba

    Google Scholar 

  • Dean DR, Jacobson MR (1992) Biochemical genetics of nitrogenases. In: Stacey G, Burris RH, Evans HJ (eds) Biological nitrogen fixation. Chapman & Hall, New York, pp 763–834

    Google Scholar 

  • de Bont JA, Mulder EG (1976) Invalidity of the acetylene reduction assay in alkane-utilizing, nitrogen-fixing bacteria. Appl Environ Microbiol 31(5):640–647

    PubMed  PubMed Central  Google Scholar 

  • Döbereiner J, Day JM, Dart PJ (1972) Nitrogenase activity in the rhizosphere of sugar cane and some other tropical grasses. Plant Soil 37(1):191–196

    Article  Google Scholar 

  • Donato VMTS, Andrade AD, Souza ED et al (2004) Atividade enzimática em variedades de cana-de-açúcar cultivadas in vitro sob diferentes níveis de nitrogênio. Pesq Agrop Brasileira 39(11):1087–1093

    Article  Google Scholar 

  • Dong Z, Canny MJ, McCully ME et al (1994) A nitrogen-fixing endophyte of sugarcane stems (a new role for the apoplast). Plant Physiol 105(4):1139–1147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Empresa Brasileira de Pesquisa Agropecuária (Embrapa) (2007) Inoculante contendo bactérias fixadoras de nitrogênio para aplicação em canade-açúcar. Available https://www.embrapa.br/agrobiologia/busca-de-projetos/-/projeto/12441/inoculante-contendo-bacterias-fixadoras-denitrogenio-para-aplicacao-em-cana-de-acucar. Accessed 5 Jun 2015

  • Ferrel-Caballero N, Soriano B (2014) Efecto de Rhizobium etli en el crecimiento de plántulas de caña de azúcar, Saccharum officinarum, en condiciones de laboratorio. Revista Rebiolest 2(1):32–43

    Google Scholar 

  • Figueiredo GGO, Lopes VR, Bespalhok Filho JC et al (2013) Efeito de substratos e bactérias promotoras do crescimento vegetal na germinação de sementes de cana-de-açúcar. Revista de Ciências Agrárias 36(4):447–454

    Google Scholar 

  • Finkelstein R (2013) Abscisic acid synthesis and response. Arab B 11:e0166. https://doi.org/10.1199/tab.0166

    Article  Google Scholar 

  • Food and Agriculture Organization of the United Nations (FAO) (2016) Relatórios. Available http://www.fao.org/faostat/en/#data/QC. Accessed 10 Dec 2016

  • Franklin G, Arvinth S, Sheeba CJ et al (2006) Auxin pretreatment promotes regeneration of sugarcane (Saccharum spp. hybrids) midrib segment explants. Plant Growth Regul 50:111–119

    Article  CAS  Google Scholar 

  • Freire JRJ, Vernetti FDJ (1999) A pesquisa com soja, a seleção de rizóbio e a produção de inoculantes no Brasil. Pesq Agrop Gaúcha 5(1):0–0

    Google Scholar 

  • Fuentes-Ramírez LE, Caballero-Mellado J (2006) Bacterial biofertilizers. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Holanda, pp 143–172

    Chapter  Google Scholar 

  • Fuentes-Ramirez L, Jimenez-Salgado T, Abarca-Ocampo IR et al (1993) Acetobacter diazotrophicus, an indoleacetic acid producing bacterium isolated from sugarcane cultivars of Mexico. Plant Soil 154(2):145–150

    Article  CAS  Google Scholar 

  • Fuentes-Ramírez LE, Caballero-Mellado J, Sepúlveda J et al (1999) Colonization of sugarcane by Acetobacter diazotrophicus is inhibited by high N-fertilization. FEMS Microbiol Ecol 29(2):117–128

    Article  Google Scholar 

  • Fujita Y, Fujita M, Shinozaki K, Yamaguchi-Shinozaki K (2011) ABA-mediated transcriptional regulation in response to osmotic stress in plants. J Plant Res 124:509–525. https://doi.org/10.1007/s10265-011-0412-3

    Article  CAS  PubMed  Google Scholar 

  • Gaiero JR, McCall CA, Thompson KA et al (2013) Inside the root microbiome: bacterial root endophytes and plant growth promotion. Am J Bot 100(9):1738–1750

    Article  PubMed  Google Scholar 

  • Garcia JC, Vitorino R, Azania CAM et al (2013) Inoculação de bactérias diazotróficas no desenvolvimento inicial de cana-de-açúcar, variedade RB867515. Nucleus 10(1):99–108

    Article  Google Scholar 

  • George TS, Richardson AE, Li SS et al (2009) Extracellular release of a heterologous phytase from roots of transgenic plants: does manipulation of rhizosphere biochemistry impact microbial community structure? FEMS Microbiol Ecol 70:433–445. https://doi.org/10.1111/j.1574-6941.2009.00762.x

    Article  CAS  PubMed  Google Scholar 

  • Gírio LAS, Dias FLF, Reis VM et al (2015) Bactérias promotoras de crescimento e adubação nitrogenada no crescimento inicial de cana-de-açúcar proveniente de mudas pré-brotadas. Pesq Agrop Brasileira 50(1):33–43

    Article  Google Scholar 

  • Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 251:1–7. https://doi.org/10.1016/j.femsle.2005.07.030

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica (Cairo) 2012:1–15. https://doi.org/10.6064/2012/963401

    Article  CAS  Google Scholar 

  • Glickmann E, Dessaux Y (1995) A critical examination of the specificity of the salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Appl Environ Microbiol 61:793–796

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gnanamanickam SS, Immanuel JE (2007) Epiphytic bacteria, their ecology functions. In: Gnanamanickam SS (ed) Plant-associated bacteria. Springer, Houten, pp 131–153

    Google Scholar 

  • Gonzaga GBM (2012) Avaliação do crescimento inicial da cana-de-açúcar, variedade RB867515, sob o efeito de bactérias endofíticas. Dissertation, Universidade Federal de Alagoas

    Google Scholar 

  • Gordon SA, Weber RP (1951) Colorimetric estimation of indoleacetic acid. Plant Physiol 26:192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardy RWF, Holsten RD, Jackson EK et al (1968) The acetylene-ethylene assay for N2 fixation: laboratory and field evaluation. Plant Physiol 43(8):1185–1207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heldt H-W, Piechulla B (2004) Plant biochemistry. Academic Press, London

    Google Scholar 

  • Hodkinson TR, Chase MW, Lledó DM et al (2002) Phylogenetics of Miscanthus, Saccharum and related genera (Saccharinae, Andropogoneae, Poaceae) based on DNA sequences from ITS nuclear ribosomal DNA and plastid trnL intron and trnL-F intergenic spacers. J Plant Res 115(5):381–392

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Chen M-H, Yang L-T et al (2015) Effects of exogenous abscisic acid on cell membrane and endogenous hormone contents in leaves of sugarcane seedlings under cold stress. Sugar Tech 17:59–64. https://doi.org/10.1007/s12355-014-0343-0

    Article  CAS  Google Scholar 

  • Hungria M (2011) Inoculação com Azospirillum brasiliense: inovação em rendimento a baixo custo. Embrapa Soja. Documentos

    Google Scholar 

  • James EK, Olivares FL, de Oliveira AL et al (2001) Further observations on the interaction between sugar cane and Gluconacetobacter diazotrophicus under laboratory and greenhouse conditions. J Exp Bot 52(357):747–760

    Article  CAS  PubMed  Google Scholar 

  • Jannoo N, Grivet L, Seguin M et al (1999) Molecular investigation of the genetic base of sugarcane cultivars. Theor Appl Genet 99(1–2):171–184

    Article  CAS  Google Scholar 

  • Karadeniz A, Topcuoğlu ŞF, İnan S (2006) Auxin, gibberellin, cytokinin and abscisic acid production in some bacteria. World J Microbiol Biotechnol 22:1061–1064. https://doi.org/10.1007/s11274-005-4561-1

    Article  CAS  Google Scholar 

  • Khan AL, Halo BA, Elyassi A et al (2016) Indole acetic acid and ACC deaminase from endophytic bacteria improves the growth of Solanum lycopersicum. Electron J Biotechnol 21:58–64. https://doi.org/10.1016/j.ejbt.2016.02.001

    Article  CAS  Google Scholar 

  • Kimbeng CA, Cox MC (2003) Early generation selection of sugarcane families and clones in Australia: a review. J Am Soc Sugarcane Technol 23:20–39

    Google Scholar 

  • Kruasuwan W, Thamchaipenet A (2016) Diversity of culturable plant growth-promoting bacterial endophytes associated with sugarcane roots and their effect of growth by co-inoculation of diazotrophs and actinomycetes. J Plant Growth Regul 35:1–14. https://doi.org/10.1007/s00344-016-9604-3

    Article  CAS  Google Scholar 

  • Kumar V, Yadav KS, Chand M (2015) Effect of integrated use of various bio-fertilizers and chemical fertilizers on sugarcane production and soil biological fertility. Indian J Sugarcane Technol 30(2):98–103

    Google Scholar 

  • de La Cruz CPP, Bird CO, Isulat MD (2012) Sprouting, survival and growth of young sugarcane (Saccharum officinarum L.) treated with diazotrophic bacteria (Gluconacetobacter diazotrophicus). Philippine Agric Sci 95(1):106–111

    Google Scholar 

  • Lamizadeh E, Enayatizamir N, Motamedi H (2016) Isolation and identification of plant growth-promoting rhizobacteria (PGPR) from the rhizosphere of sugarcane in saline and non-saline soil. Int J Curr Microbiol App Sci 5(10):1072–1083

    Article  Google Scholar 

  • Landell MGA, Alvarez R, Zimback L et al (1999) Avaliação final de clones IAC de cana-de-açúcar da serie 1982, em Latossolo Roxo da região de Ribeirão Preto. Bragantia 58:269–280

    Article  Google Scholar 

  • Lata C, Prasad M (2011) Role of DREBs in regulation of abiotic stress responses in plants. J Exp Bot 62:4731–4748. https://doi.org/10.1093/jxb/err210

    Article  CAS  PubMed  Google Scholar 

  • Leite MCBS, Farias A, Freire FJ et al (2014) Isolation, bioprospecting and diversity of salt-tolerant bacteria associated with sugarcane in soils of Pernambuco, Brazil. Revista Brasileira de Engenharia Agrícola e Ambiental 18:S73–S79

    Article  Google Scholar 

  • Lin L, Li Z, Hu C et al (2012) Plant growth-promoting nitrogen-fixing enterobacteria are in association with sugarcane plants growing in Guangxi, China. Microbes Environ 27(391–398):2012. https://doi.org/10.1264/jsme2.ME11275

    Google Scholar 

  • Lopes VR, Bespalhok-Filho JC, Araujo LM et al (2012) The selection of sugarcane families that display better associations with plant growth promoting rhizobacteria. J Agron 11(2):43–52

    Article  CAS  Google Scholar 

  • Lucy M, Reed E, Glick BR (2004) Applications of free living plant growth-promoting rhizobacteria. Antonie Van Leeuwenhoek 86:1–25

    Article  CAS  PubMed  Google Scholar 

  • Luz WD (1996) Rizobactérias promotoras de crescimento de plantas e de bioproteção. Revisão Anual de Patologia de Plantas 4(2):1–96

    Google Scholar 

  • Magnani GS, Didonet CM, Cruz LM et al (2010) Diversity of endophytic bacteria in Brazilian sugarcane. Genet Mol Res 9(1):250–258

    Article  CAS  PubMed  Google Scholar 

  • Manners J, Mcintyre L, Casu R et al (2004) Can genomics revolutionize genetics and breeding in sugarcane? In: 4th International Crop Science Congress, 2004. Anais… The Regional Institute Ltd, Australia. Available http://www.regional.org.au/au/asa/2004/poster/3/1/1793_mannersj.htm Accessed 8 Dec 2016

  • Marcos FCC (2012) Influência de bactérias endofíticas na fisiologia de plantas de cana-de-açúcar sob restrição hídrica. Dissertation, Instituto Agronômico de Campinas

    Google Scholar 

  • Marcos FCC, Iório RDPF, Silveira APDD et al (2016) Endophytic bacteria affect sugarcane physiology without changing plant growth. Bragantia 75(1):1–9

    Article  Google Scholar 

  • Matsuoka S, Garcia AAF, Arizono H (2005) Melhoramento da cana-de-açúcar. In: Borem A (ed) Melhoramento de espécies cultivadas. UFV, Viçosa, pp 205–251

    Google Scholar 

  • Maule RF, Mazza JA, Marta JRGB (2001) Produtividade agrícola de cultivares de cana-de-açúcar em diferentes solos e épocas de colheita. Sci Agric 58:295–301

    Article  Google Scholar 

  • McSteen P (2010) Auxin and monocot development. Cold Spring Harb Perspect Biol 2:a001479

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mehnaz S (2013) Microbes–friends and foes of sugarcane. J Basic Microbiol 53(12):954–971

    Article  PubMed  Google Scholar 

  • Ministério Da Agricultura Pecuária E Abastecimento (Mapa) (2012) Cana-de-açúcar. Available http://www.agricultura.gov.br/vegetal/culturas/cana-de-acucar. Accessed 15 Jan 2013

  • Mirza MS, Ahmad W, Latif F et al (2001) Isolation, partial characterization, and the effect of plant growth-promoting bacteria (PGPB) on micro-propagated sugarcane in vitro. Plant Soil 237(1):47–54

    Article  CAS  Google Scholar 

  • Moore PH, Botha FC (2013) Sugarcane: physiology, biochemistry and functional biology. Wiley, Chichester

    Book  Google Scholar 

  • Morais LK, Silva PDA, Reis V et al (2011) Evaluation of performance of sugarcane genotypes inoculated with endophytic diazotropic bactéria. In: International Sugar Conference, 4., 2011. Nova Delhi. Balancing sugar and energy production in developing countries: sustainable technologies and marketing strategies

    Google Scholar 

  • Moreira WMQ (2013) Estudo da diversidade e atividade bacteriana em solos de floresta e sob cultivo de cana-de-açúcar. Dissertation, Faculdade de Ciências Agrárias e Veterinárias

    Google Scholar 

  • Moreira FMS, Siqueira JO (2006) Microbiologia e bioquímica do solo. Editora UFLA, Lavras

    Google Scholar 

  • Moutia JFY, Saumtally S, Spaepen S et al (2010) Plant growth promotion by Azospirillum sp. in sugarcane is influenced by genotype and drought stress. Plant Soil 337(1–2):233–242

    Article  CAS  Google Scholar 

  • Muangthong A, Youpensuk S, Rerkasem B (2015) Isolation and characterisation of endophytic nitrogen fixing bacteria in sugarcane. Trop Life Sci Res 26(1):41–51

    PubMed  PubMed Central  Google Scholar 

  • Muñoz-Rojas J, Caballero-Mellado J (2003) Population dynamics of Gluconacetobacter diazotrophicus in sugarcane cultivars and its effect on plant growth. Microb Ecol 46:454–464

    Article  PubMed  Google Scholar 

  • Muwamba A, Nkedi-Kizza P, Morgan KT (2016) Determination of sorption coefficient of phosphorus applied for sugarcane production in southwestern Florida. J Environ Qual 45:1760–1768. https://doi.org/10.2134/jeq2016.03.0087

    Article  CAS  PubMed  Google Scholar 

  • Nadar HM, Soepraptopo S, Heinz DJ, Ladd SL (1978) Fine structure of sugarcane (Saccharum sp.) callus and the role of auxin in embryogenesis. Crop Sci 18:210–216

    Article  CAS  Google Scholar 

  • Nambara E, Marion-Poll A (2005) Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol 56:165–185. https://doi.org/10.1146/annurev.arplant.56.032604.144046

    Article  CAS  PubMed  Google Scholar 

  • Nautiyal CS (1999) An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett 170(1):265–270

    Article  CAS  PubMed  Google Scholar 

  • Okazaki S, Nukui N, Sugawara M et al (2004) Rhizobial strategies to enhance symbiotic interactions: rhizobitoxine and 1-aminocyclopropane- 1-carboxylate deaminase. Microbes Environ 19(2):99–111

    Article  Google Scholar 

  • Okon Y, Labandera-Gonzales C, Lage M et al (2015) Agronomic applications of Azospirillum and other PGPR biological nitrogen fixation. In: Bruijn D (ed) Biologcal nitrogen fixation, vol 2. Wiley Blackwell, Hoboken, pp 925–936

    Chapter  Google Scholar 

  • Olivares FL, Baldani VL, Reis VM et al (1996) Occurrence of the endophytic diazotrophs Herbaspirillum spp. in roots, stems, and leaves, predominantly of Gramineae. Biol Fertil Soils 21(3):197–200

    Article  Google Scholar 

  • Olivares FL, James EK, Baldani JI et al (1997) Infection of mottled stripe disease-susceptible and resistant sugar cane varieties by the endophytic diazotroph Herbaspirilium. New Phytol 135(4):723–737

    Article  Google Scholar 

  • Oliveira AD, Urquiaga S, Döbereiner J et al (2002) The effect of inoculating endophytic N2-fixing bacteria on micropropagated sugarcane plants. Plant Soil 242(2):205–215

    Article  CAS  Google Scholar 

  • Oliveira AL, Canuto EL, Silva EE et al (2004) Survival of endophytic diazotrophic bacteria in soil under different moisture levels. Braz J Microbiol 35(4):295–299

    Article  Google Scholar 

  • Oliveira ALM, Canuto EL, Urquiaga S et al (2006) Yield of micropropagated sugarcane varieties in different soil types following inoculation with diazotrophic bacteria. Plant Soil 284(1–2):23–32

    Article  CAS  Google Scholar 

  • Oliveira FLN, Stamford NP, Simões Neto DE et al (2015) Effects of biofertilizers produced from rocks and organic matter, enriched by diazotrophic bacteria inoculation on growth and yield of sugarcane. Aust J Crop Sci 9(6):504–508

    Google Scholar 

  • Oliver R (2014) Interação entre bactérias diazotróficas e doses de n-fertilizante na cultura da cana-de-açúcar. Dissertation, Faculdade de Ciências Agronômicas da UNESP

    Google Scholar 

  • Pandya ND, Butani NV, Desai PV et al (2011) Optimization of GA3 biosynthesis by bacteria associated with the rhizosphere of sugarcane. Plant Growth-Promoting Rhizobacteria (PGPR) for Sustainable Agriculture. pp. 447–454

    Google Scholar 

  • Parnell JJ, Berka R, Young HA et al (2016) From the lab to the farm: an industrial perspective of plant beneficial microorganisms. Front Plant Sci 7:1110

    Article  PubMed  PubMed Central  Google Scholar 

  • Pedula RO, Schultz N, Monteiro RC et al (2016) Growth analysis of sugarcane inoculated with diazotrophic bacteria and nitrogen fertilization. Afr J Agric Res 11(30):2786–2795

    Article  Google Scholar 

  • Pereira APA, Silva MCB, Oliveira JRS et al (2012) Influência da salinidade sobre o crescimento e a produção de ácido indol acético de Burkholderia spp. endofíticas de cana-de-açúcar. Biosci J 28(1):112–121

    Google Scholar 

  • Pereira W, Leite JM, Hipólito GS et al (2013) Acúmulo de biomassa em variedades de cana-de-açúcar inoculadas com diferentes estirpes de bactérias diazotróficas. Rev Ciênc Agron 44(2):363–370

    Article  Google Scholar 

  • Pérez J, Casas M (2005) Estudio de la interaccion planta-Azospirillum en el cultivo cana de azucar (Saccharum sp.) Cultivos Tropicales 26(4):13–20

    Google Scholar 

  • Pérez YF, Osa AD, Restrepo-Franco GM et al (2015) Diversidad de bacterias diazotróficas asociativas potencialmente eficientes en cultivos de importancia económica. Cuban J Biol Sci/Revista Cubana de Ciencias Biológicas 4(1):17–26

    Google Scholar 

  • Perin L, Araújo JLM, Reis VM (2007) Aspectos genéticos e moleculares na interação entre organismos patogênicos e diazotróficos em cana-de-açúcar. Embrapa Agrobiologia. Documentos

    Google Scholar 

  • Perry LG, Alford ER, Horiuchi J et al (2007) Chemical signals in the rhizosphere: root-root and root-microbe communication. In: Pinton R, Varanini Z, Nannipieri P (eds) The Rhizosphere: biochemistry and organic substances at the soil-plant interface. CRC Press, Boca Raton, pp 297–330

    Google Scholar 

  • Pikovskaya RI (1948) Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Mikrobiologiya 17:e370–e370

    Google Scholar 

  • Pilet PE, Chollet R (1970) Sur le dosage colorimétrique de l’acide indolylacétique. CR Acad Sci Ser D 271:1675–1678

    CAS  Google Scholar 

  • Polidoro JC, Resende AS, Quesada DM et al (2001) Levantamento da contribuição da fixação biológica de nitrogênio para a cultura da cana-de-açúcar no Brasil. Embrapa Agrobiologia. Documentos

    Google Scholar 

  • Prado Junior JPQ (2008) Qualidade e produtividade da cana-de-açúcar inoculada com Gluconacetobacter diazotrophicus no e adubada com nitrogênio mineral e orgânico. Dissertation, Instituto Agronômico de Campinas

    Google Scholar 

  • Rattey AR, Jackson P, Wei X et al (2004) Opportunities to increase rates of parent improvement in Australian sugarcane breeding programs. In: Proceedings Australian Society of Sugar Cane Technologists. Editorial Services pp 42–42

    Google Scholar 

  • Reinhold-Hurek B, Hurek T (2011) Living inside plants: bacterial endophytes. Curr Opin Plant Biol 14(4):435–443

    Article  PubMed  Google Scholar 

  • Reis, V. M. (2007). Uso de bactérias fixadoras de nitrogênio como inoculante para aplicação em gramíneas. Embrapa Agrobiologia. Documentos

    Google Scholar 

  • Reis Junior FDB, Silva LG, Reis VM et al (2000) Ocorrência de bactérias diazotróficas em diferentes genótipos de cana-de-açúcar. Pesq Agrop Brasileira 35(5):985–994

    Article  Google Scholar 

  • Reis VM, Paula MA, Döbereiner J (1999) Ocorrência de micorrizas arbusculares e da bacteria diazotrófica Acetobacter diazotrophicus em cana-de-açúcar. Pesq Agrop Brasileira 34(7):1933–1941

    Article  Google Scholar 

  • Reis VM, Estrada-De Los Santos P, Tenorio-Salgado S et al (2004) Burkholderia tropica sp. nov., a novel nitrogen-fixing, plant-associated bacterium. Int J Syst Evol Microbiol 54(6):2155–2162

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues AA, Forzani MV, Soares RDS et al (2016a) Isolation and selection of plant growth-promoting bacteria associated with sugarcane. Pesquisa Agropecuária Trop 46(2):149–158

    Article  Google Scholar 

  • Rodrigues EP, Soares C de P, Galvao PG et al (2016b) Identification of genes involved in Indole-3-Acetic acid biosynthesis by Gluconacetobacter diazotrophicus PAL5 strain using transposon mutagenesis. Front Microbiol 7:1572. https://doi.org/10.3389/fmicb.2016.01572

    PubMed  PubMed Central  Google Scholar 

  • Rodrı́guez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  PubMed  Google Scholar 

  • Rösch C, Mergel A, Bothe H (2002) Biodiversity of denitrifying and dinitrogen-fixing bacteria in an acid forest soil. Appl Environ Microbiol 68:3818–3829

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rossetto R (2008) Fertilidade do solo, nutrição e adubação. In: Dinardo-Miranda L, Vasconcelos ACM, Landell MGA (eds) Cana-de-açúcar. Instituto Agronômico de Campinas (IAC), Campinas, pp 221–238

    Google Scholar 

  • Santos JM (2008) Cultura da cana-de-açúcar, crédito de carbono e o desafio do desenvolvimento sustentável. Dissertation, Centro Universitário de Anápolis (Unievangélica)

    Google Scholar 

  • Sarwar M, Kremer RJ (1995) Determination of bacterially derived auxins using a microplate method. Lett Appl Microbiol 20:282–285

    Article  CAS  Google Scholar 

  • Scarpari MS, Beauclair EGF (2008) Anatomia e botânica. In: Dinardo-Miranda LL, Vasconcelos ACM, Landell MGA (eds) Cana-de-açúcar. Instituto Agronômico de Campinas (IAC), Campinas, pp 45–56

    Google Scholar 

  • Scharf K-D, Berberich T, Ebersberger I, Nover L (2012) The plant heat stress transcription factor (Hsf) family: structure, function and evolution. Biochim Biophys Acta 1819:104–119. https://doi.org/10.1016/j.bbagrm.2011.10.002

    Article  CAS  PubMed  Google Scholar 

  • Schmatz R, Giacomini SJ, Padoin A et al (2012) Inoculação de bactérias diazotróficas e a produtividade de genótipos de cana-de-açúcar de ciclo médio-tardio. In: Anjos SD, Almeida, SIR (Embrapa Clima Temperado) (Ed) Simpósio Estadual de Agroenergia, 4.; Reunião Técnica de Agroenergia, 4., AMRIGS: Porto Alegre, 2012

    Google Scholar 

  • Schultz N, Morais RF, Silva JA et al (2012) Avaliação agronômica de variedades de cana-de-açúcar inoculadas com bactérias diazotróficas e adubadas com nitrogênio. Pesq Agrop Brasileira 47(2):261–268

    Article  Google Scholar 

  • Schultz N, Silva JAD, Sousa JS et al (2014) Inoculation of sugarcane with diazotrophic bacteria. Revista Brasileira de Ciência do Solo 38(2):407–414

    Article  Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56

    Article  CAS  PubMed  Google Scholar 

  • Segalla AL (1964) Botânica, melhoramento e variedades. In: Malavolta E, Segalla AL, Pimentel Gomes F et al (eds) Cultura e adubação da cana-de- açúcar, 1st edn. Instituto Brasileiro da Potassa, São Paulo, pp 61–98

    Google Scholar 

  • Silva MF, Oliveira PJ, Xavier GR et al (2009) Inoculantes formulados com polímeros e bactérias endofíticas para a cultura da cana-de-açúcar. Pesq agropec bras 44(11):1437–1443

    Article  Google Scholar 

  • Silva MF, Antônio CS, Oliveira PJ et al (2012) Survival of endophytic bacteria in polymer-based inoculants and efficiency of their application to sugarcane. Plant Soil 356(1–2):231–243

    Article  CAS  Google Scholar 

  • Silveira AB (2008) Isolamento e caracterização de linhagens de Bacillus e Paenibacillus promotores de crescimento vegetal em lavouras de arroz e trigo do Rio Grande do Sul. Dissertation, Universidade Federal do Rio Grande do Sul.

    Google Scholar 

  • Souza SR (2011) Reação de genótipos de cana-de- açúcar ao raquitismo da Soqueira (Leifsonia xily Subsp. xyli). Dissertation, Universidade Federal do Paraná

    Google Scholar 

  • Stamford NP, Lima RA, Santos CRS et al (2006) Rock biofertilizers with Acidithiobacillus on sugarcane yield and nutrient uptake in a Brazilian soil. Geomicrobiol J 23(5):261–265

    Article  CAS  Google Scholar 

  • Stevenson GC (1965) Flowering in sugarcane. In: Genetics and breeding in sugarcane. Longman, London, pp 72–79

    Google Scholar 

  • Suman A, Gaur A, Shrivastava AK et al (2005) Improving sugarcane growth and nutrient uptake by inoculating Gluconacetobacter diazotrophicus. Plant Growth Regul 47(2–3):155–162

    Article  CAS  Google Scholar 

  • Tang J, Bromfield ESP, Rodrigue N et al (2012) Microevolution of symbiotic Bradyrhizobium populations associated with soybeans in east North America. Ecol Evol 2(12):2943–2961

    Article  PubMed  PubMed Central  Google Scholar 

  • Tejera N, Lluch C, Martinez-Toledo MV et al (2005) Isolation and characterization of Azotobacter and Azospirillum strains from the sugarcane rhizosphere. Plant Soil 270(1):223–232

    Article  CAS  Google Scholar 

  • Tien TM, Gaskins MH, Hubbell DH (1979) Plant growth substances produced by Azospirillum brasilense and their effect on the growth of pearl millet (Pennisetum americanum L.) Appl Environ Microbiol 37:1016–1024

    CAS  PubMed  PubMed Central  Google Scholar 

  • Toledo LAS (2014) Evaluación del efecto de la inoculación de la bacteria Gluconactobacter diazotrophicus, en el crecimiento de plantas de caña de azúcar (Saccharum officnarum) obtenidas in vitro. Dissertation, Universidad de las Fuerzas Armadas ESPE

    Google Scholar 

  • Torriente D (2010) Aplicación de bacterias promotoras del crecimiento vegetal en el cultivo de la caña de azúcar. perspectivas de su uso en cuba. Cultivos Tropicales 31(1):19–26

    Google Scholar 

  • Tortora ML, Díaz-Ricci JC, Pedraza RO (2011) Azospirillum brasilense siderophores with antifungal activity against Colletotrichum acutatum. Arch Microbiol 193(4):275–286

    Article  CAS  PubMed  Google Scholar 

  • Ullah I, Khan AR, Park G-S et al (2013) Analysis of phytohormones and phosphate solubilization in Photorhabdus spp. Food Sci Biotechnol 22:25–31. https://doi.org/10.1007/s10068-013-0044-6

    Article  CAS  Google Scholar 

  • United States Department Of Agriculture (USDA) (2012) Reports available http://www.usdabrazil.org.br/portugues/reports.asp. Accessed 20 Jan 2013

  • Urquiaga S, Cruz KH, Boddey RM (1992) Contribution of nitrogen fixation to sugar cane: nitrogen-15 and nitrogen-balance estimates. Soil Sci Soc Am J 56(1):105–114

    Article  Google Scholar 

  • Vargas L, Santa Brígida AB, Mota Filho JP et al (2014) Drought tolerance conferred to sugarcane by association with Gluconacetobacter diazotrophicus: a transcriptomic view of hormone pathways. PLoS One 9(12):1–37

    Article  CAS  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255(2):571–586

    Article  CAS  Google Scholar 

  • Vian CEF (2009) Cana-de-açúcar: Alcoolquímica. Agência de Informação Embrapa. Available http://www.agencia.cnptia.embrapa.br/gestor/canade-acucar/Abertura.html. Accessed 20 Aug 2009

  • Vitti AC, Cantarella H, Trivelin PCO et al (2008) Nitrogênio. In: Dinardo-Miranda L, Vasconcelos ACM, Landell MGA (eds) Cana-de-açúcar. Instituto Agronômico de Campinas (IAC), Campinas, pp 239–269

    Google Scholar 

  • Wasilewska A, Vlad F, Sirichandra C, et al (2008) An update on abscisic acid signaling in plants and more... Mol Plant 1:198–217. https://doi.org/10.1093/mp/ssm022

  • Wolff WM, Floss EL (2008) Correlação entre teores de nitrogênio e de clorofila na folha com o rendimento de grãos de aveia branca. Ciência rural 38(6):1510–1515

    Article  CAS  Google Scholar 

  • Xavier JP (2006) Contribuição da fixação biológica de nitrogênio na produção sustentável da cultura de Cana-de-Açúcar. Dissertation, Universidade Federal Rural do Rio de Janeiro

    Google Scholar 

  • Zaied KA, Abd El-Hady AH, Aida Afify H et al (2003) Yield and nitrogen assimilation of winter wheat inoculated with new recombinant inoculants of rhizobacteria. Pak J Biol Sci 6:344–358

    Article  Google Scholar 

Download references

Acknowledgement

We thank God and all the friends and family who supported us. Without their help, we would not have been able to contribute to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivian Jaskiw Szilagyi-Zecchin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Figueiredo, G.G.O., Lopes, V.R., Fendrich, R.C., Szilagyi-Zecchin, V.J. (2017). Interaction Between Beneficial Bacteria and Sugarcane. In: Singh, D., Singh, H., Prabha, R. (eds) Plant-Microbe Interactions in Agro-Ecological Perspectives. Springer, Singapore. https://doi.org/10.1007/978-981-10-6593-4_1

Download citation

Publish with us

Policies and ethics