Skip to main content

Structural, Functional, and Molecular Neuroimaging in Depression

  • Chapter
  • First Online:
Book cover Understanding Depression
  • 2434 Accesses

Abstract

Depression is a globally prevalent psychiatric disorder which is associated with genetic, environmental, and psychological factors. Structural, functional, molecular neuroimaging approaches, particularly magnetic resonance imaging (MRI) and radionuclide imaging techniques, have been increasingly used to detect neurobiological changes, analyze neurochemical correlates, and parse pathophysiological mechanisms underlying depression. With the use of MRI, structural abnormalities in the prefrontal-subcortical regions involved in the cognitive control of affective state are discovered to be associated with aberrant neural activity. Besides, abnormal functional networks particularly default mode network, as revealed by functional MRI, are likely related to aberrant metabolism and dysfunctional serotonergic system detected by radionuclide imaging. Moreover, radionuclide imaging studies demonstrate that serotonin deficiency in the midbrain may play a critical role in the genesis of depression, and the incongruent reduction of serotonin receptor binding in the prefrontal cortex and midbrain may contribute to the action of suicide. Apart from serotonergic system, dysfunctional striatal dopaminergic system has been identified in depression, and a great dopamine transporter availability may be a state marker of a depressive episode as detected by radionuclide imaging. Future multimodal neuroimaging investigations carried out in multiple sites are essential to clarify the potential associations among these structural, functional, and molecular changes, as well as their implications for behavior and cognitive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Amsterdam JD, Newberg AB, Soeller I, Shults J. Greater striatal dopamine transporter density may be associated with major depressive episode. J Affect Disord. 2012;141(2–3):425–31.

    Google Scholar 

  • Andrews-Hanna JR, Reidler JS, Sepulcre J, Poulin R, Buckner RL. Functional-anatomic fractionation of the brain’s default network. Neuron. 2010;65(4):550–62.

    Google Scholar 

  • Ashburner J, Friston KJ. Voxel-based morphometry--the methods. NeuroImage. 2000;11(6 Pt 1):805–21.

    Google Scholar 

  • Bae JN, MacFall JR, Krishnan KR, Payne ME, Steffens DC, Taylor WD. Dorsolateral prefrontal cortex and anterior cingulate cortex white matter alterations in late-life depression. Biol Psychiatry. 2006;60(12):1356–63.

    Google Scholar 

  • Baeken C, Marinazzo D, Everaert H, GR W, Van Hove C, Audenaert K, Goethals I, De Vos F, Peremans K, De Raedt R. The impact of accelerated HF-rTMS on the subgenual anterior cingulate cortex in refractory unipolar major depression: insights from 18FDG PET brain imaging. Brain Stimul. 2015;8(4):808–15.

    Google Scholar 

  • Bessette KL, Nave AM, Caprihan A, Stevens MC. White matter abnormalities in adolescents with major depressive disorder. Brain Imaging Behav. 2014;8(4):531–41.

    Google Scholar 

  • Blamire AM. The technology of MRI--the next 10 years? Br J Radiol. 2008;81(968):601–17.

    Google Scholar 

  • Bora E, Fornito A, Pantelis C, Yucel M. Gray matter abnormalities in major depressive disorder: a meta-analysis of voxel based morphometry studies. J Affect Disord. 2012;138(1–2):9–18.

    Google Scholar 

  • Broyd SJ, Demanuele C, Debener S, Helps SK, James CJ, Sonuga-Barke EJ. Default-mode brain dysfunction in mental disorders: a systematic review. Neurosci Biobehav Rev. 2009;33(3):279–96.

    Google Scholar 

  • Camardese G, Di Giuda D, Di Nicola M, Cocciolillo F, Giordano A, Janiri L, Guglielmo R. Imaging studies on dopamine transporter and depression: a review of literature and suggestions for future research. J Psychiatr Res. 2014;51:7–18.

    Google Scholar 

  • Cauda F, D’Agata F, Sacco K, Duca S, Geminiani G, Vercelli A. Functional connectivity of the insula in the resting brain. NeuroImage. 2011;55(1):8–23.

    Google Scholar 

  • Choi S, Han KM, Won E, Yoon BJ, Lee MS, Ham BJ. Association of brain-derived neurotrophic factor DNA methylation and reduced white matter integrity in the anterior corona radiata in major depression. J Affect Disord. 2015;172:74–80.

    Google Scholar 

  • Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci. 2002;3(3):201–15.

    Google Scholar 

  • Critchley HD, Mathias CJ, Dolan RJ. Neuroanatomical basis for first- and second-order representations of bodily states. Nat Neurosci. 2001;4(2):207–12.

    Google Scholar 

  • Depping MS, Wolf ND, Vasic N, Sambataro F, Thomann PA, Christian Wolf R. Specificity of abnormal brain volume in major depressive disorder: a comparison with borderline personality disorder. J Affect Disord. 2015;174:650–7.

    Google Scholar 

  • Du MY, Wu QZ, Yue Q, Li J, Liao Y, Kuang WH, Huang XQ, Chan RC, Mechelli A, Gong QY. Voxelwise meta-analysis of gray matter reduction in major depressive disorder. Prog Neuro-Psychopharmacol Biol Psychiatry. 2012;36(1):11–6.

    Google Scholar 

  • Dunlop BW, Nemeroff CB. The role of dopamine in the pathophysiology of depression. Arch Gen Psychiatry. 2007;64(3):327–37.

    Google Scholar 

  • Global Burden of Disease Study. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015;386(9995):743–800.

    Google Scholar 

  • Gray NA, Milak MS, DeLorenzo C, Ogden RT, Huang YY, Mann JJ, Parsey RV. Antidepressant treatment reduces serotonin-1A autoreceptor binding in major depressive disorder. Biol Psychiatry. 2013;74(1):26–31.

    Google Scholar 

  • Grieve SM, Korgaonkar MS, Koslow SH, Gordon E, Williams LM. Widespread reductions in gray matter volume in depression. NeuroImage Clin. 2013;3:332–9.

    Google Scholar 

  • Hamilton JP, Etkin A, Furman DJ, Lemus MG, Johnson RF, Gotlib IH. Functional neuroimaging of major depressive disorder: a meta-analysis and new integration of base line activation and neural response data. Am J Psychiatry. 2012;169(7):693–703.

    Google Scholar 

  • Ho PS, Ho KK, Huang WS, Yen CH, Shih MC, Shen LH, Ma KH, Huang SY. Association study of serotonin transporter availability and SLC6A4 gene polymorphisms in patients with major depression. Psychiatry Res. 2013;212(3):216–22.

    Google Scholar 

  • Hsieh PC, Lee IH, Yeh TL, Chen KC, Huang HC, Chen PS, Yang YK, Yao WJ, RB L, Chiu NT. Distribution volume ratio of serotonin and dopamine transporters in euthymic patients with a history of major depression – a dual-isotope SPECT study. Psychiatry Res. 2010;184(3):157–61.

    Google Scholar 

  • Jacobsen JP, Siesser WB, Sachs BD, Peterson S, Cools MJ, Setola V, Folgering JH, Flik G, Caron MG. Deficient serotonin neurotransmission and depression-like serotonin biomarker alterations in tryptophan hydroxylase 2 (Tph2) loss-of-function mice. Mol Psychiatry. 2012;17(7):694–704.

    Google Scholar 

  • Jiang H, Cheng Z, Tian M, Zhang H. In vivo imaging of embryonic stem cell therapy. Eur J Nucl Med Mol Imaging. 2011;38(4):774–84.

    Google Scholar 

  • Jiang J, Zhao YJ, Hu XY, Du MY, Chen ZQ, Wu M, Li KM, Zhu HY, Kumar P, Gong QY. Microstructural brain abnormalities in medication-free patients with major depressive disorder: a systematic review and meta-analysis of diffusion tensor imaging. J Psychiatry Neurosci. 2016;42(1):150341.

    Google Scholar 

  • Jones T, Rabiner EA, Company PETRA. The development, past achievements, and future directions of brain PET. J Cereb Blood Flow Metab. 2012;32(7):1426–54.

    Google Scholar 

  • Kaymak SU, Demir B, Senturk S, Tatar I, Aldur MM, Ulug B. Hippocampus, glucocorticoids and neurocognitive functions in patients with first-episode major depressive disorders. Eur Arch Psychiatry Clin Neurosci. 2010;260(3):217–23.

    Google Scholar 

  • Korgaonkar MS, Grieve SM, Koslow SH, Gabrieli JD, Gordon E, Williams LM. Loss of white matter integrity in major depressive disorder: evidence using tract-based spatial statistical analysis of diffusion tensor imaging. Hum Brain Mapp. 2011;32(12):2161–71.

    Google Scholar 

  • Korgaonkar MS, Williams LM, Song YJ, Usherwood T, Grieve SM. Diffusion tensor imaging predictors of treatment outcomes in major depressive disorder. Br J Psychiatry J Ment Sci. 2014;205(4):321–8.

    Google Scholar 

  • Kumar JS, Mann JJ. PET tracers for serotonin receptors and their applications. Cent Nerv Syst Agents Med Chem. 2014;14(2):96–112.

    Google Scholar 

  • Lai CH. Gray matter volume in major depressive disorder: a meta-analysis of voxel-based morphometry studies. Psychiatry Res. 2013;211(1):37–46.

    Google Scholar 

  • Lambert G, Johansson M, Agren H, Friberg P. Reduced brain norepinephrine and dopamine release in treatment-refractory depressive illness: evidence in support of the catecholamine hypothesis of mood disorders. Arch Gen Psychiatry. 2000;57(8):787–93.

    Google Scholar 

  • Lattanzi L, Dell’Osso L, Cassano P, Pini S, Rucci P, Houck PR, Gemignani A, Battistini G, Bassi A, Abelli M, Cassano GB. Pramipexole in treatment-resistant depression: a 16-week naturalistic study. Bipolar Disord. 2002;4(5):307–14.

    Google Scholar 

  • Lee BH, Kim YK. Biochemical markers. In: Courtet P, editor. Understanding suicide. London: Springer-Nature; 2016. p. 155–76.

    Google Scholar 

  • Leistedt SJ, Linkowski P. Brain, networks, depression, and more. Eur Neuropsychopharmacol. 2013;23(1):55–62.

    Google Scholar 

  • Lepine JP, Briley M. The increasing burden of depression. Neuropsychiatr Dis Treat. 2011;7(Suppl 1):3–7.

    Google Scholar 

  • Lesch KP, Araragi N, Waider J, van den Hove D, Gutknecht L. Targeting brain serotonin synthesis: insights into neurodevelopmental disorders with long-term outcomes related to negative emotionality, aggression and antisocial behaviour. Philos Trans R Soc Lond Ser B Biol Sci. 2012;367(1601):2426–43.

    Google Scholar 

  • Liao Y, Huang X, Wu Q, Yang C, Kuang W, Du M, Lui S, Yue Q, Chan RC, Kemp GJ, Gong Q. Is depression a disconnection syndrome? Meta-analysis of diffusion tensor imaging studies in patients with MDD. J Psychiatry Neurosci. 2013;38(1):49–56.

    Google Scholar 

  • Liu W, Ge T, Leng Y, Pan Z, Fan J, Yang W, Cui R. The role of neural plasticity in depression: from hippocampus to prefrontal cortex. Neural Plast. 2017;2017:6871089.

    Google Scholar 

  • Liu CH, Jing B, Ma X, Xu PF, Zhang Y, Li F, Wang YP, Tang LR, Wang YJ, Li HY, Wang CY. Voxel-based morphometry study of the insular cortex in female patients with current and remitted depression. Neuroscience. 2014;262:190–9.

    Google Scholar 

  • Logothetis NK. The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal. Philos Trans R Soc Lond Ser B Biol Sci. 2002;357(1424):1003–37.

    Google Scholar 

  • Lothe A, Saoud M, Bouvard S, Redoute J, Lerond J, Ryvlin P. 5-HT(1A) receptor binding changes in patients with major depressive disorder before and after antidepressant treatment: a pilot [(1)(8)F]MPPF positron emission tomography study. Psychiatry Res. 2012;203(1):103–4.

    Google Scholar 

  • MacDonald AW, Cohen JD, Stenger VA, Carter CS. Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science. 2000;288(5472):1835–8.

    Google Scholar 

  • Machino A, Kunisato Y, Matsumoto T, Yoshimura S, Ueda K, Yamawaki Y, Okada G, Okamoto Y, Yamawaki S. Possible involvement of rumination in gray matter abnormalities in persistent symptoms of major depression: an exploratory magnetic resonance imaging voxel-based morphometry study. J Affect Disord. 2014;168:229–35.

    Google Scholar 

  • MacQueen GM, Campbell S, McEwen BS, Macdonald K, Amano S, Joffe RT, Nahmias C, Young LT. Course of illness, hippocampal function, and hippocampal volume in major depression. Proc Natl Acad Sci U S A. 2003;100(3):1387–92.

    Google Scholar 

  • Malykhin NV, Coupland NJ. Hippocampal neuroplasticity in major depressive disorder. Neuroscience. 2015;309:200–13.

    Google Scholar 

  • Manoliu A, Meng C, Brandl F, Doll A, Tahmasian M, Scherr M, Schwerthoffer D, Zimmer C, Forstl H, Bauml J, Riedl V, Wohlschlager AM, Sorg C. Insular dysfunction within the salience network is associated with severity of symptoms and aberrant inter-network connectivity in major depressive disorder. Front Hum Neurosci. 2013;7:930.

    Google Scholar 

  • Meyer JH, Kruger S, Wilson AA, Christensen BK, Goulding VS, Schaffer A, Minifie C, Houle S, Hussey D, Kennedy SH. Lower dopamine transporter binding potential in striatum during depression. Neuroreport. 2001;12(18):4121–5.

    Google Scholar 

  • Milak MS, Parsey RV, Lee L, Oquendo MA, Olvet DM, Eipper F, Malone K, Mann JJ. Pretreatment regional brain glucose uptake in the midbrain on PET may predict remission from a major depressive episode after three months of treatment. Psychiatry Res. 2009;173(1):63–70.

    Google Scholar 

  • Miller JM, Hesselgrave N, Ogden RT, Zanderigo F, Oquendo MA, Mann JJ, Parsey RV. Brain serotonin 1A receptor binding as a predictor of treatment outcome in major depressive disorder. Biol Psychiatry. 2013;74(10):760–7.

    Google Scholar 

  • Mori S, Zhang J. Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron. 2006;51(5):527–39.

    Google Scholar 

  • Mulders PC, van Eijndhoven PF, Schene AH, Beckmann CF, Tendolkar I. Resting-state functional connectivity in major depressive disorder: a review. Neurosci Biobehav Rev. 2015;56:330–44.

    Google Scholar 

  • Newberg AB, Amsterdam JD, Wintering N, Ploessl K, Swanson RL, Shults J, Alavi A. 123I-ADAM binding to serotonin transporters in patients with major depression and healthy controls: a preliminary study. J Nucl Med. 2005;46(6):973–7.

    Google Scholar 

  • Newberg AB, Amsterdam JD, Wintering N, Shults J. Low brain serotonin transporter binding in major depressive disorder. Psychiatry Res. 2012;202(2):161–7.

    Google Scholar 

  • Nutt DJ. The role of dopamine and norepinephrine in depression and antidepressant treatment. J Clin Psychiatry. 2006;67(Suppl 6):3–8.

    Google Scholar 

  • Ota M, Noda T, Sato N, Hattori K, Hori H, Sasayama D, Teraishi T, Nagashima A, Obu S, Higuchi T, Kunugi H. White matter abnormalities in major depressive disorder with melancholic and atypical features: a diffusion tensor imaging study. Psychiatry Clin Neurosci. 2015;69(6):360–8.

    Google Scholar 

  • Ozalay O, Aksoy B, Tunay S, Simsek F, Chandhoki S, Kitis O, Eker C, Gonul AS. Cortical thickness and VBM in young women at risk for familial depression and their depressed mothers with positive family history. Psychiatry Res. 2016;252:1–9.

    Google Scholar 

  • Parsey RV, Oquendo MA, Ogden RT, Olvet DM, Simpson N, Huang YY, Van Heertum RL, Arango V, Mann JJ. Altered serotonin 1A binding in major depression: a [carbonyl-C-11]WAY100635 positron emission tomography study. Biol Psychiatry. 2006;59(2):106–13.

    Google Scholar 

  • Phelps ME. PET: the merging of biology and imaging into molecular imaging. J Nucl Med. 2000;41(4):661–81.

    Google Scholar 

  • Phillips ML, Drevets WC, Rauch SL, Lane R. Neurobiology of emotion perception I: the neural basis of normal emotion perception. Biol Psychiatry. 2003;54(5):504–14.

    Google Scholar 

  • Politis M, Piccini P. Positron emission tomography imaging in neurological disorders. J Neurol. 2012;259(9):1769–80.

    Google Scholar 

  • Posner J, Hellerstein DJ, Gat I, Mechling A, Klahr K, Wang Z, McGrath PJ, Stewart JW, Peterson BS. Antidepressants normalize the default mode network in patients with dysthymia. JAMA Psychiat. 2013;70(4):373–82.

    Google Scholar 

  • Price JL, Drevets WC. Neurocircuitry of mood disorders. Neuropsychopharmacology. 2010;35(1):192–216.

    Google Scholar 

  • Reimold M, Batra A, Knobel A, Smolka MN, Zimmer A, Mann K, Solbach C, Reischl G, Schwarzler F, Grunder G, Machulla HJ, Bares R, Heinz A. Anxiety is associated with reduced central serotonin transporter availability in unmedicated patients with unipolar major depression: a [11C]DASB PET study. Mol Psychiatry. 2008;13(6):606–613.

    Google Scholar 

  • Roffman JL, Witte JM, Tanner AS, Ghaznavi S, Abernethy RS, Crain LD, Giulino PU, Lable I, Levy RA, Dougherty DD, Evans KC, Fava M. Neural predictors of successful brief psychodynamic psychotherapy for persistent depression. Psychother Psychosom. 2014;83(6):364–70.

    Google Scholar 

  • Rogers MA, Kasai K, Koji M, Fukuda R, Iwanami A, Nakagome K, Fukuda M, Kato N. Executive and prefrontal dysfunction in unipolar depression: a review of neuropsychological and imaging evidence. Neurosci Res. 2004;50(1):1–11.

    Google Scholar 

  • Saricicek A, Esterlis I, Maloney KH, Mineur YS, Ruf BM, Muralidharan A, Chen JI, Cosgrove KP, Kerestes R, Ghose S, Tamminga CA, Pittman B, Bois F, Tamagnan G, Seibyl J, Picciotto MR, Staley JK, Bhagwagar Z. Persistent beta2*-nicotinic acetylcholinergic receptor dysfunction in major depressive disorder. Am J Psychiatry. 2012;169(8):851–9.

    Google Scholar 

  • Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, Reiss AL, Greicius MD. Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci. 2007;27(9):2349–56.

    Google Scholar 

  • Selvaraj S, Murthy NV, Bhagwagar Z, Bose SK, Hinz R, Grasby PM, Cowen PJ. Diminished brain 5-HT transporter binding in major depression: a positron emission tomography study with [11C]DASB. Psychopharmacology. 2011;213(2–3):555–62.

    Google Scholar 

  • Sexton CE, Mackay CE, Ebmeier KP. A systematic review of diffusion tensor imaging studies in affective disorders. Biol Psychiatry. 2009;66(9):814–23.

    Google Scholar 

  • Sheline YI, Price JL, Yan Z, Mintun MA. Resting-state functional MRI in depression unmasks increased connectivity between networks via the dorsal nexus. Proc Natl Acad Sci U S A. 2010;107(24):11020–5.

    Google Scholar 

  • Sher E, Chen Y, Sharples TJ, Broad LM, Benedetti G, Zwart R, McPhie GI, Pearson KH, Baldwinson T, De Filippi G. Physiological roles of neuronal nicotinic receptor subtypes: new insights on the nicotinic modulation of neurotransmitter release, synaptic transmission and plasticity. Curr Top Med Chem. 2004;4(3):283–97.

    Google Scholar 

  • Smith SM, Vidaurre D, Beckmann CF, Glasser MF, Jenkinson M, Miller KL, Nichols TE, Robinson EC, Salimi-Khorshidi G, Woolrich MW, Barch DM, Ugurbil K, Van Essen DC. Functional connectomics from resting-state fMRI. Trends Cogn Sci. 2013;17(12):666–82.

    Google Scholar 

  • Sokoloff L. Localization of functional activity in the central nervous system by measurement of glucose utilization with radioactive deoxyglucose. J Cereb Blood Flow Metab. 1981;1(1):7–36.

    Google Scholar 

  • Sokoloff L. Energetics of functional activation in neural tissues. Neurochem Res. 1999;24(2):321–9.

    Google Scholar 

  • Stephani C, Fernandez-Baca Vaca G, Maciunas R, Koubeissi M, Luders HO. Functional neuroanatomy of the insular lobe. Brain Struct Funct. 2011;216(2):137–49.

    Google Scholar 

  • Stratmann M, Konrad C, Kugel H, Krug A, Schoning S, Ohrmann P, Uhlmann C, Postert C, Suslow T, Heindel W, Arolt V, Kircher T, Dannlowski U. Insular and hippocampal gray matter volume reductions in patients with major depressive disorder. PLoS One. 2014;9(7):e102692.

    Google Scholar 

  • Su L, Cai Y, Xu Y, Dutt A, Shi S, Bramon E. Cerebral metabolism in major depressive disorder: a voxel-based meta-analysis of positron emission tomography studies. BMC Psychiatry. 2014;14:321.

    Google Scholar 

  • Sublette ME, Milak MS, Galfalvy HC, Oquendo MA, Malone KM, Mann JJ. Regional brain glucose uptake distinguishes suicide attempters from non-attempters in major depression. Arch Suicide Res. 2013;17(4):434–47.

    Google Scholar 

  • Sullivan GM, Oquendo MA, Milak M, Miller JM, Burke A, Ogden RT, Parsey RV, Mann JJ. Positron emission tomography quantification of serotonin(1A) receptor binding in suicide attempters with major depressive disorder. JAMA Psychiat. 2015;72(2):169–78.

    Google Scholar 

  • Turner AD, Furey ML, Drevets WC, Zarate C Jr, Nugent AC. Association between subcortical volumes and verbal memory in unmedicated depressed patients and healthy controls. Neuropsychologia. 2012;50(9):2348–55.

    Google Scholar 

  • Uddin LQ. Salience processing and insular cortical function and dysfunction. Nat Rev Neurosci. 2015;16(1):55–61.

    Google Scholar 

  • van den Heuvel MP, Mandl RC, Kahn RS, Hulshoff Pol HE. Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain. Hum Brain Mapp. 2009;30(10):3127–41.

    Google Scholar 

  • van der Knaap LJ, van der Ham IJ. How does the corpus callosum mediate interhemispheric transfer? A review. Behav Brain Res. 2011;223(1):211–21.

    Google Scholar 

  • Warner-Schmidt JL, Duman RS. Hippocampal neurogenesis: opposing effects of stress and antidepressant treatment. Hippocampus. 2006;16(3):239–49.

    Google Scholar 

  • Wise T, Radua J, Via E, Cardoner N, Abe O, Adams TM, Amico F, Cheng Y, Cole JH, de Azevedo Marques Perico C, Dickstein DP, Farrow TF, Frodl T, Wagner G, Gotlib IH, Gruber O, Ham BJ, Job DE, Kempton MJ, Kim MJ, Koolschijn PC, Malhi GS, Mataix-Cols D, McIntosh AM, Nugent AC, O’Brien JT, Pezzoli S, Phillips ML, Sachdev PS, Salvadore G, Selvaraj S, Stanfield AC, Thomas AJ, van Tol MJ, van der Wee NJ, Veltman DJ, Young AH, Fu CH, Cleare AJ, Arnone D. Common and distinct patterns of grey-matter volume alteration in major depression and bipolar disorder: evidence from voxel-based meta-analysis. Mol Psychiatry. 2017;22(10):1455–63.

    Google Scholar 

  • Won E, Choi S, Kang J, Kim A, Han KM, Chang HS, Tae WS, Son KR, Joe SH, Lee MS, Ham BJ. Association between reduced white matter integrity in the corpus callosum and serotonin transporter gene DNA methylation in medication-naive patients with major depressive disorder. Transl Psychiatry. 2016;6(8):e866.

    Google Scholar 

  • Yang J, Yin Y, Svob C, Long J, He X, Zhang Y, Xu Z, Li L, Liu J, Dong J, Zhang Z, Wang Z, Yuan Y. Amygdala atrophy and its functional disconnection with the cortico-striatal-pallidal-thalamic circuit in major depressive disorder in females. PLoS One. 2017;12(1):e0168239.

    Google Scholar 

  • Yeh YW, Ho PS, Chen CY, Kuo SC, Liang CS, Ma KH, Shiue CY, Huang WS, Cheng CY, Wang TY, Lu RB, Huang SY. Incongruent reduction of serotonin transporter associated with suicide attempts in patients with major depressive disorder: a positron emission tomography study with 4-[18F]-ADAM. Int J Neuropsychopharmacol. 2015;18(3).

    Google Scholar 

  • Zalsman G, Weller A, Shbiro L, Barzilay R, Gutman A, Weizman A, Mann JJ, Wasserman J, Wasserman D. Fibre tract analysis using diffusion tensor imaging reveals aberrant connectivity in a rat model of depression. World J Biol Psychiatry. 2016:1–9.

    Google Scholar 

  • Zhang K, Zhu Y, Zhu Y, Wu S, Liu H, Zhang W, Xu C, Zhang H, Hayashi T, Tian M. Molecular, functional, and structural imaging of major depressive disorder. Neurosci Bull. 2016;32(3):273–85.

    Google Scholar 

  • Zoons E, Booij J, Nederveen AJ, Dijk JM, Tijssen MA. Structural, functional and molecular imaging of the brain in primary focal dystonia--a review. NeuroImage. 2011;56(3):1011–20.

    Google Scholar 

  • Zou K, Deng W, Li T, Zhang B, Jiang L, Huang C, Sun X, Sun X. Changes of brain morphometry in first-episode, drug-naive, non-late-life adult patients with major depression: an optimized voxel-based morphometry study. Biol Psychiatry. 2010;67(2):186–8.

    Google Scholar 

  • Zuo XN, Xing XX. Test-retest reliabilities of resting-state FMRI measurements in human brain functional connectomics: a systems neuroscience perspective. Neurosci Biobehav Rev. 2014;45:100–18.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei Tian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Zhang, K., Huang, J., Feng, J., Zhang, H., Tian, M. (2018). Structural, Functional, and Molecular Neuroimaging in Depression. In: Kim, YK. (eds) Understanding Depression . Springer, Singapore. https://doi.org/10.1007/978-981-10-6580-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6580-4_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6579-8

  • Online ISBN: 978-981-10-6580-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics