Skip to main content

EM Material Characterization Techniques

  • Chapter
  • First Online:
  • 693 Accesses

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSCE))

Abstract

It is technology that fixes the use of electromagnetic materials, but again it is science that infers the behaviour of the material. Material’s response towards electromagnetic fields is decided by the displacement of material’s free and bonded electrons by the electric fields in addition to the atomic moment’s orientation by magnetic fields.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Arjavalingam G, Pastol Y, Halbout JM, Kopcsay GV (1990) Broadband microwave measurements with transient radiation from optoelectronically pulsed antennas. IEEE Trans Microw Theory Tech 38(5):615–621

    Google Scholar 

  • Baker-Jarvis J, Vanzura EJ, Kissick WA (1990) Improved technique for determining complex permittivity with transmission/reflection method. IEEE Trans Microw Theory Tech 38(8):1096–1103

    Article  Google Scholar 

  • Baker-Jarvis J, Janezic MD, Grosvenor JH Jr, Geyer RG (1993) Transmission/reflection and short-circuit line method for measuring permittivity and permeability. National Institute of Standards and Technology, Technical Note 1355-R

    Google Scholar 

  • Boughriet A-H, Legrand C, Chapoton A (1997) Noniterative stable transmission/reflection method for low-loss material complex permittivity determination. IEEE Trans Microw Theory Tech 45:52–57

    Article  Google Scholar 

  • Boybay MS, Kim S, Ramahi OM (2010) Negative material characterization using microstrip line structure. In: Proceedings IEEE antennas and propagation society international symposium, pp 1–4, 11–17 July 2010

    Google Scholar 

  • Buell K, Sarabandi K (2002) A method for characterizing complex permittivity and permeability of metamaterials. In: Proceedings of IEEE antennas and propagation society international symposium, Texas, pp 408–411, 16–21 June 2002

    Google Scholar 

  • Carin L, Agi K, Kralj D, Leung KM, Garetz BA (1993) Characterization of layered dielectrics with short electromagnetic pulses. IEEE J Quantum Electron 29:2141–2144

    Article  Google Scholar 

  • Chalapat K, Sarvala K, Li J, Paraoanu GS (2009) Wideband reference-plane invariant method for measuring electromagnetic parameters of materials. IEEE Trans Microw Theory Tech 57:2257–2267

    Article  Google Scholar 

  • Chen H, Zhang J, Bai Y, luol Y, Ran L, Jiang Q (2006) A waveguide-based retrieval method for measuring complex permittivity and permeability tensors of metamaterials. Opt Express 14(26):12944–12949

    Google Scholar 

  • Chung JY, Sertel K, Volakis JL (2009) A non-invasive metamaterial characterization system using synthetic gaussian aperture. IEEE Trans Antennas Propag 57(7):2006–2013

    Article  Google Scholar 

  • Crowgey BR, Tang J, Rothwell EJ, Shanker B, Kempel LC (2015) A waveguide verification standard design procedure for themicrowave characterization of magnetic materials. Prog Electromagn Res 150:29–40

    Article  Google Scholar 

  • Cummer SA, Popa BI, Hand TH (2008) Q-Based design equations and loss limits for resonant metamaterials and experimental validation. IEEE Trans Antennas Propag 56(1)

    Google Scholar 

  • Damascos NJ, Mack RB, Maffet AL, Parmon W, Uslenghi PLE (1984) The inverse problem for biaxial materials. IEEE Trans Microw Theory Tech 32(4):400–405

    Article  Google Scholar 

  • Fenner RA, Rothwell EJ, Frasch LL (2012) A comprehensive analysis of free-space and guided-wave techniques for extracting the permeability and permittivity of materials using reflection-only measurements. Radio Sci 47(1):1004–1016

    Article  Google Scholar 

  • Gagnon N, Shaker J, Berini P, Roy L, Petosa A (2003) Material characterization using a quasi-optical measurement system. IEEE Trans Instrum Meas 52(2):333–336

    Google Scholar 

  • Ghodgaonkar DK, Varadan VV, Varadan VK (1990) Free-space measurement of complex permittivity and complex permeability of magnetic materials at microwave frequencies. IEEE Trans Instrum Meas 39(2):387–393

    Article  Google Scholar 

  • Gomez S, Chevalier A, Queffelec P (2011) Asymmetrical stripline based method for the electromagnetic characterization of metamaterials. In: Proceedings of progress in electromagnetics research symposium, PIERS, Morocco, pp 305–308, 20–23 Mar 2011

    Google Scholar 

  • Gomez S, Queffelec P, Chevalier A (2013) Metamaterials microwave measurement using an original adjustable height stripline. In: Proceedings of 7th international congress on advanced electromagnetic materials in microwaves and optics (Metamaterials), Bordeaux, France, pp 22–24, 16–21 Sept 2013

    Google Scholar 

  • Hasar UC (2008) Two novel amplitude-only methods for complex permittivity determination of medium- and low-loss materials. Meas Sci Tech 19:055706

    Article  Google Scholar 

  • Hasar UC, Westgate CR (2009) A broadband and stable method for unique complex permittivity determination of low-loss materials. IEEE Trans Microw Theory Tech 57:471–477

    Google Scholar 

  • Hrabar S, Benic L, Bartolic J (2006) Simple experimental determination of complex permittivity or complex permeability of SNG metamaterials. In: Proceedings of the 36th European microwave conference, pp 1395–1398, Sept 2006

    Google Scholar 

  • Liu X-X, Powell DA, Alu A (2011) Correcting the Fabry-Perot artifacts in metamaterial retrieval procedures. Phys Rev B 84:235106

    Google Scholar 

  • Lozano-Guerrero AJ, Clemente-Fernandez FJ, Monzo-Cabrera J, Pedreno-Molina JL, Diaz-Morcillo A (2010) Precise evaluation of coaxial to waveguide transitions by means of inverse technique. IEEE Trans Microw Theory Tech 58(1):229–235

    Article  Google Scholar 

  • Musil J, Zacek F (1986) Microwave measurement of complex permittivity by free space methods and their application. Elsevier, Amsterdam. ISBN-13:978-0444995360

    Google Scholar 

  • Nesimoglu T, Sabah C (2014) Characterization of metamaterials using a new design and measurement technique for microstrip circuit application. In: 14th Mediterranean proceedings IEEE microwave symposium (MMS), Marrakech, pp 1–4, Dec 2014

    Google Scholar 

  • Nicolson AM, Ross GF (1970) Measurement of intrinsic properties of materials by time-domain techniques. IEEE Trans Instrum Meas 19:377–382

    Google Scholar 

  • Pendry JB, Holden AJ, Robbins DJ, Stewart WJ (1999) Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans Microw Theory Tech 47(11):2075–2084

    Article  Google Scholar 

  • Qi J, Kattunen H, Wallen H, Sihvola A (2010) Compensation of Fabry-Perot resonances in homogenization of dielectric composites. IEEE Antennas Wirel Propag Lett 9:1057–1060

    Article  Google Scholar 

  • Ran L, Huangfu J, Chen H, Zhang X, Cheng K, Grzegorezyk TM, Kong JA (2005) Experimental study on left-handed metamaterials. Prog Electromagn Res PIER 51:249–279

    Article  Google Scholar 

  • Varadan V, Tellakula AR (2006) Effective properties of split-resonator metamaterials using measured scattering parameters: effect of gap orientation. J Appl Phys 100:034910

    Google Scholar 

  • Weir WB (1974) Automatic measurement of complex dielectric constant and permeability at microwave frequencies. Proc IEEE 62(1):33–36

    Article  Google Scholar 

  • Williams DF, Wang JCM, Arz U (2003) An optimal vector-network-analyzer calibration method. IEEE Trans Microw Theory Tech 51(12):2391–2401

    Article  Google Scholar 

  • Yousefi L, Boybay MS, Ramahi OM (2011) Characterization of metamaterials using a stripline fixture. IEEE Trans Antennas Propag 59(4):1245–1253

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raveendranath U. Nair .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Cite this chapter

Nair, R.U., Dutta, M., P.S., M., Venu, K.S. (2018). EM Material Characterization Techniques. In: EM Material Characterization Techniques for Metamaterials. SpringerBriefs in Electrical and Computer Engineering(). Springer, Singapore. https://doi.org/10.1007/978-981-10-6517-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6517-0_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6516-3

  • Online ISBN: 978-981-10-6517-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics