Skip to main content

Structure–Property Relationship of Hyperbranched Polymers

  • Chapter
  • First Online:
Hyperbranched Polymers for Biomedical Applications

Abstract

The field of hyperbranched polymers have been explored widely and have been a great topic for researchers in the last two decades because these compounds possess new, remarkable characteristics that strongly influence material properties and have opened new application fields (Inoue in Prog Polym Sci 25:453–571, 2000 [1]). Therefore, simultaneously along with the synthesis of various kinds of hyperbranched polymers from different combinations of monomers, special emphasis has been taken to establish its structure-property relationship by proper characterization and understanding of the structure of the hyperbranched polymers and its effect on its physical and chemical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Inoue K (2000) Functional dendrimers, hyperbranched and star polymers. Prog Polym Sci 25:453–571

    Article  CAS  Google Scholar 

  2. Fréchet JM, Hawker CJ, Gitsov I, Leon JW (1996) Dendrimers and hyperbranched polymers: two families of three-dimensional macromolecules with similar but clearly distinct properties. J Macromol Sci A 33(10):1399–1425

    Article  Google Scholar 

  3. Hawker CJ, Lee R, Fréchet JMJ (1991) One-step synthesis of hyperbranched dendritic polyesters. J Am Chem Soc 113:4583–4588

    Article  CAS  Google Scholar 

  4. Kim YH (1994) Macromol Symp 77:21

    Article  CAS  Google Scholar 

  5. Fréchet JMJ, Hawker CJ (1995) Hyperbranched polyphenylene and hyperbranched polyesters: new soluble, three-dimensional, reactive polymers. React Funct Polym 26:127–136

    Google Scholar 

  6. Flory PJ (1953) Principles of polymer chemistry. Molecular weight distribution in non-linear polymers and the theory of gelation, Chapter 9, 348. Cornell University Press, Ithaca

    Google Scholar 

  7. Kim YH, Webster OW (1990) Water soluble hyperbranched polyphenylene: “a unimolecular micelle?” J Am Chem Soc 112:4592

    Article  CAS  Google Scholar 

  8. Hölter D, Burgath A, Frey H (1997) Degree of branching in hyperbranched polymers. Acta Polym 48(1–2):30–35

    Article  Google Scholar 

  9. Hölter D, Fret H (1997) Degree of branching in hyperbranched polymers. 2. Enhancement of the DB: scope and limitations. Acta Polym 48.8:298–309

    Google Scholar 

  10. Frey H, Hölter D (1999) Degree of branching in hyperbranched polymers. 3 Copolymerization of ABm-monomers with AB and ABn-monomers. Acta Polym 50(2-3):67–76

    Article  CAS  Google Scholar 

  11. Galina H, Walczak M (2005) A theoretical model of hyperbranched polymerization involving an ABf monomer. Polimery 50(10)

    Google Scholar 

  12. Maier G, Zech C, Voit B, Komber H (1998) An approach to hyperbranched polymers with a degree of branching of 100%. Macromol Chem Phys 199:2655–2664

    Article  CAS  Google Scholar 

  13. Hobson LJ, Kenwright AM, Feast W (1997) A simple ‘one pot’ route to the hyperbranched analogues of Tomalia’s poly(amidoamine) dendrimers. J Chem Commun 19:1877–1878

    Article  Google Scholar 

  14. Merino S, Brauge L, Caminade AM, Majoral JP, Taton D, Gnanou Y (2001) Synthesis and reactivity of small phosphorus-containing dendritic wedges (dendrons). Chem—Eur J 7:3095

    Google Scholar 

  15. Huber T, Böhme F, Komber H, Kronek J, Luston J, Voigt D, Voit B (1999) Macromol Chem Phys 200:126

    Google Scholar 

  16. Komber H, Stumpe K, Voit B (1814) Macromol Chem Phys 2006:207

    Google Scholar 

  17. Kambouris P, Hawker CJ (1993) J Chem Soc Perkin Trans 1, 22:2717

    Google Scholar 

  18. Bolton DH, Wooley KL (2002) J Polym Sci Part A: Polym Chem Ed, 40:823

    Google Scholar 

  19. Sheridan PF, Adolf DB, Lyulin AV, Neelov I, Davies GR (2002) Computer simulations of hyperbranched polymers: the influence of the Wiener index on the intrinsic viscosity and radius of gyration. J Chem Phys 117(16):7802–7812

    Article  CAS  Google Scholar 

  20. Hult A, Johansson M (1999) Malmstr¨om. E Adv Polym Sci 143:1

    Article  CAS  Google Scholar 

  21. Kim YH, Webster OW (1992) Hyperbranched polyphenylenes. Macromolecules 25(21):5561–5572

    Article  CAS  Google Scholar 

  22. Fox TGJ, Flory JP (1950) J Appl Phys 21:581

    Article  CAS  Google Scholar 

  23. FrCchet JMJ (1994) Presented at the 35th IUPAC International symposium on macromolecules. Akron, Ohio

    Google Scholar 

  24. Kainthan RK, Brooks DE (2007) In vivo biological evaluation of high molecular weight hyperbranched polyglycerols. Biomaterials 28(32):4779–4787

    Article  CAS  Google Scholar 

  25. Turner SR, Voit BI, Mourey TH (1993) Macromolecules 26:4617

    Article  CAS  Google Scholar 

  26. Voit BI, Lederer A (2009) Chem Rev 109:5924

    Google Scholar 

  27. Lederer A, Abd Elrehim M, Schallausky F, Voigt D, Voit B (2006) e-Polym 039

    Google Scholar 

  28. Yan D, Zhou Z (1999) Molecular weight distribution of hyperbranched polymers generated from polycondensation of AB2 type monomers in the presence of multifunctional core moieties. Macromolecules 32(3):819–824

    Article  CAS  Google Scholar 

  29. Yan D, Zhou Z, Müller AH (1999) Molecular weight distribution of hyperbranched polymers generated by self-condensing vinyl polymerization in presence of a multifunctional initiator. Macromolecules 32(2):245–250

    Article  CAS  Google Scholar 

  30. Gittins PJ, Alston J, Ge Y, Twyman LJ (2004) Macromolecules 37:7428

    Article  CAS  Google Scholar 

  31. Radke W, Litvinenko G, Mu¨ller AHE (1998) Macromolecules 31:239

    Article  CAS  Google Scholar 

  32. Burchard W (1999) Adv Polym Sci 143:113

    Article  CAS  Google Scholar 

  33. Lederer A, Boye S (2008) LCGC Ads 24

    Google Scholar 

  34. Markoski LJ, Moore JS, Sendijarevic I, McHugh AJ (2001) Macromolecules 34:2695

    Article  CAS  Google Scholar 

  35. Hawker CJ, Chu FK (1996) Macromolecules 29:4370

    Article  CAS  Google Scholar 

  36. Sperling LH (1986) Introduction to physical polymer science. Wiley, New York Chapter 6

    Google Scholar 

  37. Voit BI (1995) Acta Polym 46:87

    Article  CAS  Google Scholar 

  38. Sunder A, Bauer T, M¨ulhaupt R, Frey H (2000) Macromolecules 33:1330

    Google Scholar 

  39. Jayakannan M, Ramakrishnan S (2000) J Polym Sci, Part A: Polym Chem 38:261

    Article  CAS  Google Scholar 

  40. Zhu Q, Wu JL, Tu CL, Shi YF, He L, Wang RB, Zhu XY, Yan DY (2009) J Phys Chem B 113:5777

    Google Scholar 

  41. Schallausky F, Erber M, Komber H, Lederer A (2008) Macromol Chem Phys 209:2331

    Article  CAS  Google Scholar 

  42. DeSimone JM (1060) Science 1995:269

    Google Scholar 

  43. Farrington PJ, Hawker CJ, Fréchet JMJ, Mackay ME (1998) Macromolecules 31:5043

    Google Scholar 

  44. Ye Z, Alobaidi F, Zhu S (2004) Macromol Chem Phys 205:897

    Google Scholar 

  45. Sendijarevic I, McHugh AJ (2000) Macromolecules 33:590

    Article  CAS  Google Scholar 

  46. Simon PF, Müller AH, Pakula T (2001) Macromolecules 34:1677–1684

    Article  CAS  Google Scholar 

  47. Kharchenko SB, Kannan RM (2003) Macromolecules 36:399

    Article  CAS  Google Scholar 

  48. Magnusson H, Malmström E, Hult A, Johansson M (2002) Polymer 43:301

    Google Scholar 

  49. Lyulin AV, Adolf DB, Davies GR (2001) Macromolecules 34:3783

    Google Scholar 

  50. Schmaljohann D, Häußler L, Pötschke P, Voit BI, Loontjens TJA (2000) Macromol Chem Phys 201, 49

    Google Scholar 

  51. Jannerfeldt G, Boogh L, Manson J-AE (1999) J Polym Sci, Part A: Polym Chem 37:2069

    Article  CAS  Google Scholar 

  52. Star A, Stoddart JF (2002) Macromolecules 35:7516

    Article  CAS  Google Scholar 

  53. Sharma K, Zolotarskaya OY, Wynne KJ, Yang H (2012) J Bioact Compat Polym 27:525

    Article  CAS  Google Scholar 

  54. Xu S, Luo Y, Haag R (2007) Macromol Biosci 7:968

    Article  CAS  Google Scholar 

  55. Zhou Y, Huang W, Liu J, Zhu X, Yan D (2010) Adv Mater 22:4567

    Article  CAS  Google Scholar 

  56. Calderon M, Quadir MA, Sharma SK, Haag R (2010) Adv Mater 22:190–218

    Article  CAS  Google Scholar 

  57. Hu M, Chen MS, Li GL, Pang Y, Wang DL, Wu JL, Qiu F, Zhu XY, Sun J (2012) Biomacromolecules 13:3552–3561

    Article  CAS  Google Scholar 

  58. Shenoi RA, Narayanannair JK, Hamilton JL, Lai BF, Horte S, Kainthan RK, Varghese JP, Rajeev KG, Manoharan M, Kizhakkedathu JN (2012) J Am Chem Soc 134:14945–14957

    Article  CAS  Google Scholar 

  59. Chang X, Dong CM (2013) Biomacromolecules 14:3329–3337

    Article  CAS  Google Scholar 

  60. Liu JY, Huang W, Zhou YF, Yan DY (2009) Macromolecules 42:4394–4399

    Article  CAS  Google Scholar 

  61. Yan DY, Zhou YF, Hou J (2004) Science 303:65–67

    Article  CAS  Google Scholar 

  62. Wang D, Zhao T, Zhu X, Yan D, Wang W (2015) Chem Soc Rev 44:4023–4071

    Article  CAS  Google Scholar 

  63. Shi YF, Tu CL, Wang RB, Wu JL, Zhu XY, Yan DY (2008) Langmuir 24:11955

    Article  CAS  Google Scholar 

  64. Zou J, Shi W, Wang J, Bo J (2005) Macromol Biosci 5:662–668

    Article  CAS  Google Scholar 

  65. Ye L, Letchford K, Heller M, Liggins R, Guan D, Kizhakkedathu JN, Brooks DE, Jackson JK, Burt HM (2010) Biomacromolecules 12:145–155

    Article  Google Scholar 

  66. Kainthan RK, Mugabe C, Burt HM, Brooks DE (2008) Biomacromolecules 9:886–895

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srijoni Sengupta .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Sengupta, S., Das, T., Bandyopadhyay, A. (2018). Structure–Property Relationship of Hyperbranched Polymers. In: Hyperbranched Polymers for Biomedical Applications . Springer Series on Polymer and Composite Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-6514-9_4

Download citation

Publish with us

Policies and ethics