Skip to main content

Next Generation Sequencing Studies Guide the Design of Pyrrole-Imidazole Polyamides with Improved Binding Specificity by the Addition of β-Alanine

  • Chapter
  • First Online:
Advancing Development of Synthetic Gene Regulators

Part of the book series: Springer Theses ((Springer Theses))

  • 497 Accesses

Abstract

The identification of binding sites for small molecules in the genome space is important for various applications. Previously, we demonstrated rapid transcriptional activation by our small molecule SAHA-PIPs. However, it was not clear whether the strong biological effects exerted by SAHA-PIP were due to its binding specificity. Here, we used high-throughput sequencing (Bind-n-seq) to identify the binding specificity of SAHA-PIPs. Firstly sequence specificity bias was determined with SAHA-PIPs (3 and 4), which showed enhanced 6-bp sequence-specific binding compared with hairpin PIPs (1 and 2). This finding allowed us to investigate the role of β-alanine that links SAHA with PIP, which led to the design of ββ-PIPs (5 and 6). ββ-PIPs showed enhanced binding specificity. Overall, we demonstrated the importance of β-moieties for the binding specificity of PIPs, and the utilization of cost-effective high-throughput screening of these small molecules to the minor groove.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berdasco M, Esteller M (2010) Aberrant epigenetic landscape in cancer: how cellular identity goes awry. Dev Cell 19:698–711

    Article  CAS  Google Scholar 

  2. Wade WS, Mrksich M, Dervan PB (1992) Design of peptides that bind in the minor groove of DNA at 5′-(A, T)G(A, T)C(A, T)-3′ sequences by a dimeric side-by-side motif. J Am Chem Soc 114:8783–8794. doi:10.1021/ja00049a006

    Article  CAS  Google Scholar 

  3. Wemmer DE, Dervan PB (1997) Targeting the minor groove of DNA. Curr Opin Struct Biol 7:355–361. doi:10.1016/S0959-440X(97)80051-6

    Article  CAS  Google Scholar 

  4. Dervan PB, Edelson BS (2003) Recognition of the DNA minor groove by pyrrole-imidazole polyamides. Curr Opin Struct Biol 13:284–299

    Article  CAS  Google Scholar 

  5. Pelton JG, Wemmer DE (1989) Structural characterization of a 2:1 distamycin A.d(CGCAAATTGGC) complex by two-dimensional NMR. Proc Natl Acad Sci U S A 86:5723–5727. doi:10.1073/pnas.86.15.5723

    Article  CAS  Google Scholar 

  6. Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    Article  CAS  Google Scholar 

  7. Ohtsuki A, Kimura MT, Minoshima M et al (2009) Synthesis and properties of PI polyamide-SAHA conjugate. Tetrahedron Lett 50:7288–7292. doi:10.1016/j.tetlet.2009.10.034

    Article  CAS  Google Scholar 

  8. Pandian GN, Shinohara KI, Ohtsuki A et al (2011) Synthetic small molecules for epigenetic activation of pluripotency genes in mouse embryonic fibroblasts. ChemBioChem 12:2822–2828. doi:10.1002/cbic.201100597

    Article  CAS  Google Scholar 

  9. Pandian GN, Ohtsuki A, Bando T et al (2012) Development of programmable small DNA-binding molecules with epigenetic activity for induction of core pluripotency genes. Bioorg Med Chem 20:2656–2660. doi:10.1016/j.bmc.2012.02.032

    Article  CAS  Google Scholar 

  10. Pandian GN, Nakano Y, Sato S et al (2012) A synthetic small molecule for rapid induction of multiple pluripotency genes in mouse embryonic fibroblasts. Sci Rep 2:1–8. doi:10.1038/srep00544

    Article  Google Scholar 

  11. Pandian GN, Taniguchi J, Junetha S et al (2014) Distinct DNA-based epigenetic switches trigger transcriptional activation of silent genes in human dermal fibroblasts. Sci Rep 4:3843. doi:10.1038/srep03843

    Article  Google Scholar 

  12. Meier JL, Yu A, Korf I et al (2012) Guiding the design of synthetic DNA-binding molecules with massively parallel sequencing. J Am Chem Soc 134:17814–17822. doi:10.1021/ja308888c

    Article  CAS  Google Scholar 

  13. Kang JS, Meier JL, Dervan PB (2014) Design of sequence-specific DNA binding molecules for DNA methyltransferase inhibition. J Am Chem Soc 136:3687–3694. doi:10.1021/ja500211z

    Article  CAS  Google Scholar 

  14. Han L, Pandian GN, Junetha S et al (2013) A synthetic small molecule for targeted transcriptional activation of germ cell genes in a human somatic cell. Angew Chem Int Ed 52:13410–13413

    Article  CAS  Google Scholar 

  15. Zykovich A, Korf I, Segal DJ (2009) Bind-n-Seq: high-throughput analysis of in vitro protein-DNA interactions using massively parallel sequencing. Nucleic Acids Res 37:e151. doi:10.1093/nar/gkp802

    Article  Google Scholar 

  16. Bailey TL (2011) DREME: motif discovery in transcription factor ChIP-seq data. Bioinformatics 27:1653–1659. doi:10.1093/bioinformatics/btr261

    Article  CAS  Google Scholar 

  17. Workman CT, Yin Y, Corcoran DL et al (2005) enoLOGOS: a versatile web tool for energy normalized sequence logos. Nucleic Acids Res. doi:10.1093/nar/gki439

    Google Scholar 

  18. Morinaga H, Bando T, Takagaki T et al (2011) Cysteine cyclic pyrrole-imidazole polyamide for sequence-specific recognition in the DNA minor groove. J Am Chem Soc 133:18924–18930. doi:10.1021/ja207440p

    Article  CAS  Google Scholar 

  19. Minoshima M, Bando T, Sasaki S et al (2008) Pyrrole-imidazole hairpin polyamides with high affinity at 5′-CGCG-3′ DNA sequence; influence of cytosine methylation on binding. Nucleic Acids Res 36:2889–2894. doi:10.1093/nar/gkn116

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anandhakumar Chandran .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Chandran, A. (2018). Next Generation Sequencing Studies Guide the Design of Pyrrole-Imidazole Polyamides with Improved Binding Specificity by the Addition of β-Alanine. In: Advancing Development of Synthetic Gene Regulators. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-6547-7_2

Download citation

Publish with us

Policies and ethics