Antidepressant Therapy for Depression: An Update

Chapter

Abstract

Depression is a chronic and debilitating mental disorder that often remains undertreated. It could be due to unclear understanding of pathophysiology and/or inconsistent efficacy of current pharmacotherapy. Since the discovery of the first effective medications in the late 1950s, a variety of agents have been developed, which are mainly based on correction of monoamine deficit. However, over time, many different strategies have been determined in an effort to improve the efficacy and reduce the untoward effects of the therapeutic intervention. This chapter compiles the relative efficacy and plausible mechanism of antidepressant activity of most current therapeutic approaches targeting a wide range of molecular and cellular pathways, implicated in the pathogenesis of depression. Emerging knowledge of key pathogenic mechanisms, such as the impairment of non-monoaminergic neurotransmission, in addition to monoaminergic neurotransmission, hypothalamic-pituitary-adrenal axis hyperactivity, alteration in neurogenesis signaling pathways, enhanced brain oxidative stress, and inflammatory activity, has led to a host of new molecular drug targets. Several of these have been validated through the preliminary use of lead compounds and therapeutic agents in animals and humans.

Keywords

Antidepressants Neurotransmitter modulators CRF antagonists Antioxidants TNF-α inhibitors 

References

  1. Alkhouli M, Mathur M, Patil P. Revisiting the “cheese reaction”: more than just a hypertensive crisis. J Clin Psychopharmacol. 2014;34(5):665–7.PubMedGoogle Scholar
  2. Amr M, El-Mogy A, Shams T, Vieira K, Lakhan SE. Efficacy of vitamin C as an adjunct to fluoxetine therapy in pediatric major depressive disorder: a randomized, double-blind, placebo-controlled pilot study. Nutr J. 2013;12(1):1–8.Google Scholar
  3. Artigas F. Serotonin receptors involved in antidepressant effects. Pharmacol Ther. 2013;137(1):119–31.PubMedGoogle Scholar
  4. Behr GA, Moreira JC, Frey BN. Preclinical and clinical evidence of antioxidant effects of antidepressant agents: implications for the pathophysiology of major depressive disorder. Oxid Med Cell Longev. 2012;2012:609421.PubMedPubMedCentralGoogle Scholar
  5. Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS, Krystal JH. Antidepressant effects of ketamine in depressed patients. Biol Psychiatry. 2000;47(4):351–4.PubMedGoogle Scholar
  6. Berman RM, Fava M, Thase ME, Trivedi MH, Swanink R, McQuade RD, Carson WH, Adson D, Taylor L, Hazel J, Marcus RN. Aripiprazole augmentation in major depressive disorder: a double-blind, placebo-controlled study in patients with inadequate response to antidepressants. CNS Spectr. 2009;14(4):197–206.PubMedGoogle Scholar
  7. Bétry C, Overstreet D, Haddjeri N, Pehrson AL, Bundgaard C, Sanchez C, Mørk A. A 5-HT 3 receptor antagonist potentiates the behavioral, neurochemical and electrophysiological actions of an SSRI antidepressant. Pharmacol Biochem Behav. 2015;131:136–42.PubMedGoogle Scholar
  8. Bhatt S, Mahesh R, Jindal A, Devadoss T. Protective effects of a novel 5-HT 3 receptor antagonist, N-n-butyl-3-methoxy quinoxaline-2-carboxamide (6o) against chronic unpredictable mild stress-induced behavioral changes and biochemical alterations. Pharmacol Biochem Behav. 2014;122:234–9.PubMedGoogle Scholar
  9. Bilici M, Efe H, Koroglu MA, Uydu HA, Bekaroglu M, Deger O. Antioxidative enzyme activities and lipid peroxidation in major depression: alterations by antidepressant treatments. J Affect Disord. 2001;64(1):43–51.PubMedGoogle Scholar
  10. Binneman B, Feltner D, Kolluri S, Shi Y, Qiu R, Stiger T. A 6-week randomized, placebo-controlled trial of CP-316,311 (a selective CRH 1 antagonist) in the treatment of major depression. Am J Psychiatry. 2008;165(5):617–20.PubMedGoogle Scholar
  11. Blendy JA. The role of CREB in depression and antidepressant treatment. Biol Psychiatry. 2006;59(12):1144–50.PubMedGoogle Scholar
  12. Borsini F. Role of the serotonergic system in the forced swimming test. Neurosci Biobehav Rev. 1995;19(3):377–95.PubMedGoogle Scholar
  13. Bouayed J. Polyphenols: a potential new strategy for the prevention and treatment of anxiety and depression. Curr Nutr Food Sci. 2010;6(1):13–8.Google Scholar
  14. Bravo G, Maswood S. Acute treatment with 5-HT3 receptor antagonist, tropisetron, reduces immobility in intact female rats exposed to the forced swim test. Pharmacol Biochem Behav. 2006;85:362–8.PubMedGoogle Scholar
  15. Brennan BP, Hudson JI, Jensen JE, McCarthy J, Roberts JL, Prescot AP, Cohen BM, Pope HG Jr, Renshaw PF, Ongur D. Rapid enhancement of glutamatergic neurotransmission in bipolar depression following treatment with riluzole. Neuropsychopharmacology. 2010;35(3):834–46.PubMedGoogle Scholar
  16. Carr GV, Schechter LE, Lucki I. Antidepressant and anxiolytic effects of selective 5-HT6 receptor agonists in rats. Psychopharmacology (Berl). 2011;213(2–3):499–507.Google Scholar
  17. Cassano P, Fava M. Tolerability issues during long-term treatment with antidepressants. Ann Clin Psychiatry. 2004;16(1):15–25.PubMedGoogle Scholar
  18. Cryan JF, Mombereau C, Vassout A. The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice. Neurosci Biobehav Rev. 2005;29(4):571–625.PubMedGoogle Scholar
  19. de Sousa CNS, Meneses LN, Vasconcelos GS, Silva MCC, da Silva JC, Macêdo D, de Lucena DF, Vasconcelos SMM. Reversal of corticosterone-induced BDNF alterations by the natural antioxidant alpha-lipoic acid alone and combined with desvenlafaxine: emphasis on the neurotrophic hypothesis of depression. Psychiatry Res. 2015;230(2):211–9.PubMedGoogle Scholar
  20. Delgado PL. Depression: the case for a monoamine deficiency. J Clin Psychiatry. 2000;61(Suppl 6):7–11.PubMedPubMedCentralGoogle Scholar
  21. Devadoss T, Pandey DK, Mahesh R, Yadav SK. Effect of acute and chronic treatment with QCF-3 (4-benzylpiperazin-1-yl)(quinoxalin-2-yl) methanone, a novel 5-HT (3) receptor antagonist, in animal models of depression. Pharmacol Rep. 2010;62(2):245–57.PubMedGoogle Scholar
  22. Diazgranados N, Ibrahim L, Brutsche NE, Newberg A, Kronstein P, Khalife S, Kammerer WA, Quezado Z, Luckenbaugh DA, Salvadore G, Machado-Vieira R, Manji HK, Zarate CA. A randomized add-on trial of an N-methyl-D-aspartate antagonist in treatment-resistant bipolar depression. Arch Gen Psychiatry. 2010;67(8):793–802.PubMedPubMedCentralGoogle Scholar
  23. Dukat M, Alix K, Worsham J, Khatri S, Schulte MK. 2-amino-6-chloro-3,4-dihydroquinazoline: a novel 5-HT receptor antagonist with antidepressant character. Bioorg Med Chem Lett. 2013;23(21):5945–8.PubMedGoogle Scholar
  24. Duman RS, Malberg J, Nakagawa S, D’Sa C. Neuronal plasticity and survival in mood disorders. Biol Psychiatry. 2000;48(8):732–9.PubMedGoogle Scholar
  25. Duman RS, Voleti B. Signaling pathways underlying the pathophysiology and treatment of depression: novel mechanisms for rapid-acting agents. Trends Neurosci. 2012;35(1):47–56.PubMedPubMedCentralGoogle Scholar
  26. Edwards JG, Anderson I. Systematic review and guide to selection of selective serotonin reuptake inhibitors. Drugs. 1999;57(4):507–33.PubMedGoogle Scholar
  27. Faris PL, Kim SW, Meller WH, Goodale RL, Oakman SA, Hofbauer RD, Marshall AM, Daughters RS, Banerjee-Stevens D, Eckert ED, Hartman BK. Effect of decreasing afferent vagal activity with ondansetron on symptoms of bulimia nervosa: a randomised, double-blind trial. Lancet. 2000;355(9206):792–7.PubMedGoogle Scholar
  28. Faure C, Mnie-Filali O, Scarna H, Debonnel G, Haddjeri N. Effects of the 5-HT7 receptor antagonist SB-269970 on rat hormonal and temperature responses to the 5-HT1A/7 receptor agonist 8-OH-DPAT. Neurosci Lett. 2006;404(1):122–6.PubMedGoogle Scholar
  29. Fava M, McCall WV, Krystal A, Wessel T, Rubens R, Caron J, Amato D, Roth T. Eszopiclone co-administered with fluoxetine in patients with insomnia coexisting with major depressive disorder. Biol Psychiatry. 2006;59(11):1052–60.PubMedGoogle Scholar
  30. Frye MA, Tsai GE, Huggins T, Coyle JT, Post RM. Low cerebrospinal fluid glutamate and glycine in refractory affective disorder. Biol Psychiatry. 2007;61(2):162–6.PubMedGoogle Scholar
  31. Gautam BK, Jindal A, Dhar AK, Mahesh R. Antidepressant-like activity of 2-(4-phenylpiperazin-1-yl)-1, 8-naphthyridine-3-carboxylic acid (7a), a 5-HT 3 receptor antagonist in behaviour based rodent models: evidence for the involvement of serotonergic system. Pharmacol Biochem Behav. 2013;109:91–7.PubMedGoogle Scholar
  32. Gertsik L, Poland RE, Bresee C, Rapaport MH. Omega-3 fatty acid augmentation of citalopram treatment for patients with major depressive disorder. J Clin Psychopharmacol. 2012;32(1):61–4.PubMedPubMedCentralGoogle Scholar
  33. Gómez-Lázaro E, Garmendia L, Beitia G, Perez-Tejada J, Azpiroz A, Arregi A. Effects of a putative antidepressant with a rapid onset of action in defeated mice with different coping strategies. Prog Neuropsychopharmacol Biol Psychiatry. 2012;38(2):317–27.PubMedGoogle Scholar
  34. Gray SL, Anderson ML, Dublin S, Hanlon JT, Hubbard R, Walker R, Yu O, Crane PK, Larson EB. Cumulative use of strong anticholinergics and incident dementia: a prospective cohort study. JAMA Intern Med. 2015;175(3):401–7.PubMedPubMedCentralGoogle Scholar
  35. Griebel G, Holsboer F. Neuropeptide receptor ligands as drugs for psychiatric diseases: the end of the beginning. Nat Rev Drug Discov. 2012;11(6):462–78.PubMedGoogle Scholar
  36. Guilloux JP, Mendez-David I, Pehrson A, Guiard BP, Repérant C, Orvoën S, Gardier AM, Hen R, Ebert B, Miller S, Sanchez C. Antidepressant and anxiolytic potential of the multimodal antidepressant vortioxetine (Lu AA21004) assessed by behavioral and neurogenesis outcomes in mice. Neuropharmacology. 2013;73:147–59.PubMedGoogle Scholar
  37. Gupta D, Radhakrishnan M, Kurhe Y. 5HT 3 receptor antagonist (ondansetron) reverses depressive behavior evoked by chronic unpredictable stress in mice: modulation of hypothalamic–pituitary–adrenocortical and brain serotonergic system. Pharmacol Biochem Behav. 2014a;124:129–36.PubMedGoogle Scholar
  38. Gupta D, Radhakrishnan M, Kurhe Y, Thangaraj D, Prabhakar V, Kanade P. Antidepressant-like effects of a novel 5-HT3 receptor antagonist 6z in acute and chronic murine models of depression. Acta Pharmacol Sin. 2014b;35:1493–503.PubMedPubMedCentralGoogle Scholar
  39. Gupta D, Radhakrishnan M, Thangaraj D, Kurhe Y. Antidepressant and anti-anxiety like effects of 4i (N-(3-chloro-2-methylphenyl) quinoxalin-2-carboxamide), a novel 5-HT 3 receptor antagonist in acute and chronic neurobehavioral rodent models. Eur J Pharmacol. 2014c;735(15):59–67.PubMedGoogle Scholar
  40. Gupta D, Radhakrishnan M, Kurhe Y. Effect of a novel 5-HT 3 receptor antagonist 4i, in corticosterone-induced depression-like behavior and oxidative stress in mice. Steroids. 2015;96:95–102.PubMedGoogle Scholar
  41. Gupta D, Prabhakar V, Radhakrishnan M. 5HT-3 receptors: target for new antidepressant drugs. Neurosci Biobehav Rev. 2016;64:311–25.PubMedGoogle Scholar
  42. Guscott M, Bristow LJ, Hadingham K, Rosahl TW, Beer MS, Stanton JA, Bromidge F, Owens AP, Huscroft I, Myers J, Rupniak NM, Patel S, Whiting PJ, Hutson PH, Fone KC, Biello SM, Kulagowski JJ, McAllister G. Genetic knockout and pharmacological blockade studies of the 5-HT7 receptor suggest therapeutic potential in depression. Neuropharmacology. 2005;48(4):492–502.PubMedGoogle Scholar
  43. Hanson ND, Owens MJ, Nemeroff CB. Depression, antidepressants, and neurogenesis: a critical reappraisal. Neuropsychopharmacology. 2011;36(13):2589–602.PubMedPubMedCentralGoogle Scholar
  44. Hashimoto K, Sawa A, Iyo M. Increased levels of glutamate in brains from patients with mood disorders. Biol Psychiatry. 2007;62(11):1310–6.PubMedGoogle Scholar
  45. Haus U, Varga B, Stratz T, Späth M, Müller W. Oral treatment of fibromyalgia with tropisetron given over 28 days: influence on functional and vegetative symptoms, psychometric parameters and pain. Scand J Rheumatol. 2000;29(113):55–8.Google Scholar
  46. Hedlund PB, Sutcliffe JG. Functional, molecular and pharmacological advances in 5-HT7 receptor research. Trends Pharmacol Sci. 2004;25(9):481–6.PubMedGoogle Scholar
  47. Hedlund PB, Huitron-Resendiz S, Henriksen SJ, Sutcliffe JG. 5-HT7 receptor inhibition and inactivation induce antidepressant like behavior and sleep pattern. Biol Psychiatry. 2005;58(10):831–7.PubMedGoogle Scholar
  48. Herken H, Gurel A, Selek S, Armutcu F, Ozen ME, Bulut M, Akyol O. Adenosine deaminase, nitric oxide, superoxide dismutase, and xanthine oxidase in patients with major depression: impact of antidepressant treatment. Arch Med Res. 2007;38(2):247–52.PubMedGoogle Scholar
  49. Hillhouse TM, Porter JH. A brief history of the development of antidepressant drugs: from monoamines to glutamate. Exp Clin Psychopharmacol. 2015;23(1):1–21.PubMedPubMedCentralGoogle Scholar
  50. Hindmarch I. Beyond the monoamine hypothesis: mechanisms, molecules and methods. Eur Psychiatry. 2002;17(3):294–9.PubMedGoogle Scholar
  51. Hirschfeld RMA. History and evolution of the monoamine hypothesis depression. J Clin Psychiatry. 2000;61(Suppl 6):4–6.PubMedGoogle Scholar
  52. Holsboer F. Stress, hypercortisolism and corticosteroid receptors in depression: implications for therapy. J Affect Disord. 2001;62(1):77–91.PubMedGoogle Scholar
  53. Jastrzębska-Więsek M, Siwek A, Partyka A, Antkiewicz-Michaluk L, Michaluk J, Romańska I, Wesołowska A. Study of a mechanism responsible for potential antidepressant activity of EMD 386088, a 5-HT6 partial agonist in rats. Naunyn Schmiedebergs Arch Pharmacol. 2016;389(8):1–11.Google Scholar
  54. Johnson BA, Ait-Daoud N, Ma JZ, Wang Y. Ondansetron reduces mood disturbance among biologically predisposed, alcohol-dependent individuals. Alcohol Clin Exp Res. 2003;27(11):1773–9.PubMedGoogle Scholar
  55. Kaplan EM. Efficacy of venlafaxine in patients with major depressive disorder who have unsustained or no response to selective serotonin reuptake inhibitors: an open-label, uncontrolled study. Clin Ther. 2002;24(7):1194–200.PubMedGoogle Scholar
  56. Karson A, Demirtaş T, Bayramgürler D, Balcı F, Utkan T. Chronic administration of infliximab (TNF-α inhibitor) decreases depression and anxiety-like behaviour in rat model of chronic mild stress. Basic Clin Pharmacol Toxicol. 2013;112(5):335–40.PubMedGoogle Scholar
  57. Kessler RC, Petukhova M, Sampson NA, Zaslavsky AM, Wittchen HU. Twelve-month and lifetime prevalence and lifetime morbid risk of anxiety and mood disorders in the United States. Int J Methods Psychiatr Res. 2012;21(3):169–84.PubMedPubMedCentralGoogle Scholar
  58. Köhler O, Benros ME, Nordentoft M, Farkouh ME, Iyengar RL, Mors O, Krogh J. Effect of anti-inflammatory treatment on depression, depressive symptoms, and adverse effects: a systematic review and meta-analysis of randomized clinical trials. JAMA Psychiat. 2014;71(12):1381–91.Google Scholar
  59. Kordjazy N, et al. Involvement of N-methyl-D-aspartate receptors in the antidepressant-like effect of 5-hydroxytryptamine 3 antagonists in mouse forced swimming test and tail suspension test. Pharmacol Biochem Behav. 2016;141:1–9.PubMedGoogle Scholar
  60. Kos T, Popik P, Pietraszek M, Schafer D, Danysz W, Dravolina O, Blokhina E, Galankin T, Bespalov AY. Effect of 5-HT3 receptor antagonist MDL 72222 on behaviors induced by ketamine in rats and mice. Eur Neuropsychopharmacol. 2006;16(4):297–310.PubMedGoogle Scholar
  61. Krishnan V, Nestler EJ. The molecular neurobiology of depression. Nature. 2008;455(7215):894–902.PubMedPubMedCentralGoogle Scholar
  62. Krügel U, Fischer J, Radicke S, Sack U, Himmerich H. Antidepressant effects of TNF-α blockade in an animal model of depression. J Psychiatr Res. 2013;47(5):611–6.PubMedGoogle Scholar
  63. Krystal JH, Sanacora G, Blumberg H, Anand A, Charney DS, Marek G, Epperson CH, Goddard A, Mason GF. Glutamate and GABA systems as targets for novel antidepressant and mood-stabilizing treatments. Mol Psychiatry. 2002;7:S71–80.PubMedPubMedCentralGoogle Scholar
  64. Kurhe Y, Radhakrishnan M, Gupta D, Devadoss T. QCM-4 a novel 5-HT3 antagonist attenuates the behavioral and biochemical alterations on chronic unpredictable mild stress model of depression in Swiss albino mice. J Pharm Pharmacol. 2014;66(1):122–32.PubMedGoogle Scholar
  65. Lacroix LP, Dawson LA, Hagan JJ, Heidbreder CA. 5-HT6 receptor antagonist SB-271046 enhances extracellular levels of monoamines in the rat medial prefrontal cortex. Synapse. 2004;51(2):158–64.PubMedGoogle Scholar
  66. Lan MJ, McLoughlin GA, Griffin JL, Tsang TM, Huang JT, Yuan P, Manji H, Holmes E, Bahn S. Metabonomic analysis identifies molecular changes associated with the pathophysiology and drug treatment of bipolar disorder. Mol Psychiatry. 2009;14(3):269–79.PubMedGoogle Scholar
  67. Lanfumey L, Mongeau R, Cohen-Salmon C, Hamon M. Corticosteroid–serotonin interactions in the neurobiological mechanisms of stress-related disorders. Neurosci Biobehav Rev. 2008;32(6):1174–84.PubMedGoogle Scholar
  68. Leonard BE. Impact of inflammation on neurotransmitter changes in major depression: an insight into the action of antidepressants. Prog Neuropsychopharmacol Biol Psychiatry. 2014;48:261–7.PubMedGoogle Scholar
  69. Li Z, Huang M, Prus AJ, Dai J, Meltzer HY. 5-HT 6 receptor antagonist SB-399885 potentiates haloperidol and risperidone-induced dopamine efflux in the medial prefrontal cortex or hippocampus. Brain Res. 2007;1134(1):70–8.PubMedGoogle Scholar
  70. Licht CL, Knudsen GM, Sharp T. Effects of the 5-HT 4 receptor agonist RS67333 and paroxetine on hippocampal extracellular 5-HT levels. Neurosci Lett. 2010;476(2):58–61.PubMedGoogle Scholar
  71. Loebel A, Cucchiaro J, Silva R, Kroger H, Hsu J, Sarma K, Sachs G. Lurasidone monotherapy in the treatment of bipolar I depression: a randomized, double-blind, placebo-controlled study. Am J Psychiatry. 2014;171(2):160–8.PubMedGoogle Scholar
  72. Lucas G, Rymar VV, Du J, Mnie-Filali O, Bisgaard C, Manta S, Lambas-Senas L, Wiborg O, Haddjeri N, Piñeyro G, Sadikot AF. Serotonin 4 (5-HT 4) receptor agonists are putative antidepressants with a rapid onset of action. Neuron. 2007;55(5):712–25.PubMedGoogle Scholar
  73. Maas DW, Westendorp RG, Willems JM, de Craen AJ, van der Mast RC. TNF-antagonist infliximab in the treatment of depression in older adults: results of a prematurely ended, randomized, placebo-controlled trial. J Clin Psychopharmacol. 2010;30(3):343–5.PubMedGoogle Scholar
  74. Manosso LM, Neis VB, Moretti M, Daufenbach JF, Freitas AE, Colla AR, Rodrigues ALS. Antidepressant-like effect of α-tocopherol in a mouse model of depressive-like behavior induced by TNF-α. Prog Neuropsychopharmacol Biol Psychiatry. 2013;46:48–57.PubMedGoogle Scholar
  75. Martin KF, Hannon S, Phillips I, Heal DJ. Opposing roles for 5-HT1B and 5-HT3 receptors in the control of 5-HT release in rat hippocampus in vivo. Br J Pharmacol. 1992;106(1):139–42.PubMedPubMedCentralGoogle Scholar
  76. Mendlewicz J, Kriwin P, Oswald P, Souery D, Alboni S, Brunello N. Shortened onset of action of antidepressants in major depression using acetylsalicylic acid augmentation: a pilot open-label study. Int Clin Psychopharmacol. 2006;21(4):227–31.PubMedGoogle Scholar
  77. Michael-Titus AT, Bains S, Jeetle J, Whelpton R. Imipramine and phenelzine decrease glutamate overflow in the prefrontal cortex--a possible mechanism of neuroprotection in major depression. Neuroscience. 2000;100(4):681–4.PubMedGoogle Scholar
  78. Michel TM, Frangou S, Thiemeyer D, Camara S, Jecel J, Nara K, Brunklaus A, Zoechling R, Riederer P. Evidence for oxidative stress in the frontal cortex in patients with recurrent depressive disorder—a postmortem study. Psychiatry Res. 2007;151(1):145–50.PubMedGoogle Scholar
  79. Montgomery SA. Dopaminergic deficit and the role of amisulpride in the treatment of mood disorders. Int Clin Psychopharmacol. 2002;17(Suppl 4):S9–S17.Google Scholar
  80. Moretti M, Budni J, Freitas AE, Neis VB, Ribeiro CM, de Oliveira Balen G, Rieger DK, Leal RB, Rodrigues ALS. TNF-α-induced depressive-like phenotype and p38 MAPK activation are abolished by ascorbic acid treatment. Eur Neuropsychopharmacol. 2015;25(6):902–12.PubMedGoogle Scholar
  81. Mork A, Pehrson A, Tottrup BL, Moller NS, Zhong H, Lassen AB, Miller S, Westrich L, Boyle NJ, Sanchez C, Fischer CW. Pharmacological effects of Lu AA21004: a novel multimodal compound for the treatment of major depressive disorder. J Pharmacol Exp Ther. 2012;340(3):666–75.PubMedGoogle Scholar
  82. Musazzi L, Milanese M, Farisello P, Zappettini S, Tardito D, Barbiero VS, Bonifacino T, Mallei A, Baldelli P, Racagni G, Raiteri M, Benfenati F, Bonanno G, Popoli M. Acute stress increases depolarization-evoked glutamate release in the rat prefrontal/frontal cortex: the dampening action of antidepressants. PLoS One. 2010;5(1):e8566.PubMedPubMedCentralGoogle Scholar
  83. Na KS, Lee KJ, Lee JS, Cho YS, Jung HY. Efficacy of adjunctive celecoxib treatment for patients with major depressive disorder: a meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry. 2014;48:79–85.PubMedGoogle Scholar
  84. Nikisch G, Mathé AA, Czernik A, Thiele J, Bohner J, Eap CB, Ågren H, Baumann P. Long-term citalopram administration reduces responsiveness of HPA axis in patients with major depression: relationship with S-citalopram concentrations in plasma and cerebrospinal fluid (CSF) and clinical response. Psychopharmacology (Berl). 2005;181(4):751–60.Google Scholar
  85. Papakostas GI, Thase ME, Fava M, Nelson JC, Shelton RC. Are antidepressant drugs that combine serotonergic and noradrenergic mechanisms of action more effective than the selective serotonin reuptake inhibitors in treating major depressive disorder? A meta-analysis of studies of newer agents. Biol Psychiatry. 2007;62(11):1217–27.PubMedGoogle Scholar
  86. Pariante CM, Lightman SL. The HPA axis in major depression: classical theories and new developments. Trends Neurosci. 2008;31(9):464–8.PubMedPubMedCentralGoogle Scholar
  87. Pascual-Brazo J, Castro E, Díaz Á, Valdizán EM, Pilar-Cuéllar F, Vidal R, Treceño B, Pazos Á. Modulation of neuroplasticity pathways and antidepressant-like behavioural responses following the short-term (3 and 7 days) administration of the 5-HT4 receptor agonist RS67333. Int J Neuropsychopharmacol. 2012;15(5):631–43.PubMedGoogle Scholar
  88. Penninx BW, Kritchevsky SB, Yaffe K, Newman AB, Simonsick EM, Rubin S, Ferrucci L, Harris T, Pahor M. Inflammatory markers and depressed mood in older persons: results from the health, aging and body composition study. Biol Psychiatry. 2003;54(5):566–72.PubMedGoogle Scholar
  89. Philip NS, Carpenter LL, Tyrka AR, Whiteley LB, Price LH. Varenicline augmentation in depressed smokers: an 8-week, open-label study. J Clin Psychiatry. 2009;70(7):1026–31.PubMedPubMedCentralGoogle Scholar
  90. Piche T, Vanbiervliet G, Cherikh F, Antoun Z, Huet PM, Gelsi E, Demarquay JF, Caroli-Bosc FX, Benzaken S, Rigault MC, Renou C. Effect of ondansetron, a 5-HT3 receptor antagonist, on fatigue in chronic hepatitis C: a randomised, double blind, placebo controlled study. Gut. 2005;54(8):1169–73.PubMedPubMedCentralGoogle Scholar
  91. Puig MV, Gulledge AT. Serotonin and prefrontal cortex function: neurons, networks, and circuits. Mol Neurobiol. 2011;44(3):449–64.PubMedPubMedCentralGoogle Scholar
  92. Puig MV, Santana N, Celada P, Mengod G, Artigas F. In vivo excitation of GABA interneurons in the medial prefrontal cortex through 5-HT3 receptors. Cereb Cortex. 2004;14(12):1365–75.PubMedGoogle Scholar
  93. Quiroz JA, Manji HK. Enhancing synaptic plasticity and cellular resilience to develop novel, improved treatments for mood disorders. Dialogues Clin Neurosci. 2002;4(1):73–92.PubMedPubMedCentralGoogle Scholar
  94. Raison CL, Rutherford RE, Woolwine BJ, Shuo C, Schettler P, Drake DF, Haroon E, Miller AH. A randomized controlled trial of the tumor necrosis factor antagonist infliximab for treatment-resistant depression: the role of baseline inflammatory biomarkers. JAMA Psychiat. 2013;70(1):31–41.Google Scholar
  95. Rajkumar R, Mahesh R. The auspicious role of the 5-HT3 receptor in depression: a probable neuronal target. J Psychopharmacol. 2010;24(4):455–69.PubMedGoogle Scholar
  96. Ramamoorthy R, Radhakrishnan M, Borah M. Antidepressant-like effects of serotonin type-3 antagonist, ondansetron: an investigation in behaviour-based rodent models. Behav Pharmacol. 2008;19(1):29–40.PubMedGoogle Scholar
  97. Reznikov LR, Grillo CA, Piroli GG, Pasumarthi RK, Reagan LP, Fadel J. Acute stress-mediated increases in extracellular glutamate levels in the rat amygdala: differential effects of antidepressant treatment. Eur J Neurosci. 2007;25(10):3109–14.PubMedGoogle Scholar
  98. Rosel P, Arranz BEN, Urretavizcaya M, Oros M, San L, Navarro MA. Altered 5-HT2A and 5-HT4 postsynaptic receptors and their intracellular signalling systems IP3 and cAMP in brains from depressed violent suicide victims. Neuropsychobiology. 2004;49(4):189–95.PubMedGoogle Scholar
  99. Ruhé HG, Huyser J, Swinkels JA, Schene AH. Switching antidepressants after a first selective serotonin reuptake inhibitor in major depressive disorder: a systematic review. J Clin Psychiatry. 2006;67(12):1836–55.PubMedGoogle Scholar
  100. Sands SA, Reisman SA, Enna SJ. Effect of antidepressants on GABA B receptor function and subunit expression in rat hippocampus. Biochem Pharmacol. 2004;68(8):1489–95.PubMedGoogle Scholar
  101. Scapagnini G, Davinelli S, Drago F, De Lorenzo A, Oriani G. Antioxidants as antidepressants. CNS Drugs. 2012;26(6):477–90.PubMedGoogle Scholar
  102. Schechter LE, Lin Q, Smith DL, Zhang G, Shan Q, Platt B, Brandt MR, Dawson LA, Cole D, Bernotas R, Robichaud A. Neuropharmacological profile of novel and selective 5-HT6 receptor agonists: WAY-181187 and WAY-208466. Neuropsychopharmacology. 2008;33(6):1323–35.PubMedGoogle Scholar
  103. Schildkraut JJ. The catecholamine hypothesis of affective disorders: a review of supporting evidence. Am J Psychiatry. 1965;122(5):509–22.PubMedGoogle Scholar
  104. Shytle RD, Silver AA, Sheehan KH, Sheehan DV, Sanberg PR. Neuronal nicotinic receptor inhibition for treating mood disorders: preliminary controlled evidence with mecamylamine. Depress Anxiety. 2002;16(3):89–92.PubMedGoogle Scholar
  105. Slattery DA, Desrayaud S, Cryan JF. GABAB receptor antagonist-mediated antidepressant-like behavior is serotonin-dependent. J Pharmacol Exp Ther. 2005;312(1):290–6.PubMedGoogle Scholar
  106. Sleight AJ, Carolo C, Petit N, Zwingelstein C, Bourson A. Identification of 5-hydroxytryptamine7 receptor binding sites in rat hypothalamus: sensitivity to chronic antidepressant treatment. Mol Pharmacol. 1995;47(1):99–103.PubMedGoogle Scholar
  107. Snedecor SJ, Botteman MF, Schaefer K, Sarocco P, Barry N, Pickard AS. Economic outcomes of eszopiclone treatment in insomnia and comorbid major depressive disorder. J Ment Health Policy Econ. 2010;13(1):27–35.PubMedGoogle Scholar
  108. Stahl SM, Grady MM, Moret C, Briley M. SNRIs: their pharmacology, clinical efficacy, and tolerability in comparison with other classes of antidepressants. CNS Spectr. 2005;10(9):732–47.PubMedGoogle Scholar
  109. Stefanescu C, Ciobica A. The relevance of oxidative stress status in first episode and recurrent depression. J Affect Disord. 2012;143(1):34–8.PubMedGoogle Scholar
  110. Svenningsson P, Tzavara ET, Qi H, Carruthers R, Witkin JM, Nomikos GG, Greengard P. Biochemical and behavioral evidence for antidepressant-like effects of 5-HT6 receptor stimulation. J Neurosci. 2007;27(15):4201–9.PubMedGoogle Scholar
  111. Teng CT, Demetrio FN. Memantine may acutely improve cognition and have a mood stabilizing effect in treatment-resistant bipolar disorder. Rev Bras Psiquiatr. 2006;28(3):252–4.PubMedGoogle Scholar
  112. Thase ME, Sloan DM. Venlafaxine. In: Schatzberg AF, Nemeroff CB, editors. Essentials of clinical psychopharmacology. Arlington: American Psychiatric Association; 2006. p. 159–70.Google Scholar
  113. Thase ME, Haight BR, Richard N, Rockett CB, Mitton M, Modell JG, VanMeter S, Harriett AE, Wang Y. Remission rates following antidepressant therapy with bupropion or selective serotonin reuptake inhibitors: a meta-analysis of original data from 7 randomized controlled trials. J Clin Psychiatry. 2005;66(8):974–81.PubMedGoogle Scholar
  114. Thiebot MH, Martin P. Effects of benzodiazepines, 5-HT1A agonists and 5-HT3 antagonists in animal models sensitive to antidepressant drugs. In: Rodgers RJ, Cooper SJ, editors. 5-HT1A agonists, 5-HT3 antagonists and benzodiazepines: their comparative behavioural pharmacology. Chichester: Wiley; 1991. p. 159–94.Google Scholar
  115. Thomas DR, Melotto S, Massagrande M, Gribble AD, Jeffrey P, Stevens AJ, Deeks NJ, Eddershaw PJ, Fenwick SH, Riley G, Stean T, Scott CM, Hill MJ, Middlemiss DN, Hagan JJ, Price GW, Forbes IT. SB-656104-A, a novel selective 5-HT7 receptor antagonist, modulates REM sleep in rats. Br J Pharmacol. 2003;139(4):705–14.PubMedPubMedCentralGoogle Scholar
  116. Tobe EH. Mitochondrial dysfunction, oxidative stress, and major depressive disorder. Neuropsychiatr Dis Treat. 2013;9:567–73.PubMedPubMedCentralGoogle Scholar
  117. Valdez GR. CRF receptors as a potential target in the development of novel pharmacotherapies for depression. Curr Pharm Des. 2009;15(14):1587–94.PubMedGoogle Scholar
  118. Valentine GW, Mason GF, Gomez R, Fasula M, Watzl J, Pittman B, Krystal JH, Sanacora G. The antidepressant effect of ketamine is not associated with changes in occipital amino acid neurotransmitter content as measured by [(1)H]-MRS. Psychiatry Res. 2011;191(2):122–7.PubMedPubMedCentralGoogle Scholar
  119. Venna VR, Deplanque D, Allet C, Belarbi K, Hamdane M, Bordet R. PUFA induce antidepressant-like effects in parallel to structural and molecular changes in the hippocampus. Psychoneuroendocrinology. 2009;34(2):199–211.PubMedGoogle Scholar
  120. Weinberger JF, Raison CL, Rye DB, Montague AR, Woolwine BJ, Felger JC, Haroon E, Miller AH. Inhibition of tumor necrosis factor improves sleep continuity in patients with treatment resistant depression and high inflammation. Brain Behav Immun. 2015;47:193–200.PubMedGoogle Scholar
  121. Wesolowska A. Study into a possible mechanism responsible for the antidepressant-like activity of the selective 5-HT6 receptor antagonist SB-399885 in rats. Pharmacol Rep. 2007;59(6):664–71.PubMedGoogle Scholar
  122. Wesolowska A, Nikiforuk A. Effects of the brain-penetrant and selective 5-HT6 receptor antagonist SB-399885 in animal models of anxiety and depression. Neuropharmacology. 2007;52(5):1274–83.PubMedGoogle Scholar
  123. Wesolowska A, Nikiforuk A. The selective 5-HT(6) receptor antagonist SB-399885 enhances anti-immobility action of antidepressants in rats. Eur J Pharmacol. 2008;582(1):88–93.PubMedGoogle Scholar
  124. World Health Organization. World suicide prevention day. 2012. http://www.who.int/mediacentre/events/annual/world_suicide_prevention_day/en/.
  125. Xue R, Jin ZL, Chen HX, Yuan L, He XH, Zhang YP, Meng YG, Xu JP, Zheng JQ, Zhong BH, Li YF. Antidepressant-like effects of 071031B, a novel serotonin and norepinephrine reuptake inhibitor. Eur Neuropsychopharmacol. 2013;23(7):728–41.PubMedGoogle Scholar
  126. Zarate CA Jr, Singh JB, Carlson PJ, Brutsche NE, Ameli R, Luckenbaugh DA, Charney DS, Manji HK. A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry. 2006;63(8):856–64.PubMedGoogle Scholar
  127. Zhang QJ, Li LB, Niu XL, Liu J, Gui ZH, Feng JJ, Ali U, Hui YP, Wu ZH. The pyramidal neurons in the medial prefrontal cortex show decreased response to 5-hydroxytryptamine-3 receptor stimulation in a rodent model of Parkinson’s disease. Brain Res. 2011;1384:69–79.PubMedGoogle Scholar
  128. Zobel AW, Nickel T, Künzel HE, Ackl N, Sonntag A, Ising M, Holsboer F. Effects of the high-affinity corticotropin-releasing hormone receptor 1 antagonist R121919 in major depression: the first 20 patients treated. J Psychiatr Res. 2000;34(3):171–81.PubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of PharmacyBirla Institute of Technology and Science, (BITS)-PilaniPilaniIndia

Personalised recommendations