Skip to main content

Part III: Tissue Engineering

  • Chapter
  • First Online:
Book cover Hyperbranched Polymers for Biomedical Applications

Abstract

Hyperbranched polymers have a three-dimensional structure with high functionality, high reactivity due to the presence of a large number of free terminal groups, and they exhibit enhanced absorption capacity of biomolecules on a polymeric biomaterial. More advantage with these architectural polymers is that they can be altered structurally as well as by incorporation of functional groups can be improved for better cell attachment. Hyperbranched polymers are quite capable of forming porous hydrogels or films as scaffolds, and are promising material to support adhesion and rapid reproduction of cells. Thus, hyperbranched polymers, due to their unique structures and special properties, have proved to be of high potential in various applications in tissue engineering fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lin Y-M, Chrzanowski W, Knowles J, Bishop A, Bismarck A (2010) Adv Eng Mater 12:B101–B112

    Article  Google Scholar 

  2. Akdemir ZS, Kayaman-Apohan N, Kahraman MV, Kuruca SE, Gungor A, Karadenizli S (2011) J Biomater Sci Polym Ed 22:857–872

    Article  CAS  Google Scholar 

  3. Puppi D, Dinucci D, Bartoli C, Mota C, Migone C, Dini F, Barsotti G, Carlucci F, Chiellini F (2011) J Bioact Compat Polym 26:478–492

    Article  CAS  Google Scholar 

  4. Luo Y-L, Zhang C-H, Xu F, Chen Y-S (2012) Polym Adv Technol 23:551–557

    Article  CAS  Google Scholar 

  5. Kennedy R, Ul Hassan W, Tochwin A, Zhao T, Dong Y, Wang Q, Tai H, Wang W (2014) Polym Chem 5:1838–1842

    Article  CAS  Google Scholar 

  6. Zhang JG, Krajden OB, Kainthan RK, Kizhakkedathu JN, Constantinescu I, Brooks DE, Gyongyossy-Issa MIC (2008) Bioconjugate Chem 19:1241–1247

    Article  CAS  Google Scholar 

  7. Mintzer MA, Grinstaff MW (2011) Chem Soc Rev 40:173–190

    Article  CAS  Google Scholar 

  8. Yang TF, Chin W, Cherng J, Shau M (2004) Biomacromol 5:1926–1932

    Article  CAS  Google Scholar 

  9. Das B, Chattopadhyay P, Mandal M, Voit B, Karak N (2013) Macromol Biosci 13:126–139

    Article  CAS  Google Scholar 

  10. Puppi D,  Dinucci D, Bartoli C, Mota C, Migone C, Dini F, Barsotti G, Carlucci F, Chiellini F (2011) J Bioact Compat Polym 26:478–492

    Google Scholar 

  11. Xu J, Song J (2010) Proc Natl Acad Sci USA 107:7652–7657

    Article  CAS  Google Scholar 

  12. Lutz J-F, Weichenhan K, Akdemir O, Hoth A (2007) Macromolecules 40:2503–2508

    Article  CAS  Google Scholar 

  13. Tai H, Howard D, Takae S, Wang W, Vermonden T, Hennink WE, Stayton PS, Hoffman AS, Endruweit A, Alexander C, Howdle SM, Shakesheff KM (2009) Biomacromolecules 10:2895–2903

    Google Scholar 

  14. Hassan W, Dong Y, Wang W (2013) Stem Cell Res Ther 4

    Google Scholar 

  15. Nikolovski J, Mooney DJ (2000) Biomaterials 21:2025–2032

    Article  CAS  Google Scholar 

  16. Burdick JA, Anseth KS (2002) Biomaterials 23:4315–4323

    Article  CAS  Google Scholar 

  17. Nuttelman CR, Tripodi MC, Anseth KS (2004) J Biomed Mater Res, Part A 68A:773–782

    Article  CAS  Google Scholar 

  18. Knischka R, Lutz PJ, Sunder A, Frey H (2001) Abstr Pap, Jt Conf—Chem Inst Can Am Chem Soc 221, U438

    Google Scholar 

  19. Kainthan RK, Janzen J, Levin E, Devine DV, Brooks DE (2006) Biomacromol 7:703–709

    Article  CAS  Google Scholar 

  20. Kainthan RK, Janzen J, Kizhakkedathu JN, Devine DV, Brooks DE (2008) Biomaterials 29:1693–1704

    Google Scholar 

  21. Oudshoorn MHM, Rissmann R, Bouwstra JA, Hennink WE (2006) Biomaterials 27:5471–5479

    Article  CAS  Google Scholar 

  22. Yu X, Liu Z, Janzen J, Chafeeva I, Horte S, Chen W, Kainthan RK, Kizhakkedathu JN, Brooks DE (2012) Nat Mater 11:468–476

    Article  CAS  Google Scholar 

  23. Zhang H, Bre LP, Zhao T, Zheng Y, Newland B, Wang W (2014) Biomaterials 35:711–719

    Article  Google Scholar 

  24. Zhang H, Bre LP, Zhao T, Newland B, Da Mark C, Wang W (2014) J Mater Chem B 2:4067–4071

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srijoni Sengupta .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Sengupta, S., Das, T., Bandyopadhyay, A. (2018). Part III: Tissue Engineering. In: Hyperbranched Polymers for Biomedical Applications . Springer Series on Polymer and Composite Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-6514-9_7

Download citation

Publish with us

Policies and ethics