Skip to main content

Introduction

  • Chapter
  • First Online:
  • 785 Accesses

Part of the book series: Signals and Communication Technology ((SCT))

Abstract

.Can music be defined? Most of us may agree that it is composed of a complex time series comprising of the three fundamental bases of physics–frequency, amplitude and timbre, but in real life music is something much more than that. Music is a mode of communication between human beings as well as between other living creatures. At first sight music shows a complex behavior: at every instant components (in micro and macro scale: pitch, timbre, accent, duration, phrase, melody etc) are close linked to each other. A self similar structure, or a process, and a part of it appear to be the same when compared. The expansion of the Universe from the big bang and the collapse of a star to a singularity both tend to self similarity in some circumstances. The most common “human made” self similar system include music. Self similarity in music comes from the coherent nature of the sounds. The coherencies are agreeing with each other in every scale and dimension in which they are perceived. The process of human cognition facilitates in different scales and similarity. Human mind groups similar objects of the same size into a single level of scale. The human brain, which is the most complex organ of human body, involves billions of interacting physiological and chemical processes, can now be measured with the help of neuro-scientific biosensors, viz. EEG, PET, fMRI etc. Since music cognition has many emotional aspects, it is expected that EEG recorded during music listening may reflect the electrical activities of brain regions related to those emotional aspects. Indian music is melodic and has somewhat different pitch perception mechanisms, thus it demands qualitatively different cognitive engagement. Although there is an emerging picture of the relationship between induced musical emotions and brain activity, a need for further refinement and exploration of neural correlates of emotional responses induced by music cannot be overruled. This book provides a comprehensive record of how fractal analytics can lead to the extraction of interesting features from complex EEG signal, which opens up new vistas in the direction of emotional categorization and quantification mainly from Hindustani Classical Music. Other characteristics of Hindustani Music like improvisation and universality are also dealt here.

Neuroscience can’t tell you what beauty is,

but if you find it beautiful the medial orbito-frontal cortex

is likely to be involved; you can find beauty in anything

—Semir Zeki

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aftanas, L. I., Reva, N. V., Varlamov, A. A., Pavlov, S. V., & Makhnev, V. P. (2004). Analysis of evoked EEG synchronization and desynchronization in conditions of emotional activation in humans: Temporal and topographic characteristics. Neuroscience and Behavioral Physiology, 34(8), 859–867.

    Article  Google Scholar 

  • Balkwill, L. L., & Thompson, W. F. (1999). A cross-cultural investigation of the perception of emotion in music: Psychophysical and cultural cues. Music Perception: An Interdisciplinary Journal, 17(1), 43–64.

    Article  Google Scholar 

  • Balkwill, L. L., Thompson, W. F., & Matsunaga, R. I. E. (2004). Recognition of emotion in Japanese, Western, and Hindustani music by Japanese listeners1. Japanese Psychological Research, 46(4), 337–349.

    Article  Google Scholar 

  • Banerjee, B. M., & Nag, D. (1991). The acoustical character of sounds from Indian twin drums. Acustica, 75(3), 206–208.

    Google Scholar 

  • Banerjee, A., Sanyal, S., Patranabis, A., Banerjee, K., Guhathakurta, T., Sengupta, R., et al. (2016). Study on brain dynamics by non linear analysis of music induced EEG signals. Physica A: Statistical Mechanics and its Applications, 444, 110–120.

    Article  Google Scholar 

  • Banerjee, A., Sanyal, S., Sengupta, R., & Ghosh, D. (2017). Universality and domain specificity of emotion-a quantitative non linear EEG based approach. Journal of Neurology and Neuroscience.

    Google Scholar 

  • Banerjee, B. M., Sengupta, S., Sengupta, R., Nag, D., Datta, A. K., Ganguli, N. R., et al. (1983). Spectral Characteristics of Vowels Sung in Hindustani Sastriya Sangeet. Journal of Acoustics Social India, II(4), 47.

    Google Scholar 

  • Baroni, M., Dalmonte, R., & Jacoboni, C. (1999). Le regole della musica: indagine sui meccanismi della comunicazione (Vol. 9). EDT srl.

    Google Scholar 

  • Bhattacharya, J., & Petsche, H. (2001). Enhanced phase synchrony in the electroencephalograph γ band for musicians while listening to music. Physical Review E, 64(1), 012902.

    Article  Google Scholar 

  • Bhattacharya, J., & Petsche, H. (2005). Phase synchrony analysis of EEG during music perception reveals changes in functional connectivity due to musical expertise. Signal processing, 85(11), 2161–2177.

    Google Scholar 

  • Bigand, E., Vieillard, S., Madurell, F., Marozeau, J., & Dacquet, A. (2005). Multidimensional scaling of emotional responses to music: The effect of musical expertise and of the duration of the excerpts. Cognition and Emotion, 19(8), 1113–1139.

    Article  Google Scholar 

  • Bigerelle, M., & Iost, A. (2000). Fractal dimension and classification of music. Chaos, Solitons and Fractals, 11(14), 2179–2192.

    Article  Google Scholar 

  • Blood, A. J., & Zatorre, R. J. (2001). Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proceedings of the National Academy of Sciences, 98(20), 11818–11823.

    Article  Google Scholar 

  • Braeunig, M., Sengupta, R., & Patranabis, A. (2012). On tanpura drone and brain electrical correlates (pp. 53–65). Speech, Sound and Music Processing: Embracing Research in India.

    Google Scholar 

  • Chakraborty, S., Ranganayakulu, R., Solanki, S. S., Patranabis, A., Ghosh, D., Sengupta, R., et al. (2009, April). Shadowing along the Maestro’s Rhythm (A Shadow analysis of Indian Percussion performance with Metrical and Melodic properties). Journal of Revista Electronica de Musicologica, Vol. XII.

    Google Scholar 

  • Chen, C. Y., Wong, W. K., Kuo, C. D., Liao, Y. T., & Ke, M. D. (2008). Wavelet real time monitoring system: A case study of the musical influence on electroencephalography. WSEAS Transactions on Systems, 7(2), 56–62.

    Google Scholar 

  • Chow, A. Y., Chow, V. Y., Packo, K. H., Pollack, J. S., Peyman, G. A., & Schuchard, R. (2004). The artificial silicon retina microchip for the treatment of vision loss from retinitis pigmentosa. Archives of Ophthalmology, 122, 460–469.

    Article  Google Scholar 

  • Datta, A. K., Sengupta, R., Dey, N., Banerjee, B. M & Nag, D. (1997). Pitch analysis of recorded vocal performances in hindustani music: Evidence of a personal scale. Journal of Acoustics Social India, XXV, VI-1.1–VI-1.6.

    Google Scholar 

  • Datta, A. K., Sengupta, R., Dey, N., Banerjee, B. M., & Nag, D. (1998). Multiple states in a note in hindustani music and their relevance to consonance. Journal of Acoustics Social India, XXVI (324), 394.

    Google Scholar 

  • Datta, A. K., Sengupta, R., Dey, N., & Nag, D. (2006). Experimental analysis of Shrutis from performances in Hindustani music. ITC Sangeet Research Academy, Kolkata: Scientific Research Department. ISBN 81-903818-0-6.

    Google Scholar 

  • Datta, A. K., Sengupta, R., Dey, N., & Nag, D. (2008). Study of non linearity in Indian flute by fractal dimension analysis, Ninaad (J. ITC Sangeet Research Academy), 22, 1–11, (ISSN 0973-3787).

    Google Scholar 

  • Datta, A. K., Sengupta, R., Dey, N., Nag, D., & Mukerjee, A. (2007). Study of melodic sequences in Hindustani ragas: A cue for emotion? In Proceedings Frontiers of Research on Speech and Music, 8–9 January, AIISH, Mysore, India.

    Google Scholar 

  • Datta, A. K., Solanki, S. S., Sengupta, R., Chakraborty, S., Mahto, K., & Patranabis, A. (2017). Signal analysis of Hindustani classical music. Singapore: Springer Nature. ISBN 978-981-10-3958-4.

    Book  Google Scholar 

  • Dutta, S., Ghosh, D., & Chatterjee, S. (2013). Multifractal detrended fluctuation analysis of human gait diseases. Frontiers in Physiology4.

    Google Scholar 

  • Eswaran, H., Preissl, H., Wilson, J. D., Murphy, P., Robinson, S. E., Rose, D., et al. (2002). Short term serial magnetoencephalography recordings of fetal auditory evoked responses. Neuroscience Letters, 331(2), 128–132.

    Article  Google Scholar 

  • Evans, P., & Schubert, E. (2008). Relationships between expressed and felt emotions in music. Musicae Scientiae, 12(1), 75–99.

    Article  Google Scholar 

  • Fontaine, J. R., Scherer, K. R., Roesch, E. B., & Ellsworth, P. C. (2007). The world of emotions is not two-dimensional. Psychological Science, 18(12), 1050–1057.

    Article  Google Scholar 

  • Frova, A. (1999). Fisica nella musica. Zanichelli.

    Google Scholar 

  • Gabrielsson, A., & Lindström, E. (2010). The role of structure in the musical expression of emotions (pp. 367–400). Handbook of music and emotion: Theory, research, applications.

    Google Scholar 

  • Gagnon, L., & Peretz, I. (2003). Mode and tempo relative contributions to “happy-sad” judgements in equitone melodies. Cognition and Emotion, 17(1), 25–40.

    Article  Google Scholar 

  • Gao, T. T., Wu, D., Huang, Y. L., & Yao, D. Z. (2007). Detrended fluctuation analysis of the human EEG during listening to emotional music. Journal of Electronic Science and Technology, 5(3), 272–277.

    Google Scholar 

  • Garrido, S., & Schubert, E. (2013). Adaptive and maladaptive attraction to negative emotions in music. Musicae Scientiae, 17(2), 147–166.

    Article  Google Scholar 

  • Garrido, S., & Schubert, E. (2015). Moody melodies: Do they cheer us up? A study of the effect of sad music on mood. Psychology of Music, 43(2), 244–261.

    Article  Google Scholar 

  • Geethanjali, B., Adalarasu, K., & Rajsekaran, R. (2012). Impact of music on brain function during mental task using electroencephalography. World Academy of Science, Engineering and Technology, 66, 883–887.

    Google Scholar 

  • Ghosh, D., Gangopadhyaya, M., & Roy, A. Pleasantness of Sad Music—A Time Dilation Based Study with Cross Modal Bias In Happy-Sad Valance Scenario. In Proceedings of International Symposium FRSM-2016, November 11–12, 2016, North Orissa University, Baripada, India, (ISBN: 978-93-81693-07-03).

    Google Scholar 

  • Ghosh, D., Dutta, S., & Chakraborty, S. (2014). Multifractal detrended cross-correlation analysis for epileptic patient in seizure and seizure free status. Chaos, Solitons & Fractals, 67, 1–10.

    Article  MathSciNet  Google Scholar 

  • Gu, R., Chen, H., & Wang, Y. (2010). Multifractal analysis on international crude oil markets based on the multifractal detrended fluctuation analysis. Physica A: Statistical Mechanics and its Applications, 389(14), 2805–2815.

    Article  Google Scholar 

  • Gundlach, R. H. (1935). Factors determining the characterization of musical phrases. The American Journal of Psychology, 47(4), 624–643.

    Article  Google Scholar 

  • Hajian, S., & Movahed, M. S. (2010). Multifractal detrended cross-correlation analysis of sunspot numbers and river flow fluctuations. Physica A: Statistical Mechanics and its Applications, 389(21), 4942–4957.

    Article  Google Scholar 

  • Hsü, K. J., & Hsü, A. J. (1990). Fractal geometry of music. Proceedings of the National Academy of Sciences, 87(3), 938–941.

    Article  MathSciNet  Google Scholar 

  • Hu, J., Tung, W. W., & Gao, J. (2006). Detection of low observable targets within sea clutter by structure function based multifractal analysis. IEEE Transactions on Antennas and Propagation, 54(1), 136–143.

    Article  Google Scholar 

  • Hunter, P. G., Schellenberg, E. G., & Schimmack, U. (2008). Mixed affective responses to music with conflicting cues. Cognition & Emotion, 22(2), 327–352.

    Google Scholar 

  • Hunter, P. G., Schellenberg, E. G., & Schimmack, U. (2010). Feelings and perceptions of happiness and sadness induced by music: Similarities, differences, and mixed emotions. Psychology of Aesthetics, Creativity, and the Arts, 4(1), 47.

    Article  Google Scholar 

  • Husain, G., Thompson, W. F., & Schellenberg, E. G. (2002). Effects of musical tempo and mode on arousal, mood, and spatial abilities. Music Perception: An Interdisciplinary Journal, 20(2), 151–171.

    Article  Google Scholar 

  • Ilie, G., & Thompson, W. F. (2006). A comparison of acoustic cues in music and speech for three dimensions of affect. Music Perception: An Interdisciplinary Journal, 23(4), 319–330.

    Article  Google Scholar 

  • Ilie, G., & Thompson, W. F. (2011). Experiential and cognitive changes following seven minutes exposure to music and speech. Music Perception: An Interdisciplinary Journal, 28(3), 247–264.

    Article  Google Scholar 

  • Juslin, P. N., & Sloboda, J. A. (2001). Music and Emotion: Theory and Research. Oxford University Press.

    Google Scholar 

  • Karthick, N. G., Ahamed, V. T., & Paul, J. K. (2006, December). Music and the EEG: A study using nonlinear methods. In Biomedical and Pharmaceutical Engineering, 2006. ICBPE 2006. International Conference on (pp. 424–427) (IEEE).

    Google Scholar 

  • Koelsch, S., & Siebel, W. A. (2005). Towards a neural BASIS of music perception. Trends in Cognitive Sciences, 9(12), 578–584.

    Article  Google Scholar 

  • Kreutz, G., Ott, U., Teichmann, D., Osawa, P., & Vaitl, D. (2008). Using music to induce emotions: Influences of musical preference and absorption. Psychology of Music, 36(1), 101–126.

    Article  Google Scholar 

  • Krumhansl, C. L. (1997). An exploratory study of musical emotions and psychophysiology. Canadian Journal of Experimental Psychology/Revue Canadienne de Psychologie Expérimentale, 51(4), 336.

    Article  Google Scholar 

  • Large, E. W. (2000). On synchronizing movements to music. Human Movement Science, 19(4), 527–566.

    Article  Google Scholar 

  • Larsen, J. T., Norris, C. J., McGraw, A. P., Hawkley, L. C., & Cacioppo, J. T. (2009). The evaluative space grid: A single-item measure of positivity and negativity. Cognition and Emotion, 23(3), 453–480.

    Article  Google Scholar 

  • Leman, M. (1994). Schema-based tone center recognition of musical signals. Journal of New Music Research, 23, 169–204.

    Article  Google Scholar 

  • Liao, F., & Jan, Y. K. (2011). Using multifractal detrended fluctuation analysis to assess sacral skin blood flow oscillations in people with spinal cord injury. Journal of Rehabilitation Research and Development, 48(7), 787.

    Article  Google Scholar 

  • Lin, J., & Chen, Q. (2013). Fault diagnosis of rolling bearings based on multifractal detrended fluctuation analysis and Mahalanobis distance criterion. Mechanical Systems and Signal Processing, 38(2), 515–533.

    Article  Google Scholar 

  • Lin, Y. P., Duann, J. R., Feng, W., Chen, J. H., & Jung, T. P. (2014). Revealing spatio-spectral electroencephalographic dynamics of musical mode and tempo perception by independent component analysis. Journal of Neuroengineering and Rehabilitation, 11(1), 18.

    Article  Google Scholar 

  • Lin, Y. P., Wang, C. H., Jung, T. P., Wu, T. L., Jeng, S. K., Duann, J. R., et al. (2010). EEG-based emotion recognition in music listening. IEEE Transactions on Biomedical Engineering, 57(7), 1798–1806.

    Article  Google Scholar 

  • Loehr, J. D., Large, E. W., & Palmer, C. (2011). Temporal coordination and adaptation to rate change in music performance. Journal of Experimental Psychology: Human Perception and Performance, 37(4), 1292.

    Google Scholar 

  • Lopes, R., & Betrouni, N. (2009). Fractal and multifractal analysis: A review. Medical Image Analysis, 13(4), 634–649.

    Article  Google Scholar 

  • Maity, A. K., Pratihar, R., Mitra, A., Dey, S., Agrawal, V., Sanyal, S., et al. (2015). Multifractal detrended fluctuation analysis of alpha and theta EEG rhythms with musical stimuli. Chaos, Solitons & Fractals, 81, 52–67.

    Article  MathSciNet  Google Scholar 

  • Mandelbrot, B. B. (1967). How long is the coast of Britain. Science, 156(3775), 636–638.

    Article  Google Scholar 

  • Mandelbrot, B. B. (1977). Fractals. John Wiley & Sons, Inc.

    Google Scholar 

  • Marcussen, C. (2014). Multidimensional scaling in tourism literature. Tourism Management Perspectives, 12, 31–40.

    Article  Google Scholar 

  • Markram, H. (2006). The blue brain project. Nature Reviews Neuroscience, 7(2), 153–160.

    Article  MathSciNet  Google Scholar 

  • Martinez, J. L. (2001). Semiosis in Hindustani music (Vol. 15). Motilal Banarsidass Publ.

    Google Scholar 

  • Mathur, A., Vijayakumar, S. H., Chakrabarti, B., & Singh, N. C. (2015). Emotional responses to Hindustani raga music: The role of musical structure. Frontiers in Psychology, 6.

    Google Scholar 

  • Natarajan, K., Acharya, R., Alias, F., Tiboleng, T., & Puthusserypady, S. K. (2004). Nonlinear analysis of EEG signals at different mental states. BioMedical Engineering OnLine, 3(1), 7.

    Article  Google Scholar 

  • Poincaré, H. (1914).  Science and method, translated by Francis Maitland. (1908).

    Google Scholar 

  • Poincaré, H. (2013). Science and method. Courier Corporation.

    Google Scholar 

  • Russell, J. A. (1991). Culture and the categorization of emotions. Psychological Bulletin, 110(3), 426.

    Article  Google Scholar 

  • Russell, J. A. (2003). Core affect and the psychological construction of emotion. Psychological Review, 110(1), 145.

    Article  Google Scholar 

  • Russell, J. A., & Carroll, J. M. (1999). On the bipolarity of positive and negative affect. Psychological Bulletin, 125(1), 3.

    Article  Google Scholar 

  • Sammler, D., Grigutsch, M., Fritz, T., & Koelsch, S. (2007). Music and emotion: Electrophysiological correlates of the processing of pleasant and unpleasant music. Psychophysiology, 44(2), 293–304.

    Article  Google Scholar 

  • Sanyal, S., Banerjee, A., Patranabis, A., Banerjee, K., Sengupta, R., & Ghosh, D. (2016a). A study on Improvisation in a Musical performance using Multifractal Detrended Cross Correlation Analysis. Physica A: Statistical Mechanics and its Applications, 462, 67–83.

    Article  Google Scholar 

  • Sanyal, S., Banerjee, A., Sengupta, R., & Ghosh, D. (2016b). Chaotic Brain, Musical Mind-A Non-Linear eurocognitive Physics Based Study. Journal of Neurology and Neuroscience.

    Google Scholar 

  • Sarlo, M., Buodo, G., Poli, S., & Palomba, D. (2005). Changes in EEG alpha power to different disgust elicitors: The specificity of mutilations. Neuroscience Letters, 382(3), 291–296.

    Article  Google Scholar 

  • Scherer, K. R. (2005). What are emotions? And how can they be measured? Social Science Information, 44(4), 695–729.

    Article  MathSciNet  Google Scholar 

  • Schmidt, B., & Hanslmayr, S. (2009). Resting frontal EEG alpha-asymmetry predicts the evaluation of affective musical stimuli. Neuroscience Letters, 460(3), 237–240.

    Article  Google Scholar 

  • Schmidt, L. A., & Trainor, L. J. (2001). Frontal brain electrical activity (EEG) distinguishes valence and intensity of musical emotions. Cognition and Emotion, 15(4), 487–500.

    Article  Google Scholar 

  • Schubert, E. (2013). Emotion felt by the listener and expressed by the music: Literature review and theoretical perspectives. Frontiers in psychology, 4.

    Google Scholar 

  • Schuster, G. H. (1995). Deterministic chaos: An introduction. New York: Wiley-VCH.

    MATH  Google Scholar 

  • Seifert, U. (1993). Systematische Musiktheorie und Kognitionswissenschaft (Vol. 69 of Orpheus-Schriftenreihe zu Grundfragen der Musik), Bonn: Verlag für systematische Musikwissenschaft.

    Google Scholar 

  • Sengupta, R. (1990). Study on some aspects of the “singer’s formant” in north Indian classical singing. Journal of Voice, 4(2), 129–134.

    Article  Google Scholar 

  • Sengupta, R., Banerjee, B. M., Sengupta, S., & Nag, D. (1983, July). Tonal Qualities of the Indian Tanpura. In Proceedings of Stockholm Music Acoustics Conference (SMAC), (pp. 333) Sweden.

    Google Scholar 

  • Sengupta, R., Dey, N., Banerjee, B. M., Datta, A. K., & Kichlu, V. K. (1995). A comparative study between the spectral structure of a composite string sound and the thick string of a Tanpura. Journal Acoustics Social India, Vol. XXIII.

    Google Scholar 

  • Sengupta, R., Dey, N. & Datta, A. K. (2010b). Study of source characteristics in sarod from the sound signals. Ninaad (J. ITC Sangeet Research Academy), 24, 44–51, ISSN 0973-3787.

    Google Scholar 

  • Sengupta, R., Dey, N., Datta, A. K., & Ghosh, D. (2005). Assessment of musical quality of tanpura by fractal-dimensional analysis. Fractals, 13(03), 245–252.

    Article  MATH  Google Scholar 

  • Sengupta, R., Dey, N., Datta, A. K., Ghosh, D., & Patranabis, A. (2010a). Analysis of the signal complexity in sitar performances. Fractals, 18(02), 265–270.

    Article  Google Scholar 

  • Sengupta, R., Dey, N., & Nag, D. (1989). Acoustic comparison of Nasal and Non-Nasal Indian classical singing. Journal of Acoustics Socia India, XVII (3&4), 285.

    Google Scholar 

  • Sengupta, R., Dey, N., Nag, D., & Datta, A. K. (2000). Study on Shimmer, Jitter & Complexity Perturbations in voices of singers & non-singers. Journal of Acoustics Social India, Vol. XXVIII.

    Google Scholar 

  • Sengupta, R., Dey, N., Nag, D., & Datta, A. K. (2001). Comparative study of fractal behavior in quasi-random and quasi-periodic speech wave map. Fractals, 9(04), 403–414.

    Article  Google Scholar 

  • Sengupta, R., Dey, N., Nag, D., & Datta, A. K. (2007). Random perturbations in harmonium signals. Journal of Acoustics Social India, 34(1), 53–59.

    Google Scholar 

  • Sengupta, R., Guhathakurta, T., Ghosh, D., & Datta, A. K. (2012). Emotion induced by Hindustani music—a cross cultural study based on listener’s response. In Proceedings of the International Symposium FRSM-2012, January 18–19, KIIT College of Engineering, Gurgaon, India.

    Google Scholar 

  • Shamma, S. (2001). On the role of space and time in auditory processing. Trends in Cognitive Sciences, 5, 340–348.

    Article  Google Scholar 

  • Shang, P., Lu, Y., & Kamae, S. (2008). Detecting long-range correlations of traffic time series with multifractal detrended fluctuation analysis. Chaos, Solitons & Fractals, 36(1), 82–90.

    Article  Google Scholar 

  • Smith, E. C., & Lewicki, M. S. (2006). Efficient auditory coding. Nature, 439, 978–982.

    Article  Google Scholar 

  • Stefanics, G., Haden, G., Huotilainen, M., Balazs, L., Sziller, I., Beke, A., et al. (2007). Auditory temporal grouping in newborn infants. Psychophysiology, 44, 697–702.

    Article  Google Scholar 

  • Telesca, L., & Lovallo, M. (2011). Analysis of the time dynamics in wind records by means of multifractal detrended fluctuation analysis and the Fisher-Shannon information plane. Journal of Statistical Mechanics: Theory and Experiment, 2011(07), P07001.

    Article  Google Scholar 

  • Vieillard, S., Peretz, I., Gosselin, N., Khalfa, S., Gagnon, L., & Bouchard, B. (2008). Happy, sad, scary and peaceful musical excerpts for research on emotions. Cognition and Emotion, 22(4), 720–752.

    Article  Google Scholar 

  • Wieczorkowska, A. A., Datta, A. K., Sengupta, R., Dey, N., & Mukherjee, B. (2010). On search for emotion in Hindusthani vocal music. In Advances in music information retrieval (pp. 285–304). Springer Berlin Heidelberg.

    Google Scholar 

  • http://www.duke.edu/~mjd/chaos/chaos.html.

  • http://www.sciencephoto.com

  • Yuan, Y., Zhuang, X. T., & Jin, X. (2009). Measuring multifractality of stock price fluctuation using multifractal detrended fluctuation analysis. Physica A: Statistical Mechanics and its Applications, 388(11), 2189–2197.

    Article  Google Scholar 

  • Zhong, K., Leupold, J., von Elverfeldt, D., & Speck, O. (2008). The molecular basis for gray and white matter contrast in phase imaging. Neuroimage, 40(4), 1561–1566.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Ghosh, D., Sengupta, R., Sanyal, S., Banerjee, A. (2018). Introduction. In: Musicality of Human Brain through Fractal Analytics. Signals and Communication Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-6511-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6511-8_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6510-1

  • Online ISBN: 978-981-10-6511-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics