Skip to main content

Musical Perception and Visual Imagery: Do Musicians visualize while Performing?

  • Chapter
  • First Online:
Musicality of Human Brain through Fractal Analytics

Part of the book series: Signals and Communication Technology ((SCT))

Abstract

What happens inside the performer’s brain when he is performing and composing a particular musical piece? Are there some specific regions in brain which are activated when an artist is creating or imaging a musical piece in his brain? Do the regions remain the same when the artist is listening to the same piece sung or played by him? These are the questions that perplexed neuroscientists for a long time. The endeavor to obtain insights to brain processes that take place during listening as well as composing music has been attempted several times by musicologists and psychologists. In this study we strive to answer these questions from a better scientific point of view by using latest state-of-the-art techniques to assess brain response. An EEG experiment was conducted on two eminent performers of Indian classical music, when they mentally created the “alap” of a “raga” (Jay Jayanti) in their mind (without performing) as well as when they listened to their own performance of the same raga. The beauty of Hindustani music lies in the fact that the musician is himself the composer and recreates the imagery of the raga in his mind while performing, hence the scope of creative improvisations are immense. The noise removed EEG time series data were analyzed mainly using robust non linear techniques like MFDFA and MFDXA to quantitatively assess the arousal based activity and the degree of cross-correlation of each EEG frequency rhythm in different combination of electrodes from frontal, occipital and temporal lobes. A strong response was found in the occipital and fronto-occipital region both during mental improvisation and listening of the raga, which is an interesting revelation of this study. Strong retentive features were obtained in regard to both alpha and theta rhythms in musical listening in different parts of the brain.

Melody and harmony are like lines and colors in pictures.

— Rabindranath Tagore.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akin, M., Arserim, M. A., Kiymik, M. K., & Turkoglu, I. (2001). A new approach for diagnosing epilepsy by using wavelet transform and neural networks. In Engineering in Medicine and Biology Society, 2001. Proceedings of the 23rd Annual International Conference of the IEEE (Vol. 2, pp. 1596–1599). IEEE.

    Google Scholar 

  • Balkwill, L. L., & Thompson, W. F. (1999). A cross-cultural investigation of the perception of emotion in music: Psychophysical and cultural cues. Music Perception: An Interdisciplinary Journal, 17(1), 43–64.

    Article  Google Scholar 

  • Banerjee, A., Sanyal, S., Patranabis, A., Banerjee, K., Guhathakurta, T., Sengupta, R., … & Ghose, P. (2016). Study on brain dynamics by non linear analysis of music induced EEG signals. Physica A: Statistical Mechanics and its Applications444, 110–120.

    Google Scholar 

  • Bashwiner, D. M., Wertz, C. J., Flores, R. A., & Jung, R. E. (2016). Musical creativity “revealed” in brain structure: Interplay between motor, default mode, and limbic networks. Scientific reports6.

    Google Scholar 

  • Beaty, R. E., Benedek, M., Wilkins, R. W., Jauk, E., Fink, A., Silvia, P. J., … & Neubauer, A. C. (2014). Creativity and the default network: A functional connectivity analysis of the creative brain at rest. Neuropsychologia64, 92–98.

    Google Scholar 

  • Bengtsson, S. L., Nagy, Z., Skare, S., Forsman, L., Forssberg, H., & Ullén, F. (2005). Extensive piano practicing has regionally specific effects on white matter development. Nature Neuroscience, 8(9), 1148.

    Article  Google Scholar 

  • Bhattacharya, J., & Petsche, H. (2001). Musicians and the gamma band: A secret affair? NeuroReport, 12(2), 371–374.

    Article  Google Scholar 

  • Bhattacharya, J., & Petsche, H. (2005). Drawing on mind’s canvas: Differences in cortical integration patterns between artists and non-artists. Human Brain Mapping, 26(1), 1–14.

    Article  Google Scholar 

  • Bowden, E. M., & Jung-Beeman, M. (2003). Aha! Insight experience correlates with solution activation in the right hemisphere. Psychonomic Bulletin & Review, 10(3), 730–737.

    Article  Google Scholar 

  • Byrne, C., MacDonald, R., & Carlton, L. (2003). Assessing creativity in musical compositions: Flow as an assessment tool. British Journal of Music Education, 20(03), 277–290.

    Article  Google Scholar 

  • Chen, Z., Ivanov, P. C., Hu, K., & Stanley, H. E. (2002). Effect of nonstationarities on detrended fluctuation analysis. Physical Review E, 65(4), 041107.

    Article  Google Scholar 

  • Chiarello, C., & Maxfield, L. (1996). Varieties of interhemispheric inhibition, or how to keep a good hemisphere down. Brain and Cognition, 30(1), 81–108.

    Article  Google Scholar 

  • Davidson, R. J. (1988). EEG measures of cerebral asymmetry: Conceptual and methodological issues. International Journal of Neuroscience, 39(1–2), 71–89.

    Article  Google Scholar 

  • de Manzano, Ö., & Ullén, F. (2012). Goal-independent mechanisms for free response generation: Creative and pseudo-random performance share neural substrates. Neuroimage, 59(1), 772–780.

    Article  Google Scholar 

  • Dietrich, A. (2004). The cognitive neuroscience of creativity. Psychonomic Bulletin & Review, 11(6), 1011–1026.

    Article  Google Scholar 

  • Hubbard, T. L. (2010). Auditory imagery: Empirical findings. Psychological Bulletin, 136(2), 302.

    Article  Google Scholar 

  • Hyde, K. L., Lerch, J., Norton, A., Forgeard, M., Winner, E., Evans, A. C., et al. (2009). Musical training shapes structural brain development. Journal of Neuroscience, 29(10), 3019–3025.

    Article  Google Scholar 

  • Jung, R. E., Mead, B. S., Carrasco, J., & Flores, R. A. (2013). The structure of creative cognition in the human brain. Frontiers in human neuroscience, 7, 330.

    Google Scholar 

  • Kantelhardt, J. W., Koscielny-Bunde, E., Rego, H. H., Havlin, S., & Bunde, A. (2001). Detecting long-range correlations with detrended fluctuation analysis. Physica A: Statistical Mechanics and its Applications, 295(3), 441–454.

    Article  MATH  Google Scholar 

  • Kleber, B., Veit, R., Birbaumer, N., Gruzelier, J., & Lotze, M. (2010). The brain of opera singers: Experience-dependent changes in functional activation. Cerebral Cortex, 20(5), 1144–1152.

    Article  Google Scholar 

  • Kosslyn, S. M. (1996). Image and brain-the resolution of the imagery debate. Behaviour Research and Therapy, 10(34), 845–846.

    Google Scholar 

  • Limb, C. J., & Braun, A. R. (2008). Neural substrates of spontaneous musical performance: An FMRI study of jazz improvisation. PLoS ONE, 3(2), e1679.

    Article  Google Scholar 

  • Maity, A. K., Pratihar, R., Mitra, A., Dey, S., Agrawal, V., Sanyal, S., … & Ghosh, D. (2015). Multifractal detrended fluctuation analysis of alpha and theta eeg rhythms with musical stimuli. Chaos, Solitons & Fractals81, 52–67.

    Google Scholar 

  • Martindale, C., Hines, D., Mitchell, L., & Covello, E. (1984). EEG alpha asymmetry and creativity. Personality and Individual Differences, 5(1), 77–86.

    Article  Google Scholar 

  • Martinez, J. L. (2001). Semiosis in Hindustani music (Vol. 15). Motilal Banarsidass Publ.

    Google Scholar 

  • Mathur, A., Vijayakumar, S. H., Chakrabarti, B., & Singh, N. C. (2015). Emotional responses to Hindustani raga music: the role of musical structure. Frontiers in psychology6.

    Google Scholar 

  • McNeil, A. (2007). Improvisation as conversation: a cross cultural perspective.

    Google Scholar 

  • Mellet, E., Petit, L., Mazoyer, B., Denis, M., & Tzourio, N. (1998). Reopening the mental imagery debate: lessons from functional anatomy. Neuroimage, 8(2), 129–139.

    Article  Google Scholar 

  • Mellet, E., Tzourio, N., Crivello, F., Joliot, M., Denis, M., & Mazoyer, B. (1996). Functional anatomy of spatial mental imagery generated from verbal instructions. Journal of Neuroscience, 16(20), 6504–6512.

    Google Scholar 

  • Mellet, E., Tzourio, N., Denis, M., & Mazoyer, B. (1995). A positron emission tomography study of visual and mental spatial exploration. Journal of Cognitive Neuroscience, 7(4), 433–445.

    Article  Google Scholar 

  • Mellet, E., Tzourio-Mazoyer, N., Bricogne, S., Mazoyer, B., Kosslyn, S. M., & Denis, M. (2000). Functional anatomy of high-resolution visual mental imagery. Journal of Cognitive Neuroscience, 12(1), 98–109.

    Article  Google Scholar 

  • Mihov, K. M., Denzler, M., & Förster, J. (2010). Hemispheric specialization and creative thinking: A meta-analytic review of lateralization of creativity. Brain and Cognition, 72(3), 442–448.

    Article  Google Scholar 

  • Pantev, C., & Herholz, S. C. (2011). Plasticity of the human auditory cortex related to musical training. Neuroscience and Biobehavioral Reviews, 35(10), 2140–2154.

    Article  Google Scholar 

  • Peng, C. K., Havlin, S., Stanley, H. E., & Goldberger, A. L. (1995). Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos: An Interdisciplinary Journal of Nonlinear Science, 5(1), 82–87.

    Article  Google Scholar 

  • Petsche, H., Richter, P., Von Stein, A., Etlinger, S. C., & Filz, O. (1993). EEG coherence and musical thinking. Music Perception: An Interdisciplinary Journal, 11(2), 117–151.

    Article  Google Scholar 

  • Pinho, A. L., de Manzano, Ö., Fransson, P., Eriksson, H., & Ullén, F. (2014). Connecting to create: Expertise in musical improvisation is associated with increased functional connectivity between premotor and prefrontal areas. Journal of Neuroscience, 34(18), 6156–6163.

    Article  Google Scholar 

  • Razumnikova, O. M., & Bryzgalov, A. O. (2006). Frequency-spatial organization of brain electrical activity in creative verbal thought: The role of the gender factor. Neuroscience and Behavioral Physiology, 36(6), 645–653.

    Article  Google Scholar 

  • Richardson, C. P., & Saffle, M. (1983). Creativity research in music education: A review. Bulletin of the Council for Research in Music Education, 1–21.

    Google Scholar 

  • Robinson, K. (2009). The element: How finding your passion changes everything. Penguin.

    Google Scholar 

  • Sammler, D., Grigutsch, M., Fritz, T., & Koelsch, S. (2007). Music and emotion: Electrophysiological correlates of the processing of pleasant and unpleasant music. Psychophysiology, 44(2), 293–304.

    Article  Google Scholar 

  • Sato, W., & Aoki, S. (2006). Right hemispheric dominance in processing of unconscious negative emotion. Brain and Cognition, 62(3), 261–266.

    Article  Google Scholar 

  • Schaefer, R. S. (2011). Measuring the mind’s ear: EEG of music imagery. [Sl: sn].

    Google Scholar 

  • Schlaug, G., Norton, A., Overy, K., & Winner, E. (2005). Effects of music training on the child’s brain and cognitive development. Annals of the New York Academy of Sciences, 1060(1), 219–230.

    Article  Google Scholar 

  • Schmidt, L. A., & Trainor, L. J. (2001). Frontal brain electrical activity (EEG) distinguishes valence and intensity of musical emotions. Cognition and Emotion, 15(4), 487–500.

    Article  Google Scholar 

  • Schneider, P., Scherg, M., Dosch, H. G., Specht, H. J., Gutschalk, A., & Rupp, A. (2002). Morphology of Heschl’s gyrus reflects enhanced activation in the auditory cortex of musicians. Nature Neuroscience, 5(7), 688.

    Article  Google Scholar 

  • Simonton, D. K. (2000). Creativity: Cognitive, personal, developmental, and social aspects. American Psychologist, 55(1), 151.

    Article  Google Scholar 

  • Sloboda, J. A. (1988). Generative processes in music: The psychology of performance, improvisation, and composition. Clarendon Press/Oxford University Press.

    Google Scholar 

  • Stein, M. I. (1953). Creativity and culture. The Journal of Psychology, 36(2), 311–322.

    Article  Google Scholar 

  • Trainor, L. J., & Schmidt, L. A. (2003). Processing emotions induced by music. The Cognitive Neuroscience of Music, 310–324.

    Google Scholar 

  • Wieczorkowska, A. A., Datta, A. K., Sengupta, R., Dey, N., & Mukherjee, B. (2010). On search for emotion in Hindusthani vocal music. In Advances in music information retrieval (pp. 285–304). Springer Berlin Heidelberg.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Ghosh, D., Sengupta, R., Sanyal, S., Banerjee, A. (2018). Musical Perception and Visual Imagery: Do Musicians visualize while Performing?. In: Musicality of Human Brain through Fractal Analytics. Signals and Communication Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-6511-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6511-8_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6510-1

  • Online ISBN: 978-981-10-6511-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics