Skip to main content

Non Linear Techniques for Studying Complex Systems

  • Chapter
  • First Online:
Musicality of Human Brain through Fractal Analytics

Part of the book series: Signals and Communication Technology ((SCT))

Abstract

This chapter deals with the various techniques associated with the analysis of self similar structures of music signals as well as bio-signals obtained from EEG data. This chapter is basically a detailed analysis on the following tools of complex data analysis which have been elaborated later in the different studies.

  1. 1.

    Wavelet analysis

  2. 2.

    Detrended fluctuation analysis (DFA)

  3. 3.

    Multifractal detrended fluctuation analysis (MFDFA)

  4. 4.

    Multifractal cross correlation analysis (MFDXA)

All these techniques make use of Fractal Dimension (FD) or multifractal spectral width (obtained as an output of the MFDFA technique) as an important parameter with which the emotional arousal corresponding to a certain cognitive task (in this case a particular music clip) can be quantified. MFDXA can prove to be an important tool with which the degree of cross correlation between two non-linear EEG signals originating from different lobes of brain can be accurately measured during higher order cognitive tasks. With this, we can have a quantitative assessment of how the different lobes are cross-correlated during higher order thinking tasks or during the perception of audio or any other stimuli. MFDXA can also prove to be an amazing tool in music signal analysis, where we can estimate the degree of cross-correlation between two non-linear self-similar musical clips. A higher degree of cross-correlation would imply that both the signals are very much similar in certain aspects. This in turn can be used as an important tool to obtain a cue for improvisation in musical performances as well as in the identification of presence of Ragas in songs. Several other tools for EEG feature extraction have also been discussed in detail here which include novel methods like neural jitter-shimmer as well as extraction of pitch of EEG signals.

Clouds are not spheres, mountains are not cones,

coastlines are not circles,

and bark is not smooth,

nor does lightning travel in a straight line

—Benoit Mandelbrot

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akin, M., Arserim, M. A., Kiymik, M. K., & Turkoglu, I. (2001). A new approach for diagnosing epilepsy by using wavelet transform and neural networks. In Engineering in Medicine and Biology Society, 2001. Proceedings of the 23rd Annual International Conference of the IEEE (Vol. 2, pp. 1596–1599). IEEE.

    Google Scholar 

  • Ashkenazy, Y., Baker, D. R., Gildor, H., & Havlin, S. (2003). Nonlinearity and multifractality of climate change in the past 420,000 years. Geophysical research letters, 30(22).

    Google Scholar 

  • Banerjee, A., Sanyal, S., Patranabis, A., Banerjee, K., Guhathakurta, T., & Sengupta, R. (2016). Study on brain dynamics by non linear analysis of music induced EEG signals. Physica A: Statistical Mechanics and its Applications, 444, 110–120.

    Google Scholar 

  • Berument, H., Ceylan, N. B., & Dogan, N. (2010). The impact of oil price shocks on the economic growth of selected MENA countries. Energy Journal, 31(1), 149.

    Google Scholar 

  • Bizopoulos, P. A., Al-Ani, T., Tsalikakis, D. G., Tzallas, A. T., Koutsouris, D. D., & Fotiadis, D. I. (2013, July). An automatic electroencephalography blinking artefact detection and removal method based on template matching and ensemble empirical mode decomposition. In Engineering in Medicine and Biology Society (EMBC), 2013 35th Annual International Conference of the IEEE (pp. 5853–5856). IEEE.

    Google Scholar 

  • Bracewell, R. N. (1965). The fourier transform and is applications. New York, 5.

    Google Scholar 

  • Buzsáki, G., Anastassiou, C. A., & Koch, C. (2012). The origin of extracellular fields and currents—EEG, ECoG, LFP and spikes. Nature reviews neuroscience, 13(6), 407–420.

    Article  Google Scholar 

  • Chen, S. S. (2009). Oil price pass-through into inflation. Energy Economics, 31(1), 126–133.

    Article  Google Scholar 

  • Dimoulas, C., Kalliris, G., Papanikolaou, G., & Kalampakas, A. (2007). Long-term signal detection, segmentation and summarization using wavelets and fractal dimension: A bioacoustics application in gastrointestinal-motility monitoring. Computers in Biology and Medicine, 37(4), 438–462.

    Article  Google Scholar 

  • Farrús, M., & Hernando, J. (2009). Using jitter and shimmer in speaker verification. IET Signal Processing, 3(4), 247–257.

    Article  Google Scholar 

  • Feder, J. (2013). Fractals. Springer Science & Business Media.

    Google Scholar 

  • Figliola, A., Serrano, E., Rostas, J. A. P., Hunter, M., & Rosso, O. A. (2007, May). Study of EEG brain maturation signals with multifractal detrended fluctuation analysis. In AIP Conference Proceedings (Vol. 913, No. 1, pp. 190–195). AIP.

    Google Scholar 

  • Gao, T. T., Wu, D., Huang, Y. L., & Yao, D. Z. (2007). Detrended fluctuation analysis of the human EEG during listening to emotional music. Journal of Electronic Science and Technology, 5(3), 272–277.

    Google Scholar 

  • Ghosh, D., Dutta, S., & Chakraborty, S. (2014). Multifractal detrended cross-correlation analysis for epileptic patient in seizure and seizure free status. Chaos, Solitons & Fractals, 67, 1–10.

    Article  MathSciNet  Google Scholar 

  • Hardstone, R., Poil, S. S., Schiavone, G., Jansen, R., Nikulin, V. V., Mansvelder, H. D., & Linkenkaer-Hansen, K. (2012). Detrended fluctuation analysis: a scale-free view on neuronal oscillations. Frontiers in physiology, 3.

    Google Scholar 

  • Hazarika, N., Chen, J. Z., Tsoi, A. C., & Sergejew, A. (1997). Classification of EEG signals using the wavelet transform. Signal Processing, 59(1), 61–72.

    Article  MATH  Google Scholar 

  • He, L. Y., & Chen, S. P. (2011). Multifractal detrended cross-correlation analysis of agricultural futures markets. Chaos, Solitons & Fractals, 44(6), 355–361.

    Article  Google Scholar 

  • Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., … & Liu, H. H. (1998, March). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. In Proceedings of the Royal Society of London A: mathematical, physical and engineering sciences (Vol. 454, No. 1971, pp. 903–995). The Royal Society.

    Google Scholar 

  • Jiang, Z. Q., & Zhou, W. X. (2011). Multifractal detrending moving-average cross-correlation analysis. Physical Review E, 84(1), 016106.

    Article  MathSciNet  Google Scholar 

  • Johnston, D. (1999). Cool edit 2000. Computer software. Phoenix, AZ: Syntrillium Software.

    Google Scholar 

  • Jones, C. M., & Kaul, G. (1996). Oil and the stock markets. The Journal of Finance, 51(2), 463–491.

    Article  Google Scholar 

  • Jung, C. Y., & Saikiran, S. S. (2016). A review on EEG artifacts and its different removal technique.

    Google Scholar 

  • Kantelhardt, J. W., Zschiegner, S. A., Koscielny-Bunde, E., Havlin, S., Bunde, A., & Stanley, H. E. (2002). Multifractal detrended fluctuation analysis of nonstationary time series. Physica A: Statistical Mechanics and its Applications, 316(1), 87–114.

    Article  MATH  Google Scholar 

  • Karkare, S., Saha, G., & Bhattacharya, J. (2009). Investigating long-range correlation properties in EEG during complex cognitive tasks. Chaos, Solitons & Fractals, 42(4), 2067–2073.

    Article  Google Scholar 

  • Kedem, B. (1986). Spectral analysis and discrimination by zero-crossings. Proceedings of the IEEE, 74(11), 1477–1493.

    Article  Google Scholar 

  • Linkenkaer-Hansen, K., Nikouline, V. V., Palva, J. M., & Ilmoniemi, R. J. (2001). Long-range temporal correlations and scaling behavior in human brain oscillations. Journal of Neuroscience, 21(4), 1370–1377.

    Google Scholar 

  • Maity, A. K., Pratihar, R., Mitra, A., Dey, S., Agrawal, V., Sanyal, S., et al. (2015). Multifractal detrended fluctuation analysis of alpha and theta EEG rhythms with musical stimuli. Chaos, Solitons & Fractals, 81, 52–67.

    Article  MathSciNet  Google Scholar 

  • Mehrotra, K., Mohan, C. K., & Ranka, S. (1997). Elements of artificial neural networks. Cambridge: MIT press.

    Google Scholar 

  • Movahed, M. S., & Hermanis, E. (2008). Fractal analysis of river flow fluctuations. Physica A: Statistical Mechanics and its Applications, 387(4), 915–932.

    Article  Google Scholar 

  • Peng, C. K., Buldyrev, S. V., Havlin, S., Simons, M., Stanley, H. E., & Goldberger, A. L. (1994). Mosaic organization of DNA nucleotides. Physical Review E, 49(2), 1685.

    Article  Google Scholar 

  • Podobnik, B., & Stanley, H. E. (2008). Detrended cross-correlation analysis: A new method for analyzing two nonstationary time series. Physical Review Letters, 100(8), 084102.

    Article  Google Scholar 

  • Podobnik, B., Grosse, I., Horvatić, D., Ilic, S., Ivanov, P. C., & Stanley, H. E. (2009). Quantifying cross-correlations using local and global detrending approaches. The European Physical Journal B, 71(2), 243–250.

    Article  Google Scholar 

  • Podobnik, B., Horvatic, D., Ng, A. L., Stanley, H. E., & Ivanov, P. C. (2008). Modeling long-range cross-correlations in two-component ARFIMA and FIARCH processes. Physica A: Statistical Mechanics and its Applications, 387(15), 3954–3959.

    Article  MathSciNet  Google Scholar 

  • Podobnik, B., Jiang, Z. Q., Zhou, W. X., & Stanley, H. E. (2011). Statistical tests for power-law cross-correlated processes. Physical Review E, 84(6), 066118.

    Article  Google Scholar 

  • Reboredo, J. C., Rivera-Castro, M. A., & Zebende, G. F. (2014). Oil and US dollar exchange rate dependence: A detrended cross-correlation approach. Energy Economics, 42, 132–139.

    Article  Google Scholar 

  • Roads, C. (1996). The computer music tutorial. Cambridge: MIT press.

    Google Scholar 

  • Scheirer, E., & Slaney, M. (1997, April). Construction and evaluation of a robust multifeature speech/music discriminator. In Acoustics, Speech, and Signal Processing, 1997. ICASSP-97, 1997 IEEE International Conference on (Vol. 2, pp. 1331–1334). IEEE.

    Google Scholar 

  • Selesnick, I. W., Baraniuk, R. G., & Kingsbury, N. C. (2005). The dual-tree complex wavelet transform. IEEE Signal Processing Magazine, 22(6), 123–151.

    Article  Google Scholar 

  • Sivanandam, S. N., & Deepa, S. N. (2006). Introduction to neural networks using Matlab 6.0. New York: Tata McGraw-Hill Education.

    Google Scholar 

  • Sjölander, K., & Beskow, J. (2000). Wavesurfer-an open source speech tool. In Sixth International Conference on Spoken Language Processing.

    Google Scholar 

  • Wang, F., Liao, G. P., Zhou, X. Y., & Shi, W. (2013). Multifractal detrended cross-correlation analysis for power markets. Nonlinear Dynamics, 72(1–2), 353–363.

    Article  Google Scholar 

  • Xu, N., Shang, P., & Kamae, S. (2010). Modeling traffic flow correlation using DFA and DCCA. Nonlinear Dynamics, 61(1–2), 207–216.

    Article  MATH  Google Scholar 

  • Zhou, W. X. (2008). Multifractal detrended cross-correlation analysis for two nonstationary signals. Physical Review E, 77(6), 066211.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Ghosh, D., Sengupta, R., Sanyal, S., Banerjee, A. (2018). Non Linear Techniques for Studying Complex Systems. In: Musicality of Human Brain through Fractal Analytics. Signals and Communication Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-6511-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6511-8_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6510-1

  • Online ISBN: 978-981-10-6511-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics