Skip to main content

Part II––Synthesis of Hyperbranched Polymers: Mixed Chain-Growth and Step-Growth Methods

  • Chapter
  • First Online:
Hyperbranched Polymers for Biomedical Applications

Abstract

With the growing interest and demand in the realm of hyperbranched (hb) polymers, lot of synthesis approaches have already been explored some of which are detailed earlier in the Chap. 2. Both step-growth and chain-growth approaches are widely followed in the synthesis of hb polymers. Step-growth approaches mainly include AB x polycondensation and double monomer (symmetric/asymmetric pairs) methodologies. Whereas chain-growth approaches include radical copolymerization, surface grafting, and other controlled polymerization techniques. Interestingly, both self-condensing vinyl polymerization (SCVP) and self-condensing ring opening polymerization follow step-growth as well as chain-growth routes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACDT:

2-((2-(((dodecylthiocarbonothioyl)thio)-2-methylpropanoyl)oxy)-ethyl acrylate

AIBN:

Azobisisobutyronitrile

AIG1c:

3-O-acryloyl-1,2,5,6-di-O-isopropylidene-α-d-glucofuranoside

ARGET:

Activators regenerated by electron transfer

ATRA:

Atom transfer radical addition

ATRP:

Atom transfer radical polymerization

BPEA:

2-((2-bromopropionyl)oxy)ethyl acrylate

BuLi:

Butyl lithium

CT:

Chain transfer

CTA:

Chain transfer agent

DB:

Degree of branching

DMAEMA:

2-(dimethylamino)ethyl methacrylate

DVA:

Divinyl adipate

DVB:

Divinyl benzene

DVM:

Divinyl monomer

ECTVA:

Vinyl 2-(ethoxycarbonothioylthio) acetate

EGDMA:

Ethylene glycol dimethacrylate

EHMO:

3-ethyl-3-hydromethyl oxetane

FRP:

Free radical polymerization

GTP:

Group transfer polymerization

ICAR:

Initiators for continuous activator regeneration

IFIRP:

Initiator fragment incorporation radical polymerization

MMA:

Methyl methacrylate

MVM:

Multivinyl polymerization

M.W:

Molecular weight

M.W.D:

Molecular weight distribution

NMP/NMRP:

Nitroxide mediated radical polymerization

PB:

Poly (buta-1,2-diene)

PAMAM:

Poly (amido amine)

PCS:

Poly (carbosilane)

P.D.I:

Poly dispersity index

PE:

Polyethylene

PEG:

Polyethylene glycol

PEGDMA:

Poly ethylene glycol dimethacrylate

PEI:

Poly (ethylene imine)

PEO:

Polyethylene oxide

PG:

Polyglycerol

PMA:

Poly (mecthacrylate)

PS:

Polystyrene

PVA:

Poly (vinyl alcohol)

PVAc:

Poly (vinyl acetate)

PRE:

Persistant radical effect

PTP:

Proton transfer polymerization

RAFT:

Reversible addition fragmentation chain transfer

RBC:

Red blood cell

ROMBP:

Ring opening multi-branching polymerization

SARA-ATRP:

Supplementary activators and reducing agents ATRP

SCGTCP:

Self-condensing group transfer copolymerization

SCROP:

Self-condensing ring opening polymerization

SCVP:

Self-condensing vinyl polymerization

SCVCP:

Self-condensing vinyl copolymerization

tBMA:

Tert-butyl methacrylate

TEMPO:

2,2,6,6-tetramethylpiperidin-1-oxyl

TIPNO:

2,2,5-trimethyl-4-phenyl-3-azahexane-3-nitroxide

VBC:

Vinylbenzyl chloride

VBP:

Vasculature binding peptide

WBC:

White blood cell or leukocyte

References

  1. Liu J, Wang Y, Fu Q, Zhu X, Shi W (2008) Branched polymer via free radical polymerization of chain transfer monomer: a theoretical and experimental investigation. J Polym Sci A Polym Chem 46(4):1449–1459

    Article  CAS  Google Scholar 

  2. O’Brien N, McKee A, Sherrington DC, Slark AT, Titterton A (2000) Facile, versatile and cost effective route to branched vinyl polymers. Polymer 41(15):6027–6031

    Article  Google Scholar 

  3. Graham S, Cormack PAG, Sherrington DC (2005) One-pot synthesis of branched poly(methacrylic acid)s and suppression of the rheological “Polyelectrolyte Effect”. Macromolecules 38(1):86–90

    Article  CAS  Google Scholar 

  4. Liu Y, Haley JC, Deng K, Lau W, Winnik MA (2008) Synthesis of branched poly(butyl methacrylate) via semicontinuous emulsion polymerization. Macromolecules 41(12):4220–4225

    Article  CAS  Google Scholar 

  5. Baudry R, Sherrington DC (2006) Synthesis of highly branched poly(methyl methacrylate)s using the “Strathclyde Methodology” in aqueous emulsion. Macromolecules 39(4):1455–1460

    Article  CAS  Google Scholar 

  6. Das T, Sengupta S, Ghorai UK, Dey A, Bandyopadhyay A (2015) Sequential amphiphilic and pH responsive hyperbranched copolymer: influence of hyper branching/pendant groups on reversible self assembling from polymersomes to aggregates and usefulness in waste water treatment. RSC Adv 5(124):102932–102941

    Article  CAS  Google Scholar 

  7. Dong ZM, Liu XH, Lin Y, Li YS (2008) Branched polystyrene with abundant pendant vinyl functional groups from asymmetric divinyl monomer. J Polym Sci, Part A: Polym Chem 46(18):6023–6034

    Article  CAS  Google Scholar 

  8. Dong Zm, Liu Xh, Tang Xl, Li Ys (2009) Synthesis of hyperbranched polymers with pendent norbornene functionalities via RAFT polymerization of a Novel asymmetrical divinyl monomer. Macromolecules 42, (13):4596–4603

    Google Scholar 

  9. Zhao T, Zhang H, Zhou D, Gao Y, Dong Y, Greiser U, Tai H, Wang W (2015) Water soluble hyperbranched polymers from controlled radical homopolymerization of PEG diacrylate. RSC Adv 5(43):33823–33830

    Article  CAS  Google Scholar 

  10. Guan Z (2002) Control of polymer topology through transition-metal catalysis: synthesis of hyperbranched polymers by cobalt-mediated free radical polymerization. J Am Chem Soc 124(20):5616–5617

    Article  CAS  Google Scholar 

  11. Smeets NMB (2013) Amphiphilic hyperbranched polymers from the copolymerization of a vinyl and divinyl monomer: the potential of catalytic chain transfer polymerization. Eur Polym J 49(9):2528–2544

    Article  CAS  Google Scholar 

  12. Smeets NMB, Freeman MW, McKenna TFL (2011) Polymer architecture control in emulsion polymerization via catalytic chain transfer polymerization. Macromolecules 44(17):6701–6710

    Article  CAS  Google Scholar 

  13. Sato T, Sato N, Seno M, Hirano T (2003) Initiator-fragment incorporation radical polymerization of divinylbenzene in the presence of glyoxylic oxime ether: formation of soluble hyperbranched polymer. J Polym Sci A Polym Chem 41(19):3038–3047

    Article  CAS  Google Scholar 

  14. Sato T, Ihara H, Hirano T, Seno M (2004) Formation of soluble hyperbranched polymer through the initiator-fragment incorporation radical copolymerization of ethylene glycol dimethacrylate with N-methylmethacrylamide. Polymer 45(22):7491–7498

    Article  CAS  Google Scholar 

  15. Sato T, Arima Y, Seno M, Hirano T (2005) Initiator-fragment incorporation radical polymerization of divinyl adipate with dimethyl 2,2′-Azobis(isobutyrate): kinetics and formation of soluble hyperbranched polymer. Macromolecules 38(5):1627–1632

    Article  CAS  Google Scholar 

  16. Sato T, Nomura K, Hirano T, Seno M (2006) Initiator-fragment incorporation radical polymerization of diallyl phthalate: kinetics, formation of hyperbranched polymer, and iridescent porous film thereof. J Appl Polym Sci 102(1):408–415

    Article  CAS  Google Scholar 

  17. Sato T, Hashimoto M, Seno M, Hirano T (2004) Soluble hyperbranched polymer through initiator-fragment incorporation radical copolymerization of ethylene glycol dimethacrylate and α-ethyl β-N-(ά-methylbenzyl) itaconamate in benzene. Eur Polym J 40(2):273–282

    Article  CAS  Google Scholar 

  18. Tai H, Zheng Y, Wang W (2011) Hyperbranched copolymers synthesized by cocondensation and radical copolymerization. In: Hyperbranched polymers. Wiley, New York, pp 203–226

    Google Scholar 

  19. Chang HT, Frechet JMJ (1999) Proton-transfer polymerization: a new approach to hyperbranched polymers. J Am Chem Soc 121(10):2313–2314

    Article  CAS  Google Scholar 

  20. Gong C, Frechet JMJ (2000) Proton transfer polymerization in the preparation of hyperbranched polyesters with epoxide chain-ends and internal hydroxyl functionalities. Macromolecules 33(14):4997–4999

    Article  CAS  Google Scholar 

  21. Chen H, Jia Z, Yan D, Zhu X (2007) Thermo-responsive highly branched polyethers by proton-transfer polymerization of 1,2,7,8-diepoxyoctane and multiols. Macromol Chem Phys 208(15):1637–1645

    Article  CAS  Google Scholar 

  22. Gil ES, Hudson SM (2004) Stimuli-responsive polymers and their bioconjugates. Prog Polym Sci Jpn 29(12):1173–1222

    Google Scholar 

  23. Gadwal I, Binder S, Stuparu MC, Khan A (2014) Dual-reactive hyperbranched polymer synthesis through proton transfer polymerization of thiol and epoxide groups. Macromolecules 47(15):5070–5080

    Article  CAS  Google Scholar 

  24. Emrick T, Chang HT, Frechet JMJ (1999) An A2+B3 approach to hyperbranched aliphatic polyethers containing chain end epoxy substituents. Macromolecules 32(19):6380–6382

    Article  CAS  Google Scholar 

  25. Ma Lj, Wang Hq, He Lf, Li Xy (2016) Hyperbranched epoxy resins prepared by proton transfer polymerization from an A2+B3 system. Chin J Polym Sci 29(3):300–307

    Google Scholar 

  26. Zhao T (2015) Controlled/living radical polymerization of multi-vinyl monomer towards hyperbranched polymers for biomedical applications (Thesis)

    Google Scholar 

  27. Frechet JMJ, Henmi M, Gitsov I, Aoshima S (1995) Self-condensing vinyl polymerization: an approach to dendritic materials. Science 269(5227):1080

    Google Scholar 

  28. Yan D, Muller AHE, Matyjaszewski K (1997) Molecular parameters of hyperbranched polymers made by self-condensing vinyl polymerization. 2. Degree of branching. Macromolecules 30(23):7024–7033

    Article  CAS  Google Scholar 

  29. Paulo C, Puskas JE (2001) Synthesis of hyperbranched polyisobutylenes by inimer-type living polymerization. 1. Investigation of the effect of reaction conditions. Macromolecules 34(4):734–739

    Article  CAS  Google Scholar 

  30. Knauss DM, Al-Muallem HA (2000) Polystyrene with dendritic branching by convergent living anionic polymerization. II. Approach using vinylbenzyl chloride. J Polym Sci A Polym Chem 38(23):4289–4298

    Article  CAS  Google Scholar 

  31. Baskaran D (2001) Synthesis of hyperbranched polymers by anionic self-condensing vinyl polymerization. Macromol Chem Phys 202(9):1569–1575

    Article  CAS  Google Scholar 

  32. Mishra M, Kobayashi S (1999) Star and hyperbranched polymers, vol. 53. CRC Press

    Google Scholar 

  33. Simon PFW, Radke W, Müller AHE (1997) Hyperbranched methacrylates by self-condensing group transfer polymerization. Macromol Rapid Commun 18(9):865–873

    Article  CAS  Google Scholar 

  34. Chen Y, Fuchise K, Satoh T, Kakuchi T (2015) Group transfer polymerization of acrylic monomers. In: Hadjichristidis N, Hirao A (eds) Anionic polymerization: principles, practice, strength, consequences and applications. Tokyo, Springer Japan, pp 451–494

    Chapter  Google Scholar 

  35. Simon PFW, Muller AHE (2001) Synthesis of hyperbranched and highly branched methacrylates by self-condensing group transfer copolymerization. Macromolecules 34(18):6206–6213

    Article  CAS  Google Scholar 

  36. Otsu T (2000) Iniferter concept and living radical polymerization. J Polym Sci A Polym Chem 38(12):2121–2136

    Article  CAS  Google Scholar 

  37. Gigmes D (2015) Nitroxide mediated polymerization: from fundamentals to applications in materials science. R Soc Chem

    Google Scholar 

  38. Moad G, Rizzardo E, Solomon DH (1982) Selectivity of the reaction of free radicals with styrene. Macromolecules 15(3):909–914

    Article  CAS  Google Scholar 

  39. Grubbs RB (2011) Nitroxide-mediated radical polymerization: limitations and versatility. Polym Rev 51(2):104–137

    Article  CAS  Google Scholar 

  40. Hawker CJ, Frechet JMJ, Grubbs RB, Dao J (1995) Preparation of hyperbranched and star polymers by a “Living”, self-condensing free radical polymerization. J Am Chem Soc 117(43):10763–10764

    Article  CAS  Google Scholar 

  41. Wang X, Gao H (2017) Recent progress on hyperbranched polymers synthesized via radical-based self-condensing vinyl polymerization. Polymers 9(6):188

    Google Scholar 

  42. Khan A, Malkoch M, Montague MF, Hawker CJ (2008) Synthesis and characterization of hyperbranched polymers with increased chemical versatility for imprint lithographic resists. J Polym Sci A Polym Chem 46(18):6238–6254

    Article  CAS  Google Scholar 

  43. Matyjaszewski K, Gaynor SG, Greszta D, Mardare D, Shigemoto T, Wang J-S (1995) Unimolecular and bimolecular exchange reactions in controlled radical polymerization. Macromol Symp 95(1):217–231

    Article  CAS  Google Scholar 

  44. Patten TE, Matyjaszewski K (1998) Atom transfer radical polymerization and the synthesis of polymeric materials. Adv Mater 10(12):901–915

    Article  CAS  Google Scholar 

  45. Matyjaszewski K, Tsarevsky NV (2014) Macromolecular engineering by atom transfer radical polymerization. J Am Chem Soc 136(18):6513–6533

    Article  CAS  Google Scholar 

  46. Gao H, Matyjaszewski K (2009) Synthesis of functional polymers with controlled architecture by CRP of monomers in the presence of cross-linkers: from stars to gels. Prog Polym Sci 34(4):317–350

    Article  CAS  Google Scholar 

  47. Gaynor SG, Edelman S, Matyjaszewski K (1996) Synthesis of branched and hyperbranched polystyrenes. Macromolecules 29(3):1079–1081

    Article  CAS  Google Scholar 

  48. Graff RW, Wang X, Gao H (2015) Exploring self-condensing vinyl polymerization of inimers in microemulsion to regulate the structures of hyperbranched polymers. Macromolecules 48(7):2118–2126

    Article  CAS  Google Scholar 

  49. Matyjaszewski K, Gaynor SG, Kulfan A, Podwika M (1997) Preparation of hyperbranched polyacrylates by atom transfer radical polymerization. 1. Acrylic AB* monomers in “Living” radical polymerizations. Macromolecules 30(17):5192–5194

    Article  CAS  Google Scholar 

  50. Muthukrishnan S, Jutz G, Andre X, Mori H, Muller AHE (2005) Synthesis of hyperbranched glycopolymers via self-condensing atom transfer radical copolymerization of a sugar-carrying acrylate. Macromolecules 38(1):9–18

    Article  CAS  Google Scholar 

  51. Amin A, El-Gaffar MA (2008) Synthesis of novel polyamide-hyperbranched polymers via self condensing atom transfer radical polymerization. Polym Plast Technol 47(10):984–990

    Article  CAS  Google Scholar 

  52. Tsarevsky NV, Huang J, Matyjaszewski K (2009) Synthesis of hyperbranched degradable polymers by atom transfer radical (Co)polymerization of inimers with ester or disulfide groups. J Polym Sci A Polym Chem 47(24):6839–6851

    Article  CAS  Google Scholar 

  53. Jakubowski W, Matyjaszewski K (2006) Activators regenerated by electron transfer for atom-transfer radical polymerization of (Meth)acrylates and related block copolymers. Angew Chem Int Ed 45(27):4482–4486

    Article  CAS  Google Scholar 

  54. Elsen AM, Burdynska J, Park S, Matyjaszewski K (2013) Activators regenerated by electron transfer atom transfer radical polymerization in miniemulsion with 50 ppm of copper catalyst. ACS Macro Lett 2(9):822–825

    Article  CAS  Google Scholar 

  55. Boyer C, Corrigan NA, Jung K, Nguyen D, Nguyen TK, Adnan NNM, Oliver S, Shanmugam S, Yeow J (2016) Copper-mediated living radical polymerization (atom transfer radical polymerization and copper(0) mediated polymerization): from fundamentals to bioapplications. Chem Rev 116(4):1803–1949

    Article  CAS  Google Scholar 

  56. Matyjaszewski K, Pyun J, Gaynor SG (1998) Preparation of hyperbranched polyacrylates by atom transfer radical polymerization, 4. The use of zero-valent copper. Macromol Rapid Commun 19(12):665–670

    Article  CAS  Google Scholar 

  57. Konkolewicz D, Wang Y, Krys P, Zhong M, Isse AA, Gennaro A, Matyjaszewski K (2014) SARA ATRP or SET-LRP. End of controversy? Polym Chem 5(15):4396–4417

    Article  Google Scholar 

  58. Xue X, Li F, Huang W, Yang H, Jiang B, Zheng Y, Zhang D, Fang J, Kong L, Zhai G, Chen J (2014) Quadrangular prism: a unique self-assembly from amphiphilic hyperbranched PMA-b-PAA. Macromol Rapid Commun 35(3):330–336

    Article  CAS  Google Scholar 

  59. Moad G, Rizzardo E, Thang SH (2006) Living radical polymerization by the RAFT—a first update. Aust J Chem 59(10):669–692

    Article  CAS  Google Scholar 

  60. McLeary JB, Calitz FM, McKenzie JM, Tonge MP, Sanderson RD, Klumperman B (2005) A 1H NMR investigation of reversible addition-fragmentation chain transfer polymerization kinetics and mechanisms. Initialization with different initiating and leaving groups. Macromolecules 38(8):3151–3161

    Article  CAS  Google Scholar 

  61. Alfurhood JA, Bachler PR, Sumerlin BS (2016) Hyperbranched polymers via RAFT self-condensing vinyl polymerization. Polym Chem 7(20):3361–3369

    Article  CAS  Google Scholar 

  62. Wang Z, He J, Tao Y, Yang L, Jiang H, Yang Y (2003) Controlled chain branching by RAFT-based radical polymerization. Macromolecules 36(20):7446–7452

    Article  CAS  Google Scholar 

  63. Rikkou-Kalourkoti M, Elladiou M, Patrickios CS (2015) Synthesis and characterization of hyperbranched amphiphilic block copolymers prepared via self-condensing RAFT polymerization. J Polym Sci Part A Polym Chem 53(11):1310–1319

    Article  CAS  Google Scholar 

  64. Heidenreich AJ, Puskas JE (2008) Synthesis of arborescent (Dendritic) polystyrenes via controlled inimer-type reversible addition-fragmentation chain transfer polymerization. J Polym Sci A Polym Chem 46(23):7621–7627

    Article  CAS  Google Scholar 

  65. Carter S, Rimmer S, Sturdy A, Webb M (2005) Highly branched stimuli responsive poly[(N-isopropyl acrylamide)-co-(1,2-propandiol-3-methacrylate)]s with protein binding functionality. Macromol Biosci 5(5):373–378

    Article  CAS  Google Scholar 

  66. Ghosh Roy S, De P (2014) Facile RAFT synthesis of side-chain amino acids containing pH-responsive hyperbranched and star architectures. Polym Chem 5(21):6365–6378

    Article  CAS  Google Scholar 

  67. Han J, Li S, Tang A, Gao C (2012) Water-soluble and clickable segmented hyperbranched polymers for multifunctionalization and novel architecture construction. Macromolecules 45(12):4966–4977

    Article  CAS  Google Scholar 

  68. Bai Lb, Zhao K, Wu Yg, Li Wl, Wang Sj, Wang Hj, Ba Xw, Zhao Hc (2014) A new method for synthesizing hyperbranched polymers with reductive groups using redox/RAFT/SCVP. Chin J Polym Sci 32(4):385–394

    Google Scholar 

  69. Delduc P, Tailhan C, Zard SZ (1988) A convenient source of alkyl and acyl radicals. J Chem Soc Chem Commun 4:308–310

    Article  Google Scholar 

  70. Zhou X, Zhu J, Xing M, Zhang Z, Cheng Z, Zhou N, Zhu X (2011) Synthesis and characters of hyperbranched poly (vinyl acetate) by RAFT polymeraztion. Eur Polym J 47(10):1912–1922

    Article  CAS  Google Scholar 

  71. Perrier S, Takolpuckdee P (2005) Macromolecular design via reversible addition–fragmentation chain transfer (RAFT)/xanthates (MADIX) polymerization. J Polym Sci A Polym Chem 43(22):5347–5393

    Article  CAS  Google Scholar 

  72. Moad G (2006) The emergence of RAFT polymerization. Aust J Chem 59(10):661–662

    Article  CAS  Google Scholar 

  73. Postma A, Davis TP, Moad G, O’Shea MS (2005) Thermolysis of RAFT-synthesized polymers. A convenient method for trithiocarbonate group elimination. Macromolecules 38(13):5371–5374

    Article  CAS  Google Scholar 

  74. Gao C, Yan D (2004) Hyperbranched polymers: from synthesis to applications. Prog Polym Sci 29(3):183–275

    Article  CAS  Google Scholar 

  75. Wilms D, Nieberle J, Frey H (2011) Ring-opening multibranching polymerization. In: Hyperbranched Polymers. Wiley, New York, pp 175–202

    Google Scholar 

  76. Hauser M (1969) Alkylene imines. In: Frisch KC, Reegen SL, Dekker M (eds) Ring-opening polymerization. New York

    Google Scholar 

  77. Vandenberg EJ (1985) Polymerization of glycidol and its derivatives: a new rearrangement polymerization. J Polym Sci Polym Chem Ed 23(4):915–949

    Article  CAS  Google Scholar 

  78. Sunder A, Hanselmann R, Frey H, Mulhaupt R (1999) Controlled synthesis of hyperbranched polyglycerols by ring-opening multibranching polymerization. Macromolecules 32(13):4240–4246

    Article  CAS  Google Scholar 

  79. Goodwin A, Baskaran D (2012) Inimer mediated synthesis of hyperbranched polyglycerol via self-condensing ring-opening polymerization. Macromolecules 45(24):9657–9665

    Article  CAS  Google Scholar 

  80. Rokicki G, Rakoczy P, Parzuchowski P, Sobiecki M (2005) Hyperbranched aliphatic polyethers obtained from environmentally benign monomer: glycerol carbonate. Green Chem 7(7):529–539

    Article  CAS  Google Scholar 

  81. Kainthan RK, Janzen J, Kizhakkedathu JN, Devine DV, Brooks DE (2008) Hydrophobically derivatized hyperbranched polyglycerol as a human serum albumin substitute. Biomaterials 29(11):1693–1704

    Article  CAS  Google Scholar 

  82. Gao X, Zhang X, Zhang X, Wang Y, Sun L, Li C (2011) Amphiphilic polylactic acid-hyperbranched polyglycerol nanoparticles as a controlled release system for poorly water-soluble drugs: physicochemical characterization. J Pharm Pharmacol 63(6):757–764

    Article  CAS  Google Scholar 

  83. Gao S, Guan Q, Chafeeva I, Brooks DE, Nguan CYC, Kizhakkedathu JN, Du C (2015) Hyperbranched polyglycerol as a colloid in cold organ preservation solutions. PloS One 10(2):e0116595

    Google Scholar 

  84. Wilms D, Stiriba SE, Frey H (2010) Hyperbranched polyglycerols: from the controlled synthesis of biocompatible polyether polyols to multipurpose applications. Acc Chem Res 43(1):129–141

    Article  CAS  Google Scholar 

  85. Liu J, Wu X, Liu Y, Xu Y, Huang Y, Xing C, Wang X (2016) High-glucose-based peritoneal dialysis solution induces the upregulation of VEGF expression in human peritoneal mesothelial cells: the role of pleiotrophin. Int J Mol Med 32

    Google Scholar 

  86. Schull C, Frey H (2013) Grafting of hyperbranched polymers: from unusual complex polymer topologies to multivalent surface functionalization. Polymer 54(21):5443–5455

    Article  Google Scholar 

  87. Bergbreiter DE, Kippenberger AM (2006) Hyperbranched surface graft polymerizations. In: Jordan R (ed) Surface-Initiated Polymerization II. Springer, Berlin Heidelberg: Berlin, Heidelberg, pp 1–49

    Google Scholar 

  88. Popeney CS, Lukowiak MC, Bottcher C, Schade B, Welker P, Mangoldt D, Gunkel G, Guan Z, Haag R (2012) Tandem coordination, ring-opening, hyperbranched polymerization for the synthesis of water-soluble core-shell unimolecular transporters. ACS Macro Lett 1(5):564–567

    Article  CAS  Google Scholar 

  89. Xu Y, Gao C, Kong H, Yan D, Luo P, Li W, Mai Y (2004) One-pot synthesis of amphiphilic core-shell suprabranched macromolecules. Macromolecules 37(17):6264–6267

    Article  CAS  Google Scholar 

  90. Kuo PL, Ghosh SK, Liang WJ, Hsieh YT (2001) Hyperbranched polyethyleneimine architecture onto poly(allylamine) by simple synthetic approach and the chelating characters. J Polym Sci A Polym Chem 39(17):3018–3023

    Article  CAS  Google Scholar 

  91. Schull C, Frey H (2012) Controlled synthesis of linear polymers with highly branched side chains by “Hypergrafting”: poly(4-hydroxy styrene)-graft-hyperbranched polyglycerol. ACS Macro Lett 1(4):461–464

    Article  Google Scholar 

  92. Schull C, Nuhn L, Mangold C, Christ E, Zentel R, Frey H (2012) Linear-hyperbranched graft-copolymers via grafting-to strategy based on hyperbranched dendron analogues and reactive ester polymers. Macromolecules 45(15):5901–5910

    Article  Google Scholar 

  93. Wurm F, Frey H (2011) Linear-dendritic block copolymers: the state of the art and exciting perspectives. Prog Polym Sci 36(1):1–52

    Article  CAS  Google Scholar 

  94. Barriau E, García Marcos A, Kautz H, Frey H (2005) Linear-hyperbranched amphiphilic AB Diblock copolymers based on polystyrene and hyperbranched polyglycerol. Macromol Rapid Commun 26(11):862–867

    Article  CAS  Google Scholar 

  95. Marcos AGa, Pusel TM, Thomann R, Pakula T, Okrasa L, Geppert S, Gronski W, Frey H (2006) Linear-hyperbranched block copolymers consisting of polystyrene and dendritic poly(carbosilane) block. Macromolecules 39(3):971–977

    Google Scholar 

  96. Wurm F, Nieberle Jr, Frey H (2008) Double-hydrophilic linear-hyperbranched block copolymers based on poly(ethylene oxide) and poly(glycerol). Macromolecules 41(4):1184–1188

    Google Scholar 

  97. Wurm F, Schule H, Frey H (2008) Amphiphilic linear-hyperbranched block copolymers with linear poly(ethylene oxide) and hyperbranched poly(carbosilane) block. Macromolecules 41(24):9602–9611

    Article  CAS  Google Scholar 

  98. Tao W, Liu Y, Jiang B, Yu S, Huang W, Zhou Y, Yan D (2012) A linear-hyperbranched supramolecular amphiphile and its self-assembly into vesicles with great ductility. J Am Chem Soc 134(2):762–764

    Article  CAS  Google Scholar 

  99. Nuhn L, Schull C, Frey H, Zentel R (2013) Combining ring-opening multibranching and RAFT polymerization: multifunctional linear-hyperbranched block copolymers via hyperbranched macro-chain-transfer agents. Macromolecules 46(8):2892–2904

    Article  CAS  Google Scholar 

  100. Peleshanko S, Tsukruk VV (2008) The architectures and surface behavior of highly branched molecules. Prog Polym Sci 33(5):523–580

    Article  CAS  Google Scholar 

  101. Tsubokawa N, Ichioka H, Satoh T, Hayashi S, Fujiki K (1998) Grafting of ‘dendrimer-like’ highly branched polymer onto ultrafine silica surface. React Funct Polym 37(1):75–82

    Article  CAS  Google Scholar 

  102. Tsubokawa N, Takayama T (2000) Surface modification of Chitosan powder by grafting of ‘dendrimer-like’ hyperbranched polymer onto the surface. React Funct Polym 43(3):341–350

    Article  CAS  Google Scholar 

  103. Wang G, Fang Y, Kim P, Hayek A, Weatherspoon MR, Perry JW, Sandhage KH, Marder SR, Jones SC (2009) Layer-by-layer dendritic growth of hyperbranched thin films for surface sol-gel syntheses of conformal, functional, nanocrystalline oxide coatings on complex 3D (Bio)silica templates. Adv Funct Mater 19(17):2768–2776

    Article  CAS  Google Scholar 

  104. Tsubokawa N, Satoh T, Murota M, Sato S, Shimizu H (2001) Grafting of hyperbranched poly(amidoamine) onto carbon black surfaces using dendrimer synthesis methodology. Polym Adv Tech 12(10):596–602

    Article  CAS  Google Scholar 

  105. Zhou Y, Bruening ML, Bergbreiter DE, Crooks RM, Wells M (1996) Preparation of hyperbranched polymer films grafted on self-assembled monolayers. J Am Chem Soc 118(15):3773–3774

    Article  CAS  Google Scholar 

  106. Mikhaylova Y, Pigorsch E, Grundke K, Eichhorn KJ, Voit B (2004) Surface properties and swelling behaviour of hyperbranched polyester films in aqueous media. Macromol Symp 210(1):271–280

    Article  CAS  Google Scholar 

  107. Sidorenko A, Zhai XW, Greco A, Tsukruk VV (2002) Hyperbranched polymer layers as multifunctional interfaces. Langmuir 18(9):3408–3412

    Article  CAS  Google Scholar 

  108. Paez JI, Brunetti V, Strumia MC, Becherer T, Solomun T, Miguel J, Hermanns CF, Calderon M, Haag R (2012) Dendritic polyglycerolamine as a functional antifouling coating of gold surfaces. J Mater Chem 22(37):19488–19497

    Article  CAS  Google Scholar 

  109. Siegers C, Biesalski M, Haag R (2004) Self-assembled monolayers of dendritic polyglycerol derivatives on gold that resist the adsorption of proteins. Chem Eur J 10(11):2831–2838

    Article  CAS  Google Scholar 

  110. Dhalluin C, Ross A, Leuthold LA, Foser S, Gsell B, Muller F, Senn H (2005) Structural and biophysical characterization of the 40 kDa PEG−Interferon-Π± 2a and its individual positional isomers. Bioconjug Chem 16(3):504–517

    Article  CAS  Google Scholar 

  111. Rossi NAA, Constantinescu I, Brooks DE, Scott MD, Kizhakkedathu JN (2010) Enhanced cell surface polymer grafting in concentrated and nonreactive aqueous polymer solutions. J Am Chem Soc 132(10):3423–3430

    Article  CAS  Google Scholar 

  112. Chapanian R, Constantinescu I, Brooks DE, Scott MD, Kizhakkedathu JN (2012) In vivo circulation, clearance, and biodistribution of polyglycerol grafted functional red blood cells. Biomaterials 33(10):3047–3057

    Article  CAS  Google Scholar 

  113. Chapanian R, Constantinescu I, Rossi NAA, Medvedev N, Brooks DE, Scott MD, Kizhakkedathu JN (2012) Influence of polymer architecture on antigens camouflage, CD47 protection and complement mediated lysis of surface grafted red blood cells. Biomaterials 33(31):7871–7883

    Article  CAS  Google Scholar 

  114. Jeong JH, Schmidt JJ, Kohman RE, Zill AT, DeVolder RJ, Smith CE, Lai M-H, Shkumatov A, Jensen TW, Schook LG, Zimmerman SC, Kong H (2013) Leukocyte-mimicking stem cell delivery via in situ coating of cells with a bioactive hyperbranched polyglycerol. J Am Chem Soc 135(24):8770–8773

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamalika Das .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Das, T., Sengupta, S., Bandyopadhyay, A. (2018). Part II––Synthesis of Hyperbranched Polymers: Mixed Chain-Growth and Step-Growth Methods. In: Hyperbranched Polymers for Biomedical Applications . Springer Series on Polymer and Composite Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-6514-9_3

Download citation

Publish with us

Policies and ethics