Skip to main content

Emotions from Hindustani Classical Music: An EEG based study including Neural Hysteresis

  • Chapter
  • First Online:

Part of the book series: Signals and Communication Technology ((SCT))

Abstract

This chapter deals with the brain responses to the emotional attributes of Hindustani Classical Music that have been long been a source of discussion for musicologists and psychologists. Here, we make use of robust scientific techniques, which are capable of looking into the most intricate dynamics of the complex EEG signal, to decipher how the human brain responds to different ragas of Hindustani Classical Music. Two pair of commonly sung ragas—Chayanat/ Darbari Kanada and Bahar/ Mian ki Malhar, portraying contrast emotions have been taken for this study standardized first by listening test data from a large pool of participants. These ragas were then given as an input to naïve listeners while their EEG data were recorded simultaneously. The complex fluctuations in a number of EEG frequency patterns arising from different lobes of the brain were analyzed with the help of Detrended Fluctuation Analysis (DFA) technique, which is capable of measuring long range temporal correlations (LRTC) present in EEG signals. Hence Fractal Dimension (FD) was evaluated for each of the musical clip which we proposed as a marker for brain arousal levels corresponding to each emotion. To look further, a hysteresis like phenomenon was also observed whereby the increased FD values did not return to their basal values even after the removal of stimulus. It was seen that arousal based activities lasted much longer for sad clips as compared to the happy clip. The hysteresis like response was ratified using a number of statistical significance tests. Neural Hysteresis in music signals is first reported in this study.

Memory believes before knowing remembers.

Believes longer than recollects,

longer than knowing even wonders

—William Faulkner

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Accardo, A., Affinito, M., Carrozzi, M., & Bouquet, F. (1997). “Use of the fractal dimension for the analysis of electroencephalographic time serie”s. Biological Cybernetics, 77(5), 339–350.

    Article  MATH  Google Scholar 

  • Akin, M., Arserim, M. A., Kiymik, M. K., & Turkoglu, I. (2001). A new approach for diagnosing epilepsy by using wavelet transform and neural networks. In Engineering in Medicine and Biology Society, 2001. Proceedings of the 23rd Annual International Conference of the IEEE (Vol. 2, pp. 1596–1599). IEEE.

    Google Scholar 

  • Balconi, M., & Lucchiari, C. (2008). Consciousness and arousal effects on emotional face processing as revealed by brain oscillations. A gamma band analysis. International Journal of Psychophysiology, 67(1), 41–46.

    Article  Google Scholar 

  • Balkwill, L. L., & Thompson, W. F. (1999). A cross-cultural investigation of the perception of emotion in music: Psychophysical and cultural cues. Music Perception: An Interdisciplinary Journal, 17(1), 43–64.

    Article  Google Scholar 

  • Banerjee, A., Sanyal, S., Patranabis, A., Banerjee, K., Guhathakurta, T., Sengupta, R., & Ghose, P. (2016). Study on brain dynamics by non linear analysis of music induced EEG signals. Physica A: Statistical Mechanics and its Applications, 444, 110–120.

    Google Scholar 

  • Bhattacharya, J. (2009). Increase of universality in human brain during mental imagery from visual perception. PLoS ONE, 4(1), e4121.

    Article  Google Scholar 

  • Bhattacharya, J., & Petsche, H. (2001a). Enhanced phase synchrony in the electroencephalograph γ band for musicians while listening to music. Physical Review E, 64(1), 012902.

    Article  Google Scholar 

  • Bhattacharya, J., & Petsche, H. (2001b). Universality in the brain while listening to music. Proceedings of the Royal Society of London, Series B: Biological Sciences, 268(1484), 2423–2433.

    Article  Google Scholar 

  • Bhattacharya, J., & Petsche, H. (2005). Phase synchrony analysis of EEG during music perception reveals changes in functional connectivity due to musical expertise. Signal Processing, 85(11), 2161–2177.

    Article  MATH  Google Scholar 

  • Bhattacharya, J., Petsche, H., & Pereda, E. (2001). Long-range synchrony in the γ band: role in music perception. The Journal of Neuroscience, 21(16), 6329–6337.

    Google Scholar 

  • Brahaspati, A. (2002). Sangeet Ratnakar. Hathras: Sangeet Karyalay.

    Google Scholar 

  • Chordia, P., & Rae, A. (2007). Understanding emotion in raag: an empirical study of listener responses. In: International symposium on computer music modeling and retrieval, Springer, Berlin, Heidelberg, 110–124.

    Google Scholar 

  • Coakes, S. J., & Steed, L. (2009). SPSS: Analysis without anguish using SPSS version 14.0 for Windows. Wiley

    Google Scholar 

  • Davidson, R. J. (1988). EEG measures of cerebral asymmetry: Conceptual and methodological issues. International Journal of Neuroscience, 39(1–2), 71–89.

    Article  Google Scholar 

  • Dimoulas, C., Kalliris, G., Papanikolaou, G., & Kalampakas, A. (2007). Long-term signal detection, segmentation and summarization using wavelets and fractal dimension: A bioacoustics application in gastrointestinal-motility monitoring. Computers in Biology and Medicine, 37(4), 438–462.

    Article  Google Scholar 

  • Ferree, T. C., & Hwa, R. C. (2003). Power-law scaling in human EEG: Relation to fourier power spectrum. Neurocomputing, 52, 755–761.

    Article  Google Scholar 

  • Gao, T., Wu, D., Huang, Y., & Yao, D. (2007). Detrended fluctuation analysis of the human EEG during listening to emotional music. Journal of Electronic Science and Technology Chin, 5, 272–277.

    Google Scholar 

  • Ghosh, M. (2002). Natyashastra (ascribed to Bharata Muni). Varanasi: Chowkhamba Sanskrit Series Office.

    Google Scholar 

  • Hardstone, R., Poil, S. S., Schiavone, G., Jansen, R., Nikulin, V. V., Mansvelder, H. D., & Linkenkaer-Hansen, K. (2012). Detrended fluctuation analysis: A scale-free view on neuronal oscillations. Frontiers in physiology, 3.

    Google Scholar 

  • Hazarika, N., Chen, J. Z., Tsoi, A. C., & Sergejew, A. (1997a). Classification of EEG signals using the wavelet transform. Signal Processing, 59(1), 61–72.

    Article  MATH  Google Scholar 

  • Hazarika, N., Chen, J. Z., Tsoi, A. C., & Sergejew, A. (1997b). Classification of EEG signals using the wavelet transform. In DSP 97., 1997 13th International Conference on Digital Signal Processing Proceedings, 1997 (Vol. 1, pp. 89–92). IEEE.

    Google Scholar 

  • Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shin, H. H., Zheng, Q., et al. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis. Proc. R. Soc., 454, 903–995.

    Article  MathSciNet  MATH  Google Scholar 

  • Hwa, R. C., & Ferree, T. C. (2002). Scaling properties of fluctuations in the human electroencephalogram. Physical Review E, 66(2), 021901.

    Article  Google Scholar 

  • Lee, J. M., Kim, D. J., Kim, I. Y., Park, K. S., & Kim, S. I. (2002). Detrended fluctuation analysis of EEG in sleep apnea using MIT/BIH polysomnography data. Computers in Biology and Medicine, 32(1), 37–47.

    Article  Google Scholar 

  • Karkare, S., Saha, G., & Bhattacharya, J. (2009). Investigating long-range correlation properties in EEG during complex cognitive tasks. Chaos, Solitons & Fractals, 42(4), 2067–2073.

    Article  Google Scholar 

  • Karthick, N. G., Thajudin, A. V. I., Joseph, P. K. (2006). Music and the EEG: A study using nonlinear methods. In International Conference on Biomedical and Pharmaceutical Engineering, pp. 424–427.

    Google Scholar 

  • Kleinschmidt, A., Büchel, C., Hutton, C., Friston, K. J., & Frackowiak, R. S. (2002). The neural structures expressing perceptual hysteresis in visual letter recognition. Neuron, 34(4), 659–666.

    Article  Google Scholar 

  • Kristeva, R., Chakarov, V., Schulte-Monting, J., & Spreer, J. (2003). Activation of cortical areas in music execution and imagining: a high-resolution EEG study. NeuroImage, 20, 1872–1883.

    Article  Google Scholar 

  • Linkenkaer-Hansen, K., Nikouline, V. V., Palva, J. M., & Ilmoniemi, R. J. (2001). Long-range temporal correlations and scaling behavior in human brain oscillations. Journal of Neuroscience, 21(4), 1370–1377.

    Google Scholar 

  • Liu, Y., Sourina, O., Nguyen, M. K. (2010). Real-time EEG-based human emotion recognition and visualization. In 2010 International Conference on Cyberworlds (CW), pp. 262–269.

    Google Scholar 

  • Martinez, J. L. (2001). Semiosis in Hindustani music (Vol. 15). Motilal Banarsidass Publ.

    Google Scholar 

  • Mathur, A., Vijayakumar, S. H., Chakrabarti, B., & Singh, N. C. (2015). Emotional responses to Hindustani raga music: the role of musical structure. Frontiers in Psychology, 6.

    Google Scholar 

  • Miller, I. (2004). John E. Freund’s mathematical statistics: With applications. Pearson Education India.

    Google Scholar 

  • Miura, A., Kudo, K., & Nakazawa, K. (2013). Action–perception coordination dynamics of whole-body rhythmic movement in stance: A comparison study of street dancers and non-dancers. Neuroscience Letters, 544, 157–162.

    Article  Google Scholar 

  • Mizuki, Y., et al. (1992). Differential responses to mental stress in high and low anxious normal humans assessed by frontal midline theta activity. International Journal of Psychophysiology, 12(2), 169–178.

    Article  Google Scholar 

  • Müller, M. M., Keil, A., Gruber, T., & Elbert, T. (1999). Processing of affective pictures modulates right-hemispheric gamma band EEG activity. Clinical Neurophysiology, 110(11), 1913–1920.

    Article  Google Scholar 

  • Neuman, D. M. (1990). The life of music in North India: The organization of an artistic tradition. University of Chicago Press.

    Google Scholar 

  • Sourina, Olga, Liu, Yisi, & Nguyen, Minh Khoa. (2012). Real-time EEG-based emotion recognition for music therapy. Journal of Multimodal User Interfaces, 5, 27–35.

    Article  Google Scholar 

  • Onton, J., & Makeig, S. (2006). Information-based modeling of event-related brain dynamics. Event-Related Dynamics of Brain Oscillations, 159, 99–120.

    Article  Google Scholar 

  • Patranabis, A., Banerjee, K., Sengupta, R., Dey, N., & Ghosh, D. (2013). Search for spectral cues of Emotion in Hindustani music. Journal of Acoustical Society of India, 40(1), 56–60.

    Google Scholar 

  • Peng, C.-K., Havlin, S., Stanley, H. E., & Goldberger, A. L. (1995). Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos, 5, 82–87.

    Article  Google Scholar 

  • Peretz, I., & Zatorre, R. J. (2005). Brain organization for music processing. Annual Review of Psychology, 56(1), 89–114.

    Google Scholar 

  • Sacharin, V., Sander, D., & Scherer, K. R. (2012). The perception of changing emotion expressions. Cognition and Emotion, 26(7), 1273–1300.

    Article  Google Scholar 

  • Sakharov, D. S., Davydov, V. I., & Pavlygina, R. A. (2005). Intercentral relations of the human EEG during listening to music. Human Physiology, 31(4), 392–397.

    Article  Google Scholar 

  • Sammler, D., Grigutsch, M., Fritz, T., & Koelsch, S. (2007). Music and emotion: Electrophysiological correlates of the processing of pleasant and unpleasant music. J Psychophysiology, 44, 293–304.

    Article  Google Scholar 

  • Sanyal, S., Banerjee, A., Guhathakurta, T., Sengupta, R., Ghosh, D., & Ghose, P. (2013, December). EEG study on the neural patterns of brain with music stimuli: an evidence of Hysteresis? In Proceedings of the International Seminar on ‘Creating and Teaching Music Patterns’, pp. 51–61.

    Google Scholar 

  • Schellenberg, E. G., Nakata, T., Hunter, P. G., & Tamoto, S. (2007). Exposure to music and cognitive performance: Tests of children and adults. Psychology of Music, 35, 5–19.

    Article  Google Scholar 

  • Schmidt, L. A., & Trainor, L. J. (2001). Frontal brain electrical activity (EEG) distinguishes valence and intensity of musical emotions. Cognition and Emotion, 15(4), 487–500.

    Article  Google Scholar 

  • Sourina, O., Kulish, V. V., Sourin, A. (2008). Novel tools for quantification of brain responses to music stimuli. In Proceedings of 13th International Conference on Biomedical Engineering ICBME 2008, pp. 411–414.

    Google Scholar 

  • Sourina, O., Liu, Y., Wang, Q., Nguyen, M. K. (2011). EEG-based personalized digital experience. In: Universal access in human computer interaction. Users diversity. Lecture notes in computer science, vol 6766. Springer, Berlin, 591–599.

    Google Scholar 

  • Sourina, O., Sourin, A., Kulish, V. (2009). EEG data driven animation and its application. In: Computer vision/computer graphics collaboration techniques. Lecture notes in computer science, vol 5496. Springer, Berlin, 380–388.

    Google Scholar 

  • Sourina, O., Wang, Q., Liu, Y., Nguyen, M. K. (2011). A real-time fractal-based brain state recognition from EEG and its applications. In BIOSIGNALS 2011—Proceedings of the International Conference on Bio-Inspired Systems and Signal Processing, pp. 82–90.

    Google Scholar 

  • Suetsugi, M., et al. (2000). Appearance of frontal midline theta activity in patients with generalized anxiety disorder. Neuropsychobiology, 41(2), 108–112.

    Article  Google Scholar 

  • Summerfield, C., Jack, A. I., & Burgess, A. P. (2002). Induced gamma activity is associated with conscious awareness of pattern masked nouns. International Journal of Psychophysiology, 44(2), 93–100.

    Article  Google Scholar 

  • Wang, Q., Sourina, O., Nguyen, M. K. (2010). EEG-based “Serious” games design for medical applications. In 2010 International Conference on Cyberworlds (CW), pp. 270–276.

    Google Scholar 

  • Wieczorkowska, A. A., Datta, A. K., Sengupta, R., Dey, N., & Mukherjee, B. (2010). On search for emotion in Hindusthani vocal music. In Advances in Music Information Retrieval, pp. 285–304. Berlin: Springer.

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Physica A and Elsevier Publishing Co. for providing the copyrights of Figs. 3.2, 3.3, 3.4, 3.5, 3.6, 3.7 and 3.8 and Tables 3.1, 3.2 and 3.3 used in this Chapter.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Ghosh, D., Sengupta, R., Sanyal, S., Banerjee, A. (2018). Emotions from Hindustani Classical Music: An EEG based study including Neural Hysteresis. In: Musicality of Human Brain through Fractal Analytics. Signals and Communication Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-6511-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6511-8_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6510-1

  • Online ISBN: 978-981-10-6511-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics